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Comparative genomic studies are often conducted by reconciliation analyses comparing

gene and species trees. One of the issues with reconciliation approaches is that an ex-
ponential number of optimal scenarios is possible. The resulting complexity is masked

by the fact that a majority of reconciliation software pick up a random optimal solution
that is returned to the end-user. However, the alternative solutions should not be ignored
since they tell different stories that parsimony considers as viable as the output solution.

In this paper we describe a polynomial space and time algorithm to build a minimum
reconciliation graph – a graph that summarizes the set of all most parsimonious recon-

ciliations. Amongst numerous applications, it is shown how this graph allows counting

the number of non-equivalent most parsimonious reconciliations.

Keywords: Phylogenetics and Reconciliation and Graph representation

1. Introduction

Comparative genomic studies increase in accuracy due to the ever-growing number

of fully sequenced genomes. In particular, complete annotated genomes are of im-

portance for inferring past gene gains and losses in different species5. These studies

are most often conducted by reconciliation analyses comparing gene and species

trees (for a review see Ref. 9). A reconciliation method infers past events in the
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species’ history such as gene duplications, losses and transfers, by comparing the

discrepancies between the topologies of the gene and species trees. Among other

applications, this allows the inference of orthology relationships and the estimation

of the content and evolution of gene repertoires in different branches of the living

realms.7

Reconciliation methods have been designed according to both parsimonious

(among others 14,11,10,4,12) and probabilistic approaches.3,1 One advantage of the

latter approach is the integrated estimation of the event rates, while most parsimony

methods require event costs (depending from event rates) to be given as input. How-

ever, the incomparable speed of parsimony makes it the tool of choice to analyze

the dozens of thousands of gene families that flood genomic databanks. Available

parsimony methods mainly differ in the set of evolutionary events they consider

(duplication, loss, transfer, incomplete lineage sorting, etc) and in the efficiency of

their algorithmic engine. Yet, they share the same principle: given a specific cost for

each event type, they compute an optimal reconciliation, that is one that minimizes

the sum of costs of all predicted events.

One of the issues with reconciliation approaches is that an exponential number

of optimal scenarios is possible.18 Indeed, we observed gene families on merely a

hundred species where one million optimal scenarios are possible, despite the use of

reasonable costs for the considered events.16 To explain the discrepancy between the

considered gene tree and species tree, alternative scenarios resort to locally different

sets of events, even though they have the overall same optimal cost.

The fact that a majority of software pick up a random optimal solution which

is returned to the end-user should not obliterate the informativeness of alternative

reconciliations that encompass partly different evolutionary stories. For instance,

alternative solutions could be used to assert the reliability of the whole reconcili-

ation (depending on the number of optimal scenarios) and the reliability of each

elementary event (using its frequency among optimal scenarios). Few reconciliation

software, namely, CoRe-PA,15 Mowgli,10 and the new version of Jane,6 can list all

most parsimonious scenarios. Yet, since there can be an exponential number of

those optimal scenarios, above mentioned support metrics cannot be obtained by

a brute force approach, sequentially considering all optimal scenarios returned by

those software packages.

In this paper, we introduce the concept of reconciliation graph, which represents

a set of scenarios by factorizing their common parts. We show that, when the set of

scenarios to be represented is the set of – potentially exponential – most parsimo-

nious scenarios, this graph has polynomial size and can be computed in polynomial

time. For a given set of reconciliations, several reconciliation graphs usually exist.

We show that our algorithm outputs a reconciliation graph of minimum size. Our

algorithm is thus the first one that can generate a compact representation of the –

potentially exponential – set of parsimonious reconciliations in polynomial time.

This conceptual tool has numerous applications. Besides allowing to visually

depict alternative solutions, one by one or collectively – so that biologists can then
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use their expertise to select the most meaningful ones – it may be used to efficiently

count the number of optimal scenarios in a very simple way, as we demonstrate at

the end of this paper. Other applications are identifying bottleneck events, present

in all optimal reconciliations, computing confidence values for events depending on

the number of their alternatives, or investigating whether the gene content of an-

cestral species for an examined family is uncertain or well established according to

parsimony. Most likely the results presented here can be applied on maximum likeli-

hood reconciliations based on models that rely on dynamic programming such as the

one presented in Ref. 17. A program computing reconciliation graphs is available at

http://celinescornavacca.wordpress.com/software/. It outputs graphs in SIF

format, which can be properly visualized by different graph visualization software

such as Cytoscape.

2. Basic notations

Let T = (V (T ), E(T )) be a rooted tree where only leaf nodes are labeled. We denote

by r(T ), L(T ), and L (T ) respectively the root node, the set of the leaf nodes, and

the set of taxa labeling the leaves of T . If u is a leaf node, we denote by s(u) the

species that labels it and if u is not a root we denote by p(u) its parent. Note that

in a rooted tree, all edges are directed away from the root. In this paper we consider

only binary trees, i.e. trees with nodes whose outdegree is at most two.

A species tree S is a rooted binary tree such that each element of L (S) represents

an extant species and there is a bijection between L(S) and L (S). A gene tree G

is a rooted tree such that leaf nodes correspond to contemporary genes.

An internal node u of a binary tree T can have one or two children; we respec-

tively denote by {ul} and {ul, ur} the child set of u. Note that, because T is an

unordered tree, ul and ur are interchangeable. For any two nodes u and v of T ,

we call u a (strict) ancestor of v, and v a (strict) descendant of u, if there exists

a directed path from u to v (and u 6= v). For any node u of T , Tu denotes the

subtree of T rooted at u. The height of a node u, denoted by h(u), corresponds to

the maximum number of edges along a direct path between u and any of the leaves

of the subtree Tu. The depth of a node u of a tree T is defined as the number of

edges along the direct path between r(T ) and u. A node of T is said to be artificial

when its indegree and outdegree both equal one. To suppress an artificial node u

of T means first to connect the two nodes adjacent to u by a new edge and then to

delete u and its two adjacent edges. A tree T ′ is said to be a subdivision of a tree

T if T can be obtained from T ′ by suppressing all artificial nodes of T ′.
A time function θT : V (T )→ R+ for a tree T associates any node of V (T ) with

a non-negative value while respecting the two following constrains: first, for any two

nodes u, v ∈ V (T ), if v is a strict descendant of u, then θT (v) < θT (u). Second,

∀u ∈ L(T ), θT (u) = 0, i.e. all extant species are contemporary. T is said to be a dated

tree when it is associated with a time function θT . We can derive a dated subdivision

T ′ from a dated tree T with time function θT in the following way: first, initialize
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T ′ as T ; then, for each edge (p(x), x) of T ′ and each time t ∈]θT ′(x), θT ′(p(x))[ for

which there exists a vertex y of T ′ such that θT ′(y) = t, add an artificial vertex w

along the edge (p(x), x) and set θT ′(w) = t.

2.1. Reconciliations

Among others, the authors of Ref. 10 propose a combinatorial model to reconcile a

dated species tree S with a gene tree G such that L (G) ⊆ L (S), considering gene

duplication (D), transfer (T), loss (L), and speciation (S) events, along with ∅ (no

event), C, TL and SL events. A ∅ event is a fake event, just indicating that a gene

evolving in a branch crosses a time boundary (called a time slice); a C event simply

correctly associates each contemporary gene to the corresponding species. The TL
and SL events result from the fact that losses are always considered in combination

with other events: SL and TL are each considered as a single event, even though

they are a combination of two elementary events (S + L and T +L). Other works

have referred to such combinations of events, see e.g. Ref. 15 where an SL event

corresponds to a sorting event. Note that we do not consider here a combination of a

duplication and a loss – that would be denoted DL – since it cannot be contained in

a parsimonious reconciliation. The formal definition of a reconciliation is as follows:

Definition 1 (adapted from Ref. 10). Consider a gene tree G, a dated species

tree S such that L (G) ⊆ L (S), and its subdivision S′. Let α be a function that

maps each node u of G onto an ordered sequence of nodes of S′, denoted α(u) =

(α1(u), α2(u), . . . , α`(u)). The function α is said to be a reconciliation between G

and S′ if and only if exactly one of the following events occurs for each couple of

nodes u of G and αi(u) of S′ (denoting αi(u) by x′ below):

a) if x′ is the last node of α(u), one of the cases below is true:

1. u ∈ L(G), x′ ∈ L(S′) and s(x′) = s(u); (C event)

2. {α1(ul), α1(ur)} = {x′l, x′r}; (S event)

3. α1(ul) = x′ and α1(ur) = x′; (D event)

4. α1(ul) = x′, and α1(ur) is any node other than x′ having height h(x′)
or α1(ur) = x′, and α1(ul) is any node other than x′ having height h(x′);

(T event)

b) otherwise, one of the cases below is true:

5. x′ is an artificial node and αi+1(u) is its only child; (∅ event)

6. x′ is not artificial and αi+1(u) ∈ {x′l, x′r}; (SL event)

7. αi+1(u) is any node other than x′ having height h(x′).
(TL event)

Several reconciliations can display very similar event sequences with events oc-

curring at slightly different times in a same branch of the species tree (mainly by

shifting the position of ∅ events in the sequences of α). It will be useful in Sec-



May 21, 2013 10:37 WSPC/INSTRUCTION FILE article˙graphDTL

Representing a set of reconciliations in a compact way 5

tion 4.2 to have a unique representative for such sets of reconciliations, hence we

introduce the notion of canonical reconciliation.

Definition 2 (from Ref. 8). Consider a gene tree G, a dated species tree S such

that L (G) ⊆ L (S), and its subdivision S′. A reconciliation α between G and S′ is

said to be canonical if and only if:

(1) for each node u of G and index 1 ≤ i ≤ |α(u)|, the node αi(u) satisfies one of

the following conditions:

(a) αi(u) is a C/S/∅/SL event;

(b) αi(u) is a D/T event such that at least one of α1(ul) and α1(ur) is not a ∅
event;

(c) αi(u) is a TL event such that αi(u) is a non-artificial node of S′ or αi+1(u)

is not a ∅ event.

(2) α1(r(G)) is not a ∅ event.
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Fig. 1. (a) A gene tree G and a subdivided species tree S′ (b) A reconciliation α between G and

S′, where α is defined as follows: α(v) = (z), α(u) = (y′, y, C), α(w) = (x), α(a1) = (x′′, A),

α(b1) = (B), α(c1) = (C) and α(d1) = (x′, y,D).

An example of reconciliation is given in Figure 1. Note that this reconciliation

is canonical.

2.2. Computing the cost of a most parsimonious reconciliation

Given a fixed cost for individual D, T and L events, denoted δ, τ and λ respectively,

each possible reconciliation is assigned the cost dδ + tτ + lλ, where d, t and l de-

notes respectively the number of D, T and L events induced by the reconciliation.

In this model, the cost of C, ∅ and S events is null, though the model could easily

accommodate non-null costs. We now formally introduce the MPR problem:

Problem: Most Parsimonious Reconciliation (MPR)
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Instance: A dated species tree S, a gene tree G such that L (G) ⊆ L (S) and costs

δ, τ , resp. λ for D, T resp. L events.

Goal: A reconciliation of minimal cost between G and the subdivision of S.

An efficient dynamic programming algorithm to find a Most Parsimonious Rec-

onciliation (MPR) has been presented in Algorithm 1 of Ref. 10 to which we refer

the reader. Even though we do not recall here the algorithm due to lack of space,

it is important in the following of the article as we will build upon it.

3. Depicting a set of reconciliations in a compact way

In this section we introduce the notions of reconciliation tree and reconciliation

graph used respectively to encode a single reconciliation as a tree, and a set of

reconciliations as a graph. These representations can be used to represent any kind

of reconciliation, no matter whether it has been obtained by a parsimonious or a

probabilistic method.

3.1. Reconciliation tree

Before detailing how a reconciliation α can be depicted as a rooted tree called

reconciliation tree, we need to introduce the notion of event-mapping graph.

Definition 3. Given a gene tree G and the subdivision S′ of a dated species tree

S such that L (G) ⊆ L (S), an event-mapping graph R for G and S′ is any acyclic

digraph that contains two kinds of nodes – event nodes, denoted by Ve(R), and

mapping nodes, denoted by Vm(R) – and whose edges never link two nodes of

the same kind (bipartite graph). Each event node y is associated to a value e(y) ∈
{C,S,D,T,∅,SL,TL} (see Definition 1), whereas each mapping node z is associated

to a pair m(z) = (u, x), where u ∈ V (G) and x ∈ V (S′). The two elements of m(·)
are respectively denoted mG(·) and mS′(·). Finally, any root r of R is a mapping

node such that mG(r) = r(G).

Given a reconciliation α, Algorithm 1 outputs a tree Tα depicting all the infor-

mation contained in α. Roughly speaking, Algorithm 1 creates a mapping node per

pair (u, αi(u)), with u ∈ V (G) and 1 ≤ i ≤ |α(u)|, and an event node per each event

implied by α (in the sense of Definition 1). Edges between nodes are then added to

encode the information contained in α.

Definition 4. Given a gene tree G and the subdivision S′ of a dated species tree

S such that L (G) ⊆ L (S), an event-mapping tree T for G and S′ is an event-

mapping graph for G and S′ whose nodes form a tree. Moreover, T is said to be a

reconciliation tree for G and S′ if there exists a reconciliation α for G and S′ such

that T is isomorphic to the tree returned by Algorithm 1 when inputted with α and

G.
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Note that the event-mapping graph returned by Algorithm 1 is a tree if and

only, for any node u ∈ V (G), there exists no pair (i, j) with 1 ≤ i < j ≤ |α(u)|
such that αi(u) = αj(u). This means that no chain of TL events where the starting

donor and the final recipient of the transfers coincide can exist in α. In this paper

we will not consider this unnatural kind of reconciliationsa.

Algorithm 1 ReconciliationTree(α,G)
1: Input: A reconciliation α and a gene tree G.

2: Output: The reconciliation tree Tα.

3: Tα ← the graph composed of a single mapping node rα such that m(rα) = (r(G), α1(r(G)));
4: for each node u ∈ V (G) in preorder do

5: for i from 1 to |α(u)| do
6: z ← the mapping node of Tα such that m(z) = (u, αi(u));
7: Add to Tα an event node ne as a child of z and with the event type associated to αi(u)

(see Def. 1);

8: if one among conditions 2-4 of Definition 1 is satisfied then
9: Add to Tα a mapping node having (ul, α1(ul)) as mapping and ne as parent;

10: Add to Tα a mapping node having (ur, α1(ur)) as mapping and ne as parent;
11: else if one among conditions 5-7 of Definition 1 is satisfied then

12: Add to Tα a mapping node having (u, αi+1(u)) as mapping and ne as parent;

13: return Tα.

As an example, the reconciliation tree corresponding to the reconciliation α

depicted in Figure 1 is shown in Figure 2.

Algorithm 2 returns a mapping α given an event-mapping tree Tα. The algorithm

simply consists in visiting Tα in preorder and, for each mapping node y encountered,

adding mS′(y) at the end of the list α(mG(y)).

Remark 1. Note that for a reconciliation α there exists exactly one reconcilia-

tion tree (up to isomorphism), that we denote Tα. Conversely, the reconciliation

associated to a reconciliation tree can be obtained as described in Algorithm 2.

Algorithm 2 Mapping(Tα)
1: Input: An event-mapping tree Tα.

2: Output: A mapping α.
3: for each node u ∈ V (G) do α(u)← ();

4: for each node y of Tα in preorder do
5: if y is a mapping node then
6: Add mS′ (y) at the end of the list α(mG(y));

7: return α.

aIt will be proved that all parsimonious reconciliations cannot contain this aberrant kind of TL
event chains in the proof of Theorem 1.
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′)
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(v, z)

T

(u, y′)

∅

(u, y)

SL

(u,C)

Fig. 2. The reconciliation tree Tα for the reconciliation α depicted in Figure 1.

The above results motivate the next one: if a single reconciliation can be depicted

by a tree, is it possible to construct a graph depicting a whole set of reconciliations

in a compact way?

3.2. Reconciliation graph

The following definition characterizes whether an event-mapping graph R displays

an event-mapping tree T or not:

Definition 5. Given a gene tree G, the subdivision S′ of a dated species tree S

such that L (G) ⊆ L (S) and an event-mapping graph R for G and S′, we say that

an event-mapping tree T for G and S′ is displayed by R if all following conditions

are satisfied:

C1. T is a connected subgraph of R;

C2. mG(r(T )) = r(G);

C3. all leaves of T are leaves in R;

C4. for any event node z of T , all children of z in R are also children of z in T ;

C5. all mapping nodes of T have precisely one child.

The set of event-mapping trees displayed by R is denoted by T (R).

Definition 6. Given a gene tree G, the subdivision S′ of a dated species tree S

such that L (G) ⊆ L (S) and a set A of reconciliations for G and S′, we denote by

T (A) the set of reconciliation trees for A. We define a reconciliation graph for A as

an event-mapping graph RA for G and S′ such that T (RA) coincides with T (A).

Note that the same notation T (·) is used both for an event-mapping graph R

and for a set of reconciliations as Definition 4 implies that event-mapping trees
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T (RA) in Definition 6 are indeed reconciliation trees.

Remark 2. Let G be a gene tree and S′ the subdivision of a dated species tree S

such that L (G) ⊆ L (S). For each set of reconciliations A for G and S′, there exists

at least one reconciliation graph for A.

The previous remark follows from the fact that the set T (A) of all reconciliation

trees for A is a trivial (disconnected) reconciliation graph for A. This extreme

solution to obtain a reconciliation graph is quite unsatisfactory when A denotes

the set of MPRs for a gene tree G and species tree S, as |A| can be exponential in

|G| and |S|. Alternatively, the graph obtained from T (A) by merging only mapping

nodes of identical label is a compact event mapping graph. Nonetheless, obtaining

this graph by first computing T (A) would not be efficient, as this set can be of

exponential size. In the following, we show how it can be computed in polynomial

time without enumerating T (A) nor all MPRs.

4. Minimum all parsimonious reconciliation graph for the MPR

problem

In this section we describe how to efficiently construct a reconciliation graph whose

size is only polynomial in that of the gene and species trees. This graph yet displays

the set of all canonical solutions of the MPR problem. Given a dated species tree

S, a gene tree G such that L (G) ⊆ L (S) and positive costs δ, τ and λ for D, T
and L events, we denote by A(G,S) the set of most parsimonious reconciliations

between G and S and by C(G,S) the cost of one of such reconciliation. Moreover,

we denote by c : V (G) × V (S′) 7→ R the cost matrix computed by Algorithm 1 of

Ref. 10, when inputted with (S, G, δ, τ , λ). For each pair (u, x), with u ∈ V (G)

and x ∈ V (S′), the value c(u, x) is equal to the minimal cost over all reconciliations

between Gu and subtrees of S′ such that α1(u) = x. This implies10 that C(G,S) =

minx∈V (S′)c(r(G), x).

4.1. Computing a minimum reconciliation graph

Definition 7. A reconciliation graph RA for a set of reconciliations A is said to be

minimum if V (RA) is of minimum size among all reconciliation graphs of A.

Algorithm 3 – together with its subroutine Algorithm 4 – describes how to con-

struct a minimum reconciliation graph for A(G,S). The function AllBestReceivers

used in Algorithm 3 is an extension of the function BestReceiver introduced in

Ref. 10: AllBestReceivers(u, x) returns the set of nodes x′ 6= x of S′ such that

h(x′) = h(x) and c(u, x′) is minimum over all nodes at this height. This func-

tion is used to investigate horizontal transfers in S′. An example of application of

Algorithm 3 is shown on Figure 3.

Remark 3. Note that, by construction, each event node of the graph RA returned

by Algorithm 3 can have at most two children and at most one parent. Moreover,
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Algorithm 3 MinimumMPRReconciliationGraph(S, G, δ, τ , λ)

1: Input: A dated species tree S, a gene tree G such that L (G) ⊆ L (S) and positive costs δ, τ ,

resp. λ for D, T resp. L events.

2: Output: a minimum reconciliation graph RA for A = A(G,S).
3: Construct the dated subdivision S′ of S;

4: Initialize q as an empty list and c as the cost matrix computed by Algorithm 1 of Ref. 10,

when inputted with (S, G, δ, τ , λ);
5: Y ← all nodes y′ ∈ V (S′) such that c(r(G), y′) = C(G,S);

6: for each node y′ ∈ Y do

7: Create a mapping node z in RA having (r(G), y′) as mapping;
8: Add the pair (r(G), y′) at the head of the list q;

9: while q is not empty do

10: Let (u, x) be the head element of q; Remove (u, x) from q;

11: Let z be the node of Vm(RA) such that m(z) = (u, x);
12: if u ∈ L(G), x ∈ L(S′), and s(u) = s(x) then

13: Update(RA, z, q, null, null, C); {C event}
14: if u has two children then

15: if x has two children in S′ then
16: if c(u, x) = c(ul, xl) + c(ur, xr) then

17: Update(RA, z, q, (ul, xl), (ur, xr), S); {S event}
18: if c(u, x) = c(ul, xr) + c(ur, xl) then

19: Update(RA, z, q, (ul, xr), (ur, xl), S); {S event}
20: if c(u, x) = c(ul, x) + c(ur, x) + δ then

21: Update(RA, z, q, (ul, x), (ur, x), D); {D event}
22: X ′ ← AllBestReceivers(ul, x)

23: X ′′ ← AllBestReceivers(ur, x);
24: for each node x′ ∈ X ′ do
25: if c(u, x) = c(ul, x

′) + c(ur, x) + τ then
26: Update(RA, z, q, (ul, x

′), (ur, x), T); {T event}
27: for each node x′′ ∈ X ′′ do
28: if c(u, x) = c(ul, x) + c(ur, x′′) + τ then

29: Update(RA, z, q, (ul, x), (ur, x′′), T); {T event}
30: if x has a single child xl in S′ then
31: if c(u, x) = c(u, xl) then
32: Update(RA, z, q, (u, xl), null, ∅); {∅ event}
33: if x has two children in S′ then
34: if c(u, x) = c(u, xl) + λ then

35: Update(RA, z, q, (u, xl), null, SL); {SL event}
36: if c(u, x) = c(u, xr) + λ then

37: Update(RA, z, q, (u, xr), null, SL); {SL event}
38: X ′ ← AllBestReceivers(u, x);
39: for each node x′ ∈ X ′ do
40: if c(u, x) = c(u, x′) + τ + λ then

41: Update(RA, z, q, (u, x′), null, TL); {TL event}
42: end while
43: return RA;

each event node has its parent in Vm(RA), while each mapping node has its parent(s)

in Ve(RA).

Remark 4. Note that, by construction, for each pair of mapping nodes z, z′ of the
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Algorithm 4 Update(RA,z, q, m′, m′′, etype)
1: Input: An event-mapping tree (or graph) RA, the mapping node z ∈ V (RA) currently consid-

ered, a list q of mapping nodes to process, two individual mappings m′ and m′′ and an event
type etype.

2: Output: updated versions of RA and q.

3: Add to RA an event node ne of event type etype and having z as parent;
4: if m′ 6= null then

5: if no node with mapping m′ exists in RA then

6: Add to RA a mapping node having m′ as mapping;
7: Add m′ at the head of the list q;

8: Add to RA an edge between ne and the node having m′ as mapping;

9: if m′′ 6= null then

10: if no node with mapping m′′ exists in RA then
11: Add to RA a mapping node having m′′ as mapping;

12: Add m′′ at the head of the list q;

13: Add to RA an edge between ne and the node having m′′ as mapping.

graph RA returned by Algorithm 3 such that there exists a directed path from z to

z′, one of the following condition is satisfied:

(1) mS′(z) is an ancestor of mS′(z′) and mG(z) is a strict ancestor of mG(z′);
(2) mS′(z) is a strict ancestor of mS′(z′) and mG(z) is an ancestor of mG(z′);
(3) mS′(z) is in the same time slice as mS′(z′) and mG(z) is an ancestor of mG(z′).

Remark 4 follows from the fact that, at each iteration of Algorithm 3, we can

only create mapping nodes (v, y) that are “grandchildren” of the currently analyzed

node (u, x) and that respect one of the following (1) y ∈ {x, xl, xr} and u is the

parent of v (lines 17,19,21,26,29), (2) v ∈ {u, ul, ur} and x is the parent of y (lines

17,19,32,35,37) or (3) v ∈ {u, ul, ur} and x and y are on the same time slice (lines

26,29,41).

Theorem 1. Given a dated species tree S, a gene tree G such that L (G) ⊆ L (S)

and strictly positive costs δ, τ , resp. λ for D, T, resp. L events, Algorithm 3 computes

a minimum reconciliation graph for A(G,S).

Proof. We first prove that the graph RA constructed by Algorithm 3 is an event-

mapping graph; then we show that it is a reconciliation graph for A(G,S), that is

T (RA) = T (A(G,S)); last we prove that RA is minimum.

RA is an event-mapping graph To prove that the graph RA is an event-

mapping graph we need to prove that it is acyclic – the other conditions of Def-

inition 3 are clearly satisfied by Algorithm 4. From Remarks 3 and 4, it is easy

to see that the only possible cycles in RA are composed of a series of mapping

nodes sharing the same mG(·) and such that all mS′(·) are in the same time slice,

linked by event nodes such that e(·) = TL. Since the costs τ and λ are greater

than zero, this would imply that, for any mapping node z involved in the cycle,

c(mG(z),mS′(z)) < c(mG(z),mS′(z)), a contradiction.
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Fig. 3. The reconciliation graph for trees of Figure 1 that encodes the 4 MPRs obtained when

using costs δ = 2, τ = 3 and λ = 1 (each bold node is the beginning of an MPR). The figure was

drawn using Cytoscape (choosing the hierarchical mode).

T (RA) ⊆ T (A(G,S)) To prove this, we will show that for all Tα ∈ T (RA), the

mapping α associated to Tα is a reconciliation in A(G,S). Recall that the mapping

α associated to Tα can be easily reconstructed from Tα using Algorithm 2.

We start by proving that α is a reconciliation. Note that any tree Tα displayed

by RA (see Definition 5) containing a mapping node z such that mG(z) = u, with

u internal node of G, also contains two mapping nodes z′, z′′ such that mG(z′) = ul
and mG(z′′) = ur. This follows from Remark 4 and from the fact that any time slice

– as well as the subtree S′
x, where mS′(z) = x – can contain only a finite number

of nodes. This implies that, after a finite number of iterations of the main loop of

Algorithm 3 (line 9), we will encounter a S, a D or a T event, initializing α(ul) and

α(ur). Moreover, from Condition C1 of Definition 5, we have that mG(r(Tα)) =

r(G). This implies by recursion that α(·) is correctly defined for all nodes of V (G).
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We now show that when obtaining α from Tα with Algorithm 2, once α(ul)

and α(ur) are initialized, the value of α(u) is never modified again. Let suppose

that it is not the case. Then we can have two possibilities: Tα, and thus RA from

C1 of Definition 5, contains two mapping nodes z, z′ such that mG(z′) = u and

mG(z) ∈ {ul, ur}, and 1) z is a strict ancestor of z′ or 2) z, z′ are not comparable.

The first case is impossible from Remark 4. The second is not possible from the

same remark and due to the fact that incomparable nodes of RA have an event

node with e(·) ∈ {S,D,T} as last common ancestor, and thus, by construction, they

have incomparable mG(·). So, once α(u) has been modified by Algorithm 2 when

considering nodes of Tα created on lines 13, 17, 19, 21, 26 and 29 of Algorithm 3, it

is never modified again. With a similar reasoning it is possible to show that, apart

from the root, the value of α1(u) is set when considering nodes created on lines 17,

19, 21, 26 and 29, i.e when setting the value of α`(up). The parameters given to

Algorithm 4 at these respective lines and line 13 induce that α satisfies Condition

(a) of Definition 1.

Moreover, α does also satisfy Condition (b) of Definition 1. This follows from

the reasoning above and from the way α is updated when considering nodes created

on lines 32, 35, 37 and 41. So α is a reconciliation.

We can now easily prove that the cost of α is actually C(S,G). Indeed,

the pairs (r(G), y′) defined on line 5 is such that c(r(G), y′) = C(S,G). So the

claim follows from Theorem 4 of Ref. 8, since Algorithm 3 backtracks through the

cost matrix c(·, ·).
T (RA) ⊇ T (A(G,S)) By construction, the reconciliation tree Tα representing

any MPR α is displayed by RA if for any mapping node z′ in Tα with mapping

(u, αi(u)), there exists in RA a mapping node z with m(z) = m(z′), and one of the

following cases is true:

(1) αi(u) satisfies Condition 1 of Definition 1 and Update(z, q, null , null , etype)

has been called by Algorithm 3;

(2) αi(u) satisfies one among Conditions 2-4 of Definition 1 and Update(z, q, α1(ul),

α1(ur), etype) has been called by Algorithm 3;

(3) αi(u) satisfies one among Conditions 5-7 of Definition 1 and Update(z, q,

αi+1(u), null, etype) has been called by Algorithm 3.

Note that, since α is a most parsimonious reconciliation,

then c(r(G), α1(r(G)) = C(G,S). This implies that there always exists in RA a

mapping node z such that m(z) = m(r(Tα)) = (r(G), α1(r(G)) (such a node is

created on line 7 of Algorithm 3).

Let z′ be a mapping node of Tα with depth d. Let suppose that there exists a

node z in RA with m(z) = m(z′) = (u, αi(u)). Let now suppose that αi(u) satisfies

one among Conditions 5-7 of Definition 1 and Condition (3) given above is not satis-

fied. Since a node z′ with m(z) = m(z′) = (u, αi(u)) exists in RA, this means that z

was in q at least once. But if Update(z, q, αi+1(u), null, etype) was not called by Al-
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gorithm 3, this means that c(u, αi(u)) 6= c(u, αi+1(u))+ cost(etype) which is impos-

sible. Indeed c(u, αi(u)) cannot be greater than c(u, αi+1(u))+ cost(etype) since, by

definition,10 c(u, αi(u)) is the minimum of the costs of all possible events described

in Definition 1, among whom c(u, αi+1(u))+ cost(etype). Moreover c(u, αi(u)) can-

not either be smaller than c(u, αi+1(u))+ cost(etype), otherwise for Theorem 4 of

Ref. 8 α would not be parsimonious. In a similar way, we can prove that, if αi(u)

satisfied one among Conditions 1-4 of Definition 1 then either Condition (1) or Con-

dition (2) given above is true. This also implies that all mapping nodes descendant

from z′ in Tα with depth d+ 2 are in RA (nodes with depth d+ 1 are event nodes).

Since we proved that RA contains the only mapping node z of Tα with depth

zero (the root), this proves the claim by recursion on the depth of z.

We thus have that T (RA) ⊇ T (A(G,S)) and hence that T (RA) = T (A(G,S)).

Minimality We still need to prove the minimality of the graph, i.e. that V (RA)

is of minimum size among all reconciliation graphs for A(G,S). Let z be a map-

ping node of a reconciliation graph R of A(G,S). Moreover, let M(z) be the set of

mapping nodes of R such that m(z̄) = m(z), ∀z̄ ∈ M(z) and let C(z) be the child

nodes of the nodes in M(z). Let R′ be another reconciliation graph of A(G,S).

Since R and R′ display the same set of trees, there has to be a node z′ in R′ such

that, ∀j ∈ C(z), there exists j′ ∈ C(z′) such that e(j) = e(j′), the outdegree of j

and j′ is the same and the child node(s) of j and j′ has/have the same mapping.

The same holds in the other direction, i.e. for C(z′) w.r.t. C(z). The minimality of

V (RA) follows from the fact that, for each mapping node z in V (RA), we have that

|M(z)| = 1 (lines 5 and 10 of Algorithm 4) and that C(z) is, by construction, of

minimum size. �

The next theorem establishes that the time and space complexities of Algorithm

3 are polynomial, hence that the potentially exponential number of most parsimo-

nious reconciliations can be dealt with efficiently, due to many common parts.

Theorem 2. Algorithm 3 runs in O(|S|3 · |G|) time and space.

Proof. First consider the space complexity of the algorithm that handles the graph

RA, and data structures q, c(·, ·), and AllBestReceivers(·, ·). The latter has size

O(|S|) as it contains nodes of S′ of the same slice as some node of S′ (this bound is

obtained by noting that S′ has the same breadth as S). The c(·, ·) matrix stores one

value for each of the |V (G)| · |V (S′)| cells, hence occupies O(|S′| · |G|) = O(|S|2 · |G|)
space. Due to lines 5 and 10 of Algorithm 4, each of the V (S′) · V (G) possible

mappings is added only once to the q list, which thus occupies O(|S|2 · |G|) space.

The most space consuming data structure is the event-mapping graph RA. Due

to lines 5 and 10 of Algorithm 4, the size of Vm(RA) can be at most equal to the

number of possible mappings between V (S′) and V (G), that is O(|S|2 · |G|). To

bound the size of Ve(RA), remark that, starting from 0, the cardinality of Ve(RA)

is increased by one each time the Update(·, ·, ·, ·, ·, ·) subroutine described in Algo-
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rithm 4 is called. Thus, |Ve(RA)| equals the number of calls to this subroutine, which

in turn directly depends on the number of iterations of the while loop (lines 9-42)

of Algorithm 3. Each loop iteration considers a different mapping node z (line 10)

of the q list, which we recall contains O(|S|2 · |G|) nodes over the whole algorithm.

When a mapping node z is considered, it generates a constant number of calls to

Update(·, ·, ·, ·, ·, ·) at lines 13, 17, 19, 21, 32, 35, 37, and O(
∣∣AllBestReceivers(·, ·)∣∣)

calls at lines 26, 29 and 41. As we saw, the size of AllBestReceivers(·, ·) is bounded

above by O(|S|) which implies that O(|S|3 · |G|) calls to the Update(· · · ) subroutine

are issued, hence that |Ve(RA)| = O(|S|3 · |G|). Finally, each node of Ve(RA) has one

parent and at most 2 children (Remark 3). Since no edge links nodes of Vm(RA),

this implies that the size of E(RA), as well as that of RA, is O(|S|3 · |G|) too. This

proves the space complexity of the algorithm.

Now consider the running time of the algorithm. Computing the subdivision of

S and the cost matrix at lines 3 and 4 costs O(|S|2 · |G|), as proven in Ref. 10. Each

computation of AllBestReceivers(·, ·) at line 38 (re-used in later loop iterations

at lines 22 and 23) costs O(|S|) by a simple modification of the BestReceiver(·, ·)
subroutine introduced in Ref. 10. As the while loop is performed at most O(|S|2 ·|G|)
times (see above), the set of calls to AllBestReceivers(·, ·) globally cost O(|S|3 ·|G|).
Safe for this part, the most time consuming part of the while loop are the calls to

the Update(·, ·, ·, ·, ·, ·) subroutine. We already showed above that O(|S|3 · |G|) such

calls are performed. Moreover, each run of Update(·, ·, ·, ·, ·, ·) only requires constant

time as long as a |V (G)|× |V (S′)| matrix is maintained over the whole algorithm to

know in O(1) if a mapping node has already been considered (tests of lines 5 and 10

of Algorithm 4). It is straightforward to see that maintaining such a matrix costs

O(|V (G)| · |V (S′)|). Thus, the calls to Update(·, ·, ·, ·, ·, ·) overall require O(|S|3 · |G|)
time. In conclusion, the two most expensive steps of Algorithm 3 require O(|S|3·|G|),
which is then the time complexity of this algorithm. �

4.2. Scoring the number of canonical reconciliations

Let I = (S, G, δ, τ , λ) be an instance of the MRP problem. As evoked in Section

2, the authors of Ref. 8 introduced the concept of canonical reconciliations (see

Definition 2). A canonical reconciliation acts as the standard member among recon-

ciliations that differ on S′ but are equivalent on S. Indeed, the subdivision S′ is only

used as a trick to solve the problem in polynomial time. Roughly speaking, two or

more reconciliations are equivalent when each event occurs on (possibly different)

vertices of S′ that are all located on the same branch of S. Given an event node z of

RA, we say that z is non canonical if 1) e(z) ∈ {D,T} and there exists two directed

paths of length 2 from z to two distinct event nodes with e(·) = ∅ or 2) e(z) = TL,

mS(zp) has one child in S′ and there exists a directed path of length 2 from z to

an event node with e(·) = ∅ or 3) e(z) = ∅ and z is a child of a root of RA.

Algorithm 5 counts the number of (canonical) reconciliations contained in a

reconciliation graph RA. This process is made easier by adding a fake root f as
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parent of the real roots of RA and afterward calling Score(f):

Algorithm 5 Score(u)

1: for each node z ∈ descendants(u) considered in post-order do

2: if z is a leaf then

3: score(z) = 1;
4: else

5: if z is a mapping node or the fake root then

6: score(z) =
∑

z′∈children(z)

score(z′);

7: if z is a root of RA then // remove non canonical reconciliations

8: score(z)= score(z)−
∑

z′∈children(z)

ne(z
′)=∅

score(z′);

9: else

10: score(z) =
∏

z′∈children(z)

score(z′);

11: if z is a D, T or TL non canonical event then // remove non canonical reconciliations

12: score(z)= score(z)−
∏

z′′∈grandChildren(z)

ne(z
′′)=∅

score(z′′);

13: return score(u).

Theorem 3. Let I = (S, G, δ, τ , λ) be an instance of the MPR problem and let RA
be the reconciliation graph computed by Algorithm 3 for this instance. Additionally,

let R′
A be the event-mapping graph obtained from RA by adding a fake root f as

parent of the real roots of RA. Then Score(f) equals the number of (canonical)

MPRs for I.

Proof. Note that, from Definition 5, each (canonical) reconciliation tree contain-

ing a mapping node z contains exactly one outgoing edge of z. This implies that

the number of solutions containing z is equal to the number of solutions contain-

ing exactly one of the children of z – the logical OR explains the summation in

Algorithm 5. On the contrary, if z is event node, each (canonical) reconciliation

tree containing z contains all outgoing edges of z, and thus all children of z – the

logical AND explains the product. The correctness of this algorithm follows from

this observation and from the fact that each reconciliation tree displayed by RA has

to satisfy also C2 and C3 of Definition 5. The subtractions on lines 8 and 12 allow

to eliminate from the counting the non canonical MPRs. This works because, by

construction, a mapping node can have only one child node with e(·) = ∅.

Then Score(f) equals the number of (canonical) reconciliation trees displayed

by RA and the claim follows from Theorem 1. �

For example, the number of reconciliations and the number of canonical reconcil-

iations displayed by the minimum reconciliation graph in Figure 3 are respectively

4 and 3, since the reconciliation starting with the node whose mapping is (v, y′) is
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non canonical. Note that the time complexity for this function is obviously O(|RA|)
as there is at most one elementary operation (sum or product) for each edge of the

graph. Score(f) also computes, as a byproduct, for each node z ∈ RA, the number

of partial (canonical) MPRs between Gu and subtrees of S′ such that α1(u) = v

containing the node z and displayed by RA, where u = mG(z) and v = mS(z) if

z is a mapping node and u = mG(zp) and v = mS(zp) otherwise. It is easy to see

that these scores can be used to compute, with a simple walk on the graph visiting

a node if only if all his parents have already been visited, the number of (canonical)

MPRs containing z displayed by RA, for each node z ∈ RA. A normalized score can

be obtained by dividing each node score by the score of the fake root, the resulting

value corresponding for each node to the percentage of (canonical) MPRs displayed

by RA containing it. This can be used to assert the robustness of each node: the

higher the value the more reliable the node.

5. Discussion

The introduction of reconciliation graphs allows us to efficiently count the number

of optimal scenarios, to detect events present in all of them and to depict alternative

solutions that can be analyzed by expert users to sort out the most meaningful ones.

An implementation of the algorithm to construct the minimum reconciliation

graph depicting all most parsimonious optimal scenarios (pseudocode in Algorithm

3) is available from: http://celinescornavacca.wordpress.com/software/.

This work opens up new perspectives to infer confidence values for predicted

gene duplications and lateral gene transfers, as well as to build up consensus of

reconciliations. Though such useful tools exist in the field of molecular phylogenetic

inference, they are still absent from the reconciliation field. Yet they are dearly

needed there, not only to deal with equally likely (or equally parsimonious) recon-

ciliations that may exist for a single gene family, but also to assert reconciliation

robustness with respect to gene tree uncertainty, species tree dating or method pa-

rameters. Indeed, reconciliation methods can be misled by inaccurate gene and/or

species tree13,2 and predicted events vary depending on method parameters (as for

phylogeny inference or sequence alignments). To confidently infer individual past

events in the history of genes – and hence gene content of genomes through phy-

logenetic methods – we will likely need to consider not one gene tree, but several

optimum or sub-optimum gene trees (and different event cost sets alike) and be able

to summarize the corresponding reconciliations in a single one.
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