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ABSTRACT 

In recent years, a variety of chaos-based cryptosystems have been proposed. Some of these systems are used in design-
ing a pseudo random bit generator (PRBG) for stream cipher applications. Most of the chaotic systems used in crypto-
graphy have good chaotic properties like ergodicity, sensitivity to initial values and sensitivity to control parameters. 
However, some of them are not very suitable for use in cryptography because of their non-uniform density function, and 
their relatively small key space. To be used in cryptography, a PRBG may need to meet stronger requirements than for 
other applications. In particular, various statistical tests can be applied to the outputs of such generators to conclude 
whether the generator produces a truly random sequence or not. In this paper, we propose a PRBG based on the use of 
the standard chaotic map with large key space and the Engle Continued Fractions (ECF) map. The outputs of the stan-
dard map are used as the inputs of ECF-map. The chaotic nature of the standard map and the good statistical proper-
ties of the ECF map motivate us to design a new PRBG for stream cipher applications. The numerical simulation anal-
ysis indicates that our PRBG produces bit sequences possessing excellent statistical and cryptographic properties. 

Keywords: Cryptography, Continued Fraction, Statistical Tests, PRBG, Chaotic Map 

1. Introduction 

Recently, a variety of crypto-systems have been pro-
posed. Many of them are based on chaotic systems [1-5] 
which possess good cryptographic characteristics. Chaos 
systems have many important features like ergodicity, 
sensitivity to initial condition, sensitivity to control pa-
rameters and randomness. These features are very im-
portant in cryptography as they form the basis of some 
new and efficient ways to develop encryption algorithms 
for secure digital image transmission over the Internet 
and through public networks. In addition, most of the 
chaos-based image cryptosystems are based on a single 
chaotic system. And it is possible according to the chaos 
theory to extract some useful information about the 
chaotic system from its orbit, which makes chaotic sys-
tems insecure [6-8]. To overcome these drawbacks, some 
techniques such as multiple chaotic systems [9-12], 
high-dimensional chaotic systems [13-15], multiple ite- 
rations of chaotic systems, and many other techniques 
have been proposed to improve chaos-based ciphers 
[6,16]. To be used in cryptographic applications, a cha- 
otic system must sat isfy two important characteristics; 

its large key space, to resist bruit force attacks, and its 
ability to generate a sequence that has a uniform inva-
riant density function to make it resistant to statistical 
attacks. The problem is that not all chaotic systems sa-
tisfy these characteristics. For example, the chaotic logi- 
stic map is widely used to design cryptosystems. The 
known one-Dimensional logistic map is defined as 

 1 1n n nx x x    where  0,4  , 0,1, 2,n   and 
 1,0nx . Mi et al. [17] proposed a chaotic encryption 

scheme based on randomized arithmetic coding using the 
logistic map as the PRBG. In [18], Kanso and Smaoui 
proposed two Pseudo Random Bit Generator (PRBG) for 
stream cipher applications. The first is based on a single 
1-D logistic map and the second is based on a combina-
tion of two logistic maps. The logistic map is weak in 
security because it neither satisfies the uniform distribu-
tion property nor does its key space [19,20]. For this map, 
the key size is determined by the initial value 0x  and 
the control parameter  ; 50 bits with a precision of 10-14. 
In [11], Patidar and Sud proposed a PRBG for stream 
cipher applications based on two chaotic standard maps 
running side-by-side and starting from randomly inde 
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pendent initial conditions. The pseudo random bit se-
quence is generated by comparing the outputs of both the 
chaotic standard maps. They presented the detailed re-
sults of the statistical testing on generated bit sequences, 
using two statistical test suites: the NIST [21] and the 
DIEHARD [22]. Thus, the need to find a secure and effi-
cient chaotic-based cryptosystem motivates us to propose 
a new scheme which consists of using the standard chao-
tic map and the Engle Continued Fractions (ECF) map. 
The use of ECF-map increases the complexity of a cryp-
tosystem based only on standard chaotic system and thus 
makes difficulties in extraction of information about it. 
In addition, ECF-map conserves the cryptography prop-
erties of the chaotic system; like sensitivity to initial 
values/control parameters, non periodicity and random-
ness; and adds interesting statistical properties such uni-
form distribution density function and zero co-corre- 
lation. 

The rest of this paper is organized as follows. In Sec-
tion 2, we discuss the CF theory and we present a brief 
description of the ECF-map along with some important 
features. Section 3 details our proposed PRBG for stream 
cipher applications. In Section 4, we analyze the security 
of the proposed PRBG and discuss experimental results 
based on statistical testing. The concluding remarks are 
given in Section 5. 

2. Continued Fraction 

Continued fractions (CF) [23-26] refer to all expressions 
of the form: 
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Where ia (i > 0) are the partial numerators, ib  are the 
partial denominators, 0b  is the integer part of the con-
tinued fraction and x  is a real number. 

Hartono et al. [27] introduce a new continued fraction 
expansion, called Engel continued fraction (ECF) expan-
sion.  

The Engel continued fraction (ECF) map 
 : [0,1) 0,1ET   is given by: 
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For any  1,0x , the ECF-map generates a new and 

unique continued fraction expansion of x of the form: 
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Let  1,0x , and define: 
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From definition of ET it follows that: 
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We describe the method for generating the ECF-con- 
tinued fraction expansion of x as follows. 

Algorithm 1 ECF expansion 

Initialize 0,0  ixx

while 01 x  do
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end while 

From the theorem presented in [27], if we let  1,0x , 

then x has a finite ECF-expansion (i.e.,   0xT n
E  for 

some 1n ) if and only if x Q . In this paper, we pay 

most attention to the following sequence: 

      , 1.n
n n EZ x b x T x n            (6) 

The sequence   
1

n

i i
Z x


 is in  0,1  and uniformly 

distributed for almost all points x (for a proof see [27]). 
So, the ECF-map generates a random and unpredictable 

sequence   
1

n

i i
Z x


 with a uniform distribution. These 
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properties, which are very useful in cryptography, moti-
vate us to propose a new PRBG for stream cipher appli-
cations based on ECF-map. 

3. The Proposed Pseudo Random Bit 
Generator Algorithm 

In this section, we describe the process of the proposed 
PRBG. The first step in designing the proposed PRBG is 
to choose an n-Dimensional chaotic map [10,28]. Choo- 
sing maps for encryption algorithms is the most impor-
tant task. The use of chaotic maps can make the output 
very sensitive to the input and in our PRBG, the outputs 
of the chosen chaotic map are used as the input to the 
ECF-map for generating sequences with desirable chao-
tic and statistical properties. In the proposed PRBG, we 
suggest to use the standard map due to their good chaotic 
properties like sensitivity to the initial values, sensitivity 
to the control parameter and its large key space. The 2-D 
map function known as the standard map is defined by: 

 1 0 1

1

sin
,

j j j

j j j

x x p y

y y x

 



   


 
          (7) 

Where jx  and jy  are taken modulo 2 . The secret 
key in the proposed PRBG is a set of three floating point 
numbers and one integer  0 0 0 0, , ,x y p N , where 
 0 0, [0,2 )x y   is the initial values, 0p  is the control 
parameter value which can have any real value greater 
than 0.18  and 0N  is the number of initial iterations of 
the standard chaotic map. The standard map has a good 
chaotic properties and a large key space of the order 157 
bits [10] with an accuracy of 1410 . This key space is 
sufficient enough to resist the brute-force attack. In the 
following paragraph, we give the detailed procedure to 
generate pseudo random binary sequences using the 
standard and ECF maps. 

We define a function  : [0,1) 0,1G   such that: 

      ,i j i j i
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Where  jZ  is the set calculated according to (6) using 
ECF-map. In addition, assuming that we have defined a 
function    1,01,0: F  that converts the real number 

ix  to a discrete bit symbol as follows: 
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          (9) 

We propose to use the 2-D standard map, with parame-
ters   )2,0[, 00 yx are the initial values and 0p  is the 
control parameter of the chaotic map. Firstly, we propose 
to iterate the chaotic map 0p times. And the operation 
procedures of the proposed PRBG are described as fol-

lows: 
1) Step 1: The standard map is iterated continuously. 

For the jth iteration, the output of the standard map is a 
new 2-tuplet    , 0,2j jx y  . 

2) Step 2: Now, we propose to calculate the set 

 
1

N

j j
a


using the relation: 

   j j j j ja x y x y              (10) 

3) Step 3: Finally, the sequence  
1

NN
j j

K k


  repre- 

sents the random binary sequence and it is generated by: 

  j jk F G a              (11) 

The standard and ECF maps are iterated until the gen-
eration of a key stream with length N. In order to gener-
ate the random binary sequence 

1

N

j j
k


, an initial se-

quence  
1

N

j j
a


has to be created using the standard map. 

From a cryptographic point of view, the sequence 

 
1

N

j j
a


is not good enough for designing a PRBG be-

cause it is not random. Therefore, we propose to use the 
ECF-map to convert the generated sequence  

1

N

j j
a


to a 

binary sequence  
1

N

j j
k


of the same length by applying 

(11). 

4. Statistical Tests 

In this section, we apply the statistical test suite designed 
by NIST [21] to verify the randomness of the binary se-
quences generated by our PRBG. The NIST test suite 
includes 16 independent and computationally intensive 
statistical tests. These tests are useful in detecting devia-
tions of a binary sequence from randomness. The 16 tests 
can be classified into two categories: 

1) Non-parameterized tests: Frequency (monobit) 
test (FT), Runs test (RT), Test for longest run of ones in 
a block (LROT), Lempel-Ziv compression test (LZT), 
Binary matrix rank test (MRT), Cumulative sums test 
(CST), Discrete Fourier transform (spectral) test (SPT), 
Random excursions test (RET) and Random excursions 
variant test (REVT). 

2) Parameterized tests: Frequency test within a block 
(BFT), Approximate entropy test (AET), Linear com-
plexity test (LCT), Maurer’s universal statistical test 
(MUST), Serial test (ST), Overlapping template match-
ing test (OTMT) and Non-overlapping template match-
ing test (NOTMT). The detailed description of all 16 
tests of NIST suite can be found in [21]. 

4.1. Statistical Analysis of the Proposed PRBG 

First, the generator should produce a binary sequence of 
0s and 1s of a given length N. Next, we invoke the NIST 
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Statistical Test Suite using the generated sequence. Fi-
nally, a set of p_values for each statistical test will be 
generated by the test suite. Based on these p_values, a 
conclusion regarding the quality of the sequences can be  
drawn. The significance level   for all tests in NIST 
Suite is set to 0.01. A p_value less than   would mean 
that the sequence is non-random. If a p_value is greater 
than , we accept the sequence as random. In Table 1, 
we list the results of the statistical tests (the p_values) 

applied on the sequences  
1

N

j j
k


 and  

1

N

j j
b


 of length 

1.000.000N   using random initial values and parame-
ters produced by our PRBG and by a pseudo random bit 
generator based only on the standard map, respectively. 

The sequence  
1

N

j j
b


is generated as follows: jb   

 jF a for 1 j N  . The exact parameters values used 
in these examples have been included in parentheses, 
besides the name of the statistical test. Table 1 shows the 
p_values of each test of the sequences with and without 
applying the ECF-map. It is clear that some tests failed if 
the sequence is simply generated from the standard map. 

However, a noticeable improvement is observed if we 
use standard map with the ECF-map, as all the tests are 
passed. 

4.2. The Interpretation of Empirical Results 

The interpretation of empirical results can be conducted in 
a number of ways. Two approaches have been adopted: 

1) The examination of the proportion of passing se-
quences: in the final analysis report file generated by the 
NITS statistical suite, a value called the proportion was 
listed for each test. The proportion is the number of se-
quences having a p_value greater than the significance 
level  , divided by the total number of bit sequences 
tested, i.e the percentage of passed tests. NIST specifies a, 
range of acceptable proportions. The range is determined 
by us ing the  conf idence in terval  def ined as 

  mppp /ˆ1ˆ3ˆ  , where ˆ 1p   , and m is the  

sample size. If the proportion falls outside this interval 
then it is sufficient to deduce that the data is non-random. 
For this experiment, we generate 100m   binary se-
quences, each containing 000.000.1 random bits. The 

Table 1. Statistical tests on the sequences  
1

N

j j
k


 and  

1

N

j j
b


 with different initial states. 

Test No. Test Name 

0

0

0

3.59587469543

0.8512974635

120.9625487136

x

y

p






 

0 250N   

0

0

5.02548745491

2.9654128766

x

y


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0 100.6p   

0 250N   
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
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N

j j
b


  

1
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
  

1

N
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1 FT 0.95056 0.00000 0.57139 0.00000 

2 BFT(m = 128) 0.48770 0.00499 0.60654 0.02557 

3 RT 0.85244 0.00000 0.58803 0.00000 

4 LROT 0.90989 0.21701 0.67662 0.41932 

5 MRT 0.93152 0.40617 0.10481 0.76072 

6 SPT 0.76038 0.41730 0.06727 0.01983 

7 NOTMT (m = 9, B = 000000001) 0.97615 0.00407 0.28535 0.00040 

8 OTMT(m = 9, B = 111111111) 0.52804 0.00034 0.50918 0.19895 

9 MUST(L = 7,Q=1280) 0.18980 0.02664 0.08763 0.29615 

10 LZT 0.53715 0.23431 0.06145 0.00234 

11 LCT(M = 500) 0.48293 0.27597 0.68564 0.82922 

12 ST(m = 16) 0.44260 0.11511 0.25245 0.95271 

13 AET 0.18228 0.00000 0.78445 0.00000 

14 
CST(Forward)  
CST(Reverse) 

0.83761 
0.80126 

0.00000 
0.00000 

0.60651 
0.22321 

0.00000 
0.00000 

15 RET( 1x   ) 0.93862 0.00000 0.40331 0.00000 

16 REVT( 1x   ) 0.24142 0.00000 0.76430 0.00000 
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confidence interval is 0.99 0.029849  and then the 
range of acceptable proportion is from 960150.0  to 

019849.1 . Table 2 and 3 present the proportions of all 
tests. Figure 1 shows the proportion for all tests. Since 
the proportion for each test is within the range, so we are 
confident to accept the sequence as random bit sequence. 

2) The examination of p value’s uniformity: The dis-
tribution of p_values is examined to ensure uniformity. For 
this, the interval between 0 and 1 is divided into 10 

Table 2. Examination of the proportion of sequences that pass 
the 14 first statistical tests and the distribution of p_values. 

S.NO. Statistical Test P_valueT 

Proportion of 
sequences pass-

ing the test 

1. FT 0.739918 0.9700 

2. BFT (m = 128) 0.181557 1.0000 

3. RT 0.897763 0.9900 

4. LROT 0.275709 0.9900 

5. MRT 0.554420 0.9900 

6. SPT 0.759756 1.0000 

7. 

NOTMT (m = 9) 

Template = 000000001 0.153763 0.9800 

Template = 000000011 0.319084 0.9900 

Template = 000001011 0.678686 0.9700 

Template = 000001101 0.037566 1.0000 

Template = 000100011 0.275709 0.9900 

Template = 000100101 0.616305 0.9900 

Template = 001000011 0.090936 0.9900 

Template = 001000101 0.437274 0.9900 

Template = 111100000 0.924076 1.0000 

Template = 111111110 0.534146 0.9900 

8. OTMT (Template = 111111111) 0.085587 1.0000 

9. MUST (L = 7, Q = 1280) 0.191687 0.9700 

10. LZT 0.171867 0.9800 

11. LCT (M = 500) 0.554420 0.9900 

12. ST (m = 16) 0.867692 0.9800 

13. AET (m = 10) 0.304126 0.9800 

14. 

CST 

Forward 0.719747 0.9700 

Reverse 0.574903 0.9800 

Table 3. Examination of the proportion of sequences that 
pass the 15th and 16th statistical tests and the distribution of 
p_values. 

S.NO. Statistical Test P_valueT 
Proportion of 

sequences 
passing the test 

15. 

RET 

x = -4 0.534146 1.0000 

x = -3 0.455937 1.0000 

x = -2 0.739918 0.9828 

x = -1 0.122325 0.9800 

x = 1 0.171867 1.0000 

x = 2 0.911413 1.0000 

x = 3 0.534146 1.0000 

x = 4 0.262249 1.0000 

16. 

REVT 

x = -9 0.075719 1.0000 

x = -8 0.534146 1.0000 

x = -7 0.045675 1.0000 

x = -6 0.122325 1.0000 

x = -5 0.383827 1.0000 

x = -4 0.574903 1.0000 

x = -3 0.045675 1.0000 

x = -2 0.122325 1.0000 

x = -1 0.419021 1.0000 

x = 1 0.236810 0.9828 

x = 2 0.455937 1.0000 

x = 3  0.066882 1.0000 

x = 4 0.262249 1.0000 

x = 5 0.816537 1.0000 

x = 6 0.004981 1.0000 

x = 7 0.383827 1.0000 

x = 8 0.534146 1.0000 

x = 9 0.020548 1.0000 

 
sub-intervals, and the following 2X  value for each test is 
calculated: 

2

10
2

1

10

10

i

i

m
F

X
m

  
   , 
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Figure 1. Proportions of the sequences passing the tests for 
all tests of NIST suite. The region between two horizontal 
lines is the acceptable range of proportion. 
 

 
Figure 2. P_values for all tests of NIST suite. The horizontal 
line represents the threshold value 0001.0 . 

 

 

Figure 3. Histograms of p_values. 

where iF  is the number of p_value’s in the sub-interval 
i  and m  is the sample size. Next, a p_value of the 
p_value’s is calculated as: 

2 9
_ , ,

2 2T

X
p value igamc

 
  

 
 

where igamc  is the incomplete gamma function, (for 

more detail you can refer [29,30]). If _ 0.0001Tp value   
then those p_value's can be considered uniformly distri-
buted. 

Table 2 and 3 show the p_valueT of the 16  tests ob-
tained by 100m   binary sequences, each containing 

000.000.1  random bits. The sequences were generated 
from the proposed PRBG by using different keys. Refer-
ring to Table 2 and 3, it is clear that the p_values are 
uniformly distributed. In Figure 2, we have graphically 
presented the computed p_valueT for all tests with the 
threshold value 0.0001. In addition, Figure 3 shows the 
histograms of p_values for runs and serial tests. We can 
see that the p_values are uniformly distributed. 

5. Conclusions 

In this paper, the ECF-map has been presented and then 
used to design a new PRBG for stream cipher applica-
tions. This new pseudo random generator is based on the 
standard map with large key space and the ECF-map to 
generate a key stream with good cryptographic properties. 
The use of the ECF-map increases the randomness of the 
proposed PRBG. The detailed analysis done by NIST 
statistical test Suite demonstrates that the proposed 
PRGB is suitable for cryptography. 
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