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Abstract. Tree reconciliation methods aim at estimating the evolution-
ary events that cause discrepancy between gene trees and species trees.
We provide a discrete computational model that considers duplications,
transfers and losses of genes. The model yields a fast and exact algorithm
to infer time consistent and most parsimonious reconciliations. Then we
study the conditions under which parsimony is able to accurately infer
such events. Overall, it performs well even under realistic rates, transfers
being in general less accurately recovered than duplications. An imple-
mentation is freely available at http://www.atgc-montpellier.fr/MPR.

1 Introduction

Duplications, losses and transfers are evolutionary events that shape genomes
of eukaryotes and prokaryotes. They result in discrepancies between gene and
species trees. Tree reconciliation aims at estimating the course of these events in
order to explain the observed incongruences of gene and species trees. A recon-
ciliation defines an embedding of a gene tree G into a species tree S, and thus lo-
cates duplications, transfers and losses. Reconciliation methods find applications
in various areas such as functional annotation in genomics [3], coevolutionary
studies in ecology [10], and studies on poputation areas in biogeography.

Probabilistic models have been proposed to reconcile trees [15, 13], but heavy
computing times still limit their use to relatively small sets of taxa and small
collections of genes. An alternative approach relies on the more tractable com-
binatorial principle of parsimony [4]. Yet, with the advent of next generation
sequencing technologies, that flood molecular biology with new genomes, even
combinatorial methods might become too computationally expensive to han-
dle phylogenomic databases, that regularly deal with several dozen thousands
of gene families [11]. In this paper, we propose a combinatorial reconciliation
method that has the potential to keep pace with new sequencing technologies.

More formally, we consider the Most Parsimonious Reconciliation (MPR)
problem: given a species tree S, a gene tree G and respective costs for duplication,



transfer and loss events (respectively denoted D, T, and L events), compute a
time-consistent reconciliation that has a minimum cost. Time consistency means
that T events happen only horizontally, i.e. between coexisting species, and the
cost of a reconciliation is the sum of the costs of the events implied by the
embedding of G into S. For instance, when D, T, and L events have cost 5, 10, 1
respectively, the reconciliation of Fig. 1 (left) costs 23.

When only DLS events are considered (S refers to a speciation), the MPR
problem can be solved in linear time w.r.t. the size of G for binary trees [17]
and remains tractable when S is polytomous [16]. However, when T events are
considered, the MPR problem is NP-complete, even for reconciling two binary
trees [14]. This strong contrast in complexity is explained by the difficulty of
managing the chronological constraints among nodes of S that are induced by T

events. When not constraining T events, time inconsistent scenarios can ensue
(see Fig. 1; right), as remarked in [14]. These authors solve a variant of the MPR
problem with a fast O(|S|2 · |G|) algorithm, but that does not handle the time
consistency constraints and considers losses a posteriori. A promising approach
is to alter the definition of MPR to accept a dated tree S as input [9, 1, 10, 5,
15]. Dates for nodes of S can be obtained by relaxed molecular clock techniques
working from gene trees and molecular sequences. Relative dates are sufficient
for reconciliation, hence they are little limited by the possible absence of fossil
records for the studied species [8]. Given a dated tree S, time consistency can be
ensured locally by only considering T events whose donor and receiver branches
have intersecting time intervals [10]. However, two locally consistent T events
can be globally inconsistent, which then needs to be fixed by altering afterwards
the position of the proposed T [10], but this approach does not guarantee to solve
MPR exactly. To ensure global consistency, branches of S can be subdivided into
time slices transversal to all edges. Then, slices are explored one after the other,
and only combinations of T events in a same time slice are considered. This
recently led to two exact algorithms, one running in O((|S| · |G|)4) [7] and one
claiming a complexity of O(|S|2 · |G|) [5, 6].

We propose here a formal modelization that leads to a fast exact algorithm
solving the time consistent MPR problem for a dated species tree in O(|S′| · |G|),
where S′ is a subdivision of S in at most O(|S|2) nodes. Then, we rely on an
implementation of this fast algorithm to obtain a first insight for the question:
Is parsimony relevant to infer the true evolutionary scenario of a gene family?
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Fig. 1: Two scenarios for a gene tree G (plain lines) along a species tree S (tubes),
where the symbol ◦ represents loss. (Left) A time consistent scenario. (Right) A
scenario that is not time consistent: the transfer from the donor at t3 (resp. t4)
to a receiver at t1 (resp. t2) implies that u predates (resp. follows) w.



2 Methods

2.1 Basic definitions and notations

Let T be a tree with nodes V (T ) and branches E(T ), and such that only its
leaves are labeled. Let r(T ), L(T ), and L (T ) respectively denote its root node,
the set of its leaf nodes, and the set of taxa labelling its leaves. We will adopt the
convention that the root is at the top of the tree and the leaves at the bottom.

An edge of T is denoted (u, v) ∈ E(T ), where u is the parent of v. For a node
u of T , Tu denotes the subtree of T rooted at u, up its parent, (up, u) its parent
edge, and T(up,u) denotes the subtree of T rooted at edge (up, u). Given a subset
of leaves K ⊆ L(T ), the homeomorphic tree of T connecting K, denoted TK , is
the smallest binary tree induced from T such that L(TK) = K. T is a dated
tree if it is associated with a date function θT : V (T ) → R such that for any two
nodes x, x′ ∈ V (T ), if x′ is a strict descendant of x then θT (x′) < θT (x).

An internal node u of T has one or two children, where {u1} and {u1, u2}
respectively denote its child set. It is important to point out that because T is
an unordered tree, the children u1 and u2 of u are interchangeable. Given two
nodes u, u′ of T , u′ is said to be a (resp. strict) descendant of u if u is on the path
from u′ to r(T ) (resp. and u %= u′). An internal node u of T is said to be artificial
when it has one and only one child. Contracting an artificial node means that
the node is removed from the tree and that its two adjacent edges are merged.
A tree T ′ is said to be a subdivision of a tree T if the recursive contraction of
all artificial nodes of T ′ yields T .

A species tree S is a rooted binary tree such that each element of L (S)
represents an extant species labeling exactly one leaf of S (there is a bijection
between L(S) and L (S)). A date function θS for S (as defined above) ensures
that ∀x ∈ L(S), θS(x) = 0. A gene tree G is a rooted binary tree. From now
on, we consider a species tree S and a gene tree G such that L (G) ⊆ L (S) and
where L : L(G) → L(S) denotes the function that maps each leaf of G to the
unique leaf of S with the same label (leaves of G are labeled with the species
from which genes were sampled). To distinguish between G and S, the term edge
refers to G and the term branch refers to S.

We introduce below the concept of a scenario describing the evolution of a
gene that starts at node r(S) and evolves along S according to DTLS events.
Such a scenario generates a completed gene tree denoted Go, whose leaf set is
formed of contemporary genes (denoted LC(Go)) but also of lost genes (denoted
LL(Go)), see Fig. 1 and 2. Note that L(Go) = LC(Go) ∪ LL(Go).

Definition 1. Given an observed gene tree G and a species tree S, with its time
stamp function θS , a DTLS scenario for G along S is denoted (Go, M, θGo),
where Go is a completed gene tree, M : V (Go) → V (S) maps each node of Go to
a node of S, and θGo : V (Go) → [0, θS(r(S))] is a date function that associates
each node of Go to a time stamp of S. The scenario associates a DTLS event to
each node u ∈ V (Go) \ LC(Go) as described below (where u1 and u2 are the two
children of u and x = M(u)).



1. If u is a leaf of LL(Go), then it corresponds to an L event.
2. If M(u1) = x1, and M(u2) = x2, then u is an S event happening at x in S′.
3. If M(u1) = x and M(u2) = x, then u is a D event along the branch (xp, x).
4. If M(u1) = x, M(u2) = y, and y is neither an ancestor nor a descendant of

x, then u is a T event, where (xp, x) and (yp, y) respectively correspond to
the donor and the receiver branches.

A DTLS scenario is said to be consistent if and only if (1) the homeomorphic
gene tree Go

LC(Go) is isomorphic to G and (2) for a T event (i.e. Def. 1 (4))

[θS(x), θS(xp)] ∩ [θS(y), θS(yp)] %= ∅.
The cost of such a scenario is denoted Cost(Go, M, θGo) = dδ + tτ + lλ,

where d, t, and l respectively denote the number of D, T, and L events, and δ,
τ , and λ are their respective costs.

Consider a species tree S with a time stamp function θS , an observed gene
tree G, the leaf-association function L : L(G) → L(S), and costs δ, τ , resp. λ for
D, T resp. L events. Given these inputs, the optimization problem considered
in the present paper, called MPR, is to compute a consistent DTLS scenario
(Go, M, θGo) for G along S that minimizes Cost(Go, M, θGo).

2.2 A tractable model of reconciliation

To obtain a tractable model, we discretize time by subdividing the species tree
into time slices (similarly as done in [1, 13]), then define a limited number of
cases for events to happen, that still allows us to infer a most parsimonious
scenario.

Definition 2. (see Fig. 3) Given a species (binary) tree S and a time stamp
function θS : V (S) → R, let S′ be the subdivision of S constructed as follows:
for each node x ∈ V (S) \ L(S) and each branch (yp, y) ∈ E(S) s.t. θS(yp) >
θS(x) > θS(y), an artificial node is inserted along the branch (yp, y) at time
θS(x). This subdivision allows us to define a time stamp function θ′S′ for S′ only
from its topology: for any x ∈ V (S′), θ′S′(x) is the number of edges separating x
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Fig. 2: (Left) An observed gene tree G with four leaves a1, b1, c1, and d1, re-
spectively belonging to the contemporary species A, B, C, and D (see Fig. 1).
(Right) A completed gene tree Go, with L(Go) = LC(Go) ∪ LL(Go), where
LC(Go) = {a1, b1, c1, d1}, and LL(Go) is formed of the three nodes labelled ◦. G
is the homeomorphic tree Go

K , where K = LC(Go).



from one of its descendant leaves (which leaf does not matter as they are all at
the same distance from x).

The time stamp of a branch (xp, x) of S′ is denoted θ′S′(xp, x) = θ′S′(x).
Moreover, for a time t, let Et(S

′) = {(xp, x) ∈ E(S′) : θ′S′(xp, x) = t} denote
the set of branches of S′ located at time t.

Definition 3. Consider a gene tree G and a species tree S with a time stamp
function θS, and let S′ be the subdivision of S and θ′S′ : V (S′) → N be the
corresponding time stamp function. A reconciliation between G and S is denoted
α and maps each edge (up, u) ∈ E(G) onto an ordered sequence of branches of
S′, denoted α(up, u), where ℓ denotes its length and αi(up, u) its i-th element for
1 ≤ i ≤ ℓ. Each branch αi(up, u), denoted below (xp, x), respects one and only
one of the following constraints (see Fig. 4).

First, consider the case that (xp, x) is the last branch α!(up, u) of the sequence
α(up, u). If u is a leaf of G, then x is the unique leaf of S′ that has the same
label as u (that is x = L(u)) (Contemporary taxa mappings). Otherwise, one of
the cases below is true.

– {α1(u, u1), α1(u, u2)} = {(x, x1), (x, x2)} (S event);
– α1(u, u1) and α1(u, u2) are both equal to (xp, x) (D event);
– {α1(u, u1), α1(u, u2)} = {(xp, x), (x′

p, x
′)}, where (x′

p, x
′) is any branch of

S′ other than (xp, x) and located at time θ′S′(xp, x) (T event).

If (xp, x) is not the last branch α!(up, u) of the sequence (i.e. i < ℓ), one of
the following cases is true.

– x is an artificial node of S′ with a single child x1, and the next branch
αi+1(up, u) is (x, x1) (∅ event);

– x is not artificial and αi+1(up, u) ∈ {(x, x1), (x, x2)} (SL event);
– αi+1(up, u) = (x′

p, x
′) is any branch of S′ other than (xp, x) and located at

time θ′S′(xp, x) (TL event).

A reconciliation α between the gene tree G of Fig. 2 (left) and the subdivision
S′ of Fig. 3b is depicted in Fig 1(left), where the path α(w, b1) along S′ associated
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(b) The subdivision S′ of S

Fig. 3: The species tree S and its subdivision S′. The artificial nodes of S′ are
represented by gray circles and denoted y′, x′, and x′′, where θ′S′(x) = θ′S′(x′) =
θ′S′(x′′) and θ′S′(y) = θ′S′(y′).



to the edge (w, b1) is [(y, x′), (y′, x), (x, B)]. Observe that the extended gene tree
Go (see Fig. 2; right) is a by-product of the reconciliation α.

Note that T events only happen between branches in a same time slice, hence
only time-consistent scenarios are generated by this model. We now argue that
the model allows to infer most parsimonious scenarios (see Def. 1). First, note
that each loss is coupled with either a speciation (SL) or a transfer (TL). Indeed,
any most parsimonious reconciliation embedding G into S′ only needs to use a
loss when it meets a speciation node of S′ where G goes into only one descending
tube, or when leaving a tube due to a transfer, with no part of G remaining in
the donor tube. Considering a lone loss as a seventh event in Fig. 4 would lead
us to examine reconciliations that are not most parsimonious, as this would only
allow us to replace – in a Go tree generated by the current model – a single
l ∈ LL(Go) by a subtree with no extant species (as the structure of G is common
to both these completed gene trees). Such a subtree contains at least two losses
and is hence less parsimonious than leaving leaf l in the Go proposed with the
current model. Then, any combination of DTLS events resulting from a scenario
(Def 1) can be reproduced by the model of Def. 3, safe for combinations that
would obviously not lead to most parsimonious scenarios: a speciation of a gene
where its two sons go extinct before reaching the leaves of S′; a gene duplication
where at least one of its sons goes extinct; a transfer where the transfered gene
lineage goes extinct.

Last, note that all cases considered in Def. 3 (see Fig. 4) allow us to progress
either in the time slices of S′ or along the edges of G. This is because a TL case
can not be followed by a second one in a most parsimonious scenario (see Prop. 1
in appendix). Thus, the model offers all ingredients for a dynamic programming
algorithm that finds a most parsimonious and time consistent scenario, while still
running in time polynomial in |S′| and |G|. In other words, this model allows to
solve the MPR problem exactly and in a tractable way.

Note that since the model places each loss immediately after another event
(speciation or transfer), it is not able to generate a most parsimonious scenario
σ = (Go, M, θo

G) where a lineage is lost after being alive for several slices in
a same tube (without meeting a speciation node). However, it can generate a
scenario σ′ = (Go, M̄ , θ̄o

G) that can be seen as a canonical representative of σ:
both scenarios share the same Go and have the same number and localization of
D, T, and L events in S (σ and σ′ only differ in the position of some L in the
subdivided species tree S′).

2.3 An efficient algorithm to solve MPR

In this section, we propose a polynomial time and space algorithm that uses
the tractable reconciliation model of Def. 3 to solve the MPR problem (see
Algorithm 1).

Consider an edge (up, u) ∈ E(G), a branch (xp, x) ∈ E(S′), and the time
t = θ′S′(xp, x). Let Cost(u, x) denote the minimal cost over all reconciliations
between G(up,u) and the forest of subtrees of S′ rooted with a branch located
at time t, and such that (xp, x) is the first branch in the sequence associated
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Fig. 4: The six DTLS events of Def. 3, where an edge (up, u) of Go is mapped onto
a branch (xp, x) of the sequence α(up, u). The extended gene tree Go is embedded
in the subdivision S′ of a species tree S, where an edge of G corresponds to a
plain line, a branch of S′ corresponds to a dotted tube (white zone), and a node
of S′ corresponds to a gray zone.

to (up, u) (that is α1(up, u) = (xp, x); see Def. 3). Assuming that the gene tree
G and the species tree S are rooted with an artificial branch, Cost(r(G), r(S′))
corresponds to the minimal cost over all reconciliations between G and S. The
dynamic programming algorithm (see pseudo-code in Algorithm 1) fills the ma-
trix Cost : V (G) × V (S′) → N through two embedded loops: one that visits
all edges according to a bottom-up traversal of G and one that visits all time
stamps of S′ in backward time order (i.e. starting from 0). For the edge (up, u)
and the time stamp t currently considered (respectively in lines 3 and 4), two
consecutive loops over all branches (xp, x) ∈ Et(S

′) compute the minimal cost of
mapping (up, u) onto (xp, x) according to the six events S, D, T, ∅, SL, and TL

(see Fig. 4). For a branch (xp, x) ∈ Et(S
′), the first loop (lines 5 to 20) computes

the minimal cost among the first five events. TL events can be considered sep-
arately (lines 21 to 24) as they may never be immediately followed by a second
TL in a most parsimonious scenario (as implied by Property 1 in Appendix).
Cost(u, x) is the minimum of the values computed in these two loops.

The case of Fig. 4c is considered at lines 13 to 15 where the cost of a T event
starting at (xp, x) is computed for edge (up, u). Assuming that (u, u1) (resp.
(u, u2)) is the transfered gene lineage, a subroutine called BestReceiver computes
the branch (yp, y) (resp. (zp, z)) that minimizes Cost(u1, y) (resp. Cost(u2, z))
over all branches of S′ located at the same time t, other than (xp, x). The same



Algorithm 1 Computes Cost(r(G), r(S′)) according to the DTL costs, respec-
tively denoted δ, τ , and λ.

1: Construct the subdivision S′ of S as described in Def. 2
2: The matrix Cost : V (G) × V (S′) → N is initialized as follows: if u ∈ L(G),

x ∈ L(S′), and L(u) = x, then Cost(u, x) ← 0. Else, Cost(u, x) ← ∞.

3: for all (up, u) ∈ E(G) according to a bottom-up traversal do

4: for all t∈{0, 1, . . . , θ′
S′(r(S′))} in backward time order do

5: for all branch (xp, x) ∈ Et(S
′) do

6: if u ∈ L(G), x ∈ L(S′), and L(u) = x then

7: Skip lines 8 to 20 and go to the next iteration of the loop at line 5{Base
case}

8: Costg ← ∞, for each g ∈ {S, D, T, ∅, SL}

9: if u has two children then

10: if x has two children then

11: CostS ← min{Cost(u1, x1)+Cost(u2, x2), Cost(u1, x2)+Cost(u2, x1)}

12: CostD ← Cost(u1, x) + Cost(u2, x) + δ

13: (yp, y) ← BestReceiver((u, u1), t, (xp, x))

14: (zp, z) ← BestReceiver((u,u2), t, (xp, x))

15: CostT ← min{ Cost(u1, x) + Cost(u2, z), Cost(u1, y) + Cost(u2, x) }+ τ

16: if x has a single child then

17: Cost∅ ← Cost(u, x1)

18: if x has two children then

19: CostSL ← min{Cost(u, x1), Cost(u, x2)} + λ

20: Cost(u, x) ← min{Costg : g ∈ {S, D, T, ∅, SL}}

21: for all branch (xp, x) ∈ Et(S
′) do

22: (x′
p, x′) ← BestReceiver((up, u), t, (xp, x))

23: CostTL ← Cost(u, x′) + τ + λ

24: Cost(u, x) ← min{ Cost(u, x), CostTL }

25: return Cost(r(G), r(S′))

subroutine is used at line 22 for the TL case of Fig. 4f. A similar optimization
to compute the optimal receiver for a transfer was found independently in [13].

Algorithm 1 computes the cost of a most parsimonious reconciliation. Back-
tracking in the computations of values in the dynamic programming table yields
a most parsimonious reconciliation (in the sense of Def. 3), which readily allows
to obtain a most parsimonious scenario (see Def. 1), as we argued in Section. 2.2.
This algorithm achieves fast running times, in part due to a factorization of the
computations of the best receivers (see Appendix for details).

Theorem 1. The MPR problem can be solved in Θ(|S′| · |G|) time and space.



3 Experimental Results

To assess the performance of parsimony, we calculated the most parsimonious
reconciliations for a large scale simulated data set that was obtained using a
probabilistic model of duplication, transfer, and loss. In our simulations, we
started with a single gene at the root of the species tree and generated gene trees
according to a Poisson process characterized by rates of duplication, transfer
and loss. We compiled two different data sets called ds1 and ds2, aiming both
to simulate a relatively large phylogenetic time scale (a bacterial or archean
phylum) with realistic loss rates as well as to explore a wide range of duplication
and transfer rates. For further details on ds1 and ds2, see the Appendix.

For each data set, we used a single cost per event corresponding to the inverse
of the average rate of this event during the simulation process (i.e., for ds1

δ = 1/0.18). According to those costs and for each pair of gene and species trees,
we used Algorithm 1 to compute one of the most parsimonious reconciliations
denoted αp.

Note that the real reconciliation αR may contain the record of events that
cannot be recovered by a reconciliation for G, since no traces of them exist. For
instance, subtrees whose leaves are all lost, D events followed straightaway by an
L event, or several TL events in a row. Thus, we post-processed the DTL events
of αR, removing hidden parts of αR of the above kinds, but potentially leaving
other unrecoverable parts.This leads to obtain a reconciliation α′

R.
We first study under which conditions the parsimony criterion can correctly

estimate the DTL events that lead to an observed gene tree G. This can be
simply achieved by comparing the costs of the real scenario and that of a most
parsimonious one. As soon as the two costs strongly differ, the parsimony is no
longer a reasonable approach. Recall that the cost of a reconciliation α can be
computed as Cost(α) = dδ + tτ + lλ, where d, t and l are the number of D, resp.
T, resp. L implied by α. The relative over cost of α′

R in terms of parsimony score
compared to that of a most parsimonious one is defined below:

OverCost(α′
R, αP ) =

Cost(α′
R) − Cost(αP )

Cost(αP )
.

Since several most parsimonious scenarios can exist, that Cost(α′

R) = Cost(αP )
does not imply αP = α′

R. Fig. 5 shows the extent of this over cost depending
on the duplication and transfer rates and tree heights. We can see that the over
cost is really small for all combinations of duplication and transfer rates we
investigated, but does increase with the height of the gene trees. This can be
related to hidden events that we failed to identify and remove from α′

R.
We now proceed to investigate quantitatively whether parsimony is able to

correctly infer the position of DTL events.
Recall that a reconciliation α of a gene tree G defines DTL events associated

to internal nodes and edges of G. As the position of duplication and transfer
events in Go allow to locate losses, we only focus below on D and T events. Let
D(α) ⊆ V (G) \ L(G) denote the subset of internal nodes of G that correspond
to a D event and T(α) ⊆ E(G) the subset of edges of G that correspond to a T

event. It is important to point out that D(α) and T(α) alone do not resolve where



in S the event has taken place, hence are not sufficient to determine whether a
DTL event is common to two reconciliations. Let DS(α) denote the set of pairs
(u, (xp, x)) ∈ D(α) × E(S) such that α places u on the branch (xp, x) of S. Let
TS(α) denote the triplet set ((up, u), (xp, x), (yp, y)) ∈ T(α) × E(S)2 such that
(up, u) is a T event from the donor (xp, x) to the receiver (yp, y) branches in S.

Given a most parsimonious reconciliation αP , its accuracy to retrieve the D

and T events of the real (simulated) reconciliation α′

R is evaluated by the ratios
of false positive and false negative events defined as follows:

FPE(α′
R, αP ) =

|ES(αP )−ES(α′

R)|

|ES(αP )|

FNE(α′
R, αP ) =

|ES(α′

R)−ES(αP )|

|ES(α′

R
)|

,

where E = D, T. Figures 6 and 7 show those ratios for various combinations
of D, T rates and tree heights.

In Fig. 6, we can see that FPD is close to zero for all combinations of dupli-
cation and transfer rates: almost all parsimonious duplications are correct (i.e.,
present in α′

R). The high values of FND can be explained by several reasons.
First, α′

R can contain hidden events that cannot be detected by reconciliation
approaches. Second, fixing δ = τ causes the misidentification of some D events
replaced by T events in the inference. This would also explain the high ratio of
false positive transfers with such rates (see Fig. 7). Finally, this can be due to
the wrong most parsimonious reconciliation proposed among the several possible
ones. This also explains the quite high level of false negatives for T events.

4 Conclusion

We presented a new model for reconciling gene and species trees. This model
leads to a fast and exact algorithm to compute a time consistent and most par-
simonious reconciliation while accounting for duplications, losses and transfers.
Simulations showed that the parsimony criterion performs satisfactorily under
realistic conditions at the phylum level. At the inter-phlyum level, transfers are
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Fig. 5: Over cost of simulated scenarios compared to that of most parsimonious
ones for combinations of heights, transfer and duplication rates, i.e. ds1 (a) and
ds2 (b). High values show cases where parsimony criterion is inadequate.
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more difficult to recover and the existence of several most-parsimonious reconcil-
iations might be a decisive factor there. This needs further scrutiny. Moreover,
running times are on average 1.09s (resp. 1.38s) for low (resp. high) rates of
events for trees on 100 species. This clearly scales the reconciliation approach up
to the phylogenomic stage, where several tens of thousand genes are considered.

Many things remain to be done, among others to allow for multifurcating gene
and species trees and to measure the accuracy of the reconciliation approach for
orthology prediction (where the localization of events is not needed, increasing
the accuracy of the method w.r.t. our results) compared to other methods.
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A Some proofs

Property 1. Consider a parsimonious reconciliation α between G and S, an edge
(up, u) of G and a time t. The sequence α(up, u) contains at most two branches
of S′ located at time t. If there are two such branches denoted αi(up, u) and
αj(up, u), then they are adjacent in the sequence α(up, u) (i.e. |i − j| = 1).

Proof The adjacency of the two branches follows immediately from Def. 3
(relying on the fact that both happen at time t).

Assume that α contains two TL events for (up, u) described as follows: there
are three adjacent branches αi(up, u), αi+1(up, u) and αi+2(up, u) in Et(S

′),
which respectively corresponds (according to Def. 3) to the donor of the first
TL event, the receiver (resp. donor) of the first (resp. second) TL event, and the
receiver of the second TL event.

As the cost of a single TL event between αi(up, u) and αi+2(up, u) is smaller
than the cost for the previous two TL events, α is not a parsimonious reconcili-
ation. !

Proof of the complexity of the algorithm

Proof of the time complexity. We claim the algorithm runs in O(n′m) where
n′ is the size of the subdivides species tree S′ and m is the size of G.

The loop over the edges of G (line 3) runs for Θ(m) iterations. The loop over
the times t of S′ (line 4) together with the two loops over branches Et(S

′) in
sequence (line 5 and 21) run for Θ(n′) iterations. Thus, lines 6 to 20 and lines
22 to 24 are run Θ(n′m) time globally. For the nodes u ∈ V (G) and x ∈ V (S′)
currently visited, we now have to prove that Cost(u, x) can be computed in
constant time, which is obviously the case for the cost associated to the S, D, ∅,
and SL events (see lines 11, 12, 16, and 18, respectively). We prove below how
the cost associated to a T event (lines 13 to 15) can be computed in constant
time, considering that both genes are conserved (we omit the case for a TL

combination at lines 22 to 24, as it is solved using the same optimization idea).
Consider a T event from a donor (xp, x) ∈ Et(S

′), assuming w.l.o.g. that
(u, u1) is conserved in the lineage (xp, x) while (u, u2) is transfered. The algo-
rithm needs to compute the optimal receiver (i.e. that leading to a minimum
cost) for (u, u2) in Et(S

′) \ {(xp, x)}. As currently stated, i.e. in the most read-
able form, Algorithm 1 allows to compute the best receiver in Θ(|Et(S

′)|) time
by a simple loop over the branch set Et(S

′) (line 14; subroutine BestReceiver).
However, slightly modifying the statement of the algorithm allows to compute
the best receiver in constant time at line 14 (and similarly lines 13 and 22). To
achieve this, immediately before the loop over the branch set Et(S

′) (line 5),
add another loop on Et(S

′) to find the first and second optimal receivers for
(u, u2) in Et(S

′) and denote (x′

p, x
′) and (x′′

p, x
′′) these respective receivers.

Second, when a donor (xp, x) ∈ Et(S
′) is visited during the loop at line 5, the

optimal receiver for (u, u2) in Et(S
′) \ {(xp, x)} is the first optimal receiver if



(xp, x) %= (x′

p, x
′), and the second one otherwise. Hence line 13 now requires con-

stant time, while adding the additional loop mentioned above doesn’t cost more
than the already existing loop of line 5. As a result, the overall time complexity
of the algorithm is in Θ(n′m). Note that [13] independently uses a similar idea
to obtain a fast reconciliation algorithm.

Proof of the space complexity. The size of the whole matrix Cost(u, x) is in
Θ(n′m), all other variables used in the algorithm are constant in size, and the
space complexity is then immediate. !

Sketch of the proof for the correctness of the algorithm

Given a tree T , define the height of a node u ∈ V (T ), denoted h(u), as the length
of the unique path from u to r(T ), and the height of T , denoted h(T ), is the
maximal height over all its nodes.

Consider the edge (up, u) and the time stamp t examined at an iteration of
the main loops (respectively in lines 3 and 4) in the algorithm. For any branch
(xp, x) ∈ Et(S

′), we now explain how the two loops compute Cost(u, x) by
considering all six events seperately. First, for the S and D events (lines 11
and 12 resp.), the consistency of the corresponding cost is ensured because for
any child u′ ∈ {u1, u2} and any branch (x′

p, x
′) of S′, Cost(u′, x′) is previously

computed during the bottom-up traversal of G. Second, for the ∅ and SL events
(lines 17 and 19 resp.), the optimality is verified because for any branch (x′

p, x′) ∈
Et−1(S

′), Cost(u, x′) is computed during the iteration for the time (t− 1) of S′.
The cases for the T and TL events use the optimal receivers for (up, u) and

its two descendant edges, all located at time t. The bottom-up traversal of G im-
plies that Cost(u′, x′) is computed for all children u′ ∈ {u1, u2} and all branches
(x′

p, x
′) ∈ Et(S

′). Thus, for a donor (xp, x) ∈ Et(S
′), BestReceiver

((u′

p, u
′), t, (xp, x)) computes (in linear time in the size of Et(S

′)) the best re-
ceiver for the transfered edge (u′

p, u
′). For the two descendant edges (u, u1) and

(u, u2), the best receiver are respectively computed at lines line 13 and 14. For a
T event (line 15) with (xp, x) as the donor, the consistency of the corresponding
cost is ensured following the same reasons as for a D event together with the
availability of these two best receivers.

Considering a TL event with (xp, x) as the donor, Property 1 implies that
the minimal cost of mapping (up, u) onto an optimal receiver (x′

p, x
′) ∈ Et(S

′)\
{(xp, x)} corresponds to any of the five events considered in the third loop (line
5). Thus, when BestReceiver computes such an optimal receiver (line 22), its
optimality is ensured together with that for the cost of a TL event (line 23) and
the final cost (line 24).

This conclude the sketch to prove the correctness of Algorithm 1. Moreover,
it is important to point out that a scenario in which a node u ∈ V (G) has its
two descendant edges (u, u1) and (u, u2) both transfered is implicitly considered
by our combinatorial model of reconciliations. Indeed, given u ∈ V (G) and a
branch (xp, x) ∈ Et(S

′) that is the last one of the sequence α(up, u), assume
that this association corresponds to a T event for u, where u1 is conserved by



the donor (xp, x) and u2 is given to a receiver (see T event in Def. 3). Given
that the first branch α1(u, u1) equals (xp, x) in the sequence associated to u1, a
reconciliation allows the next branch of this sequence (i.e. α2(u, u1)) to be any
branch in Et(S

′) \ {(xp, x)} (see TL event in Def. 3).

B Simulated data sets

B.1 Simulated species trees

We generated a sets of 10 random ultrametric species trees with 100 species
using a standard birth death process with PhyloGen [12] (the ratio of birth to
death rate was 1.25). All species trees were normalized to a common height h,
with time measured from the leaves of the species tree at t = 0 to its root at
t = h. The time order of the internal nodes (speciation events), and hence S,
was uniquely determined by the branch lengths of the tree.

B.2 Simulated DTL scenarios

Starting with a single gene at time t = h at the root of S, we generated evolu-
tionary scenarios according to a Poisson process characterized by rates of dupli-
cation, transfer and loss. At time t, each extant gene underwent duplication with
rate rδ or loss at rate rλ. Transfers to each branch of the species tree at time t
occurred at rate rτ , with the donor gene drawn uniformly from genes extant at
time t except the branch considered.

Instances of the above Poisson process correspond to a completed gene tree
Go and a simulated reconciliation, denoted αR, that includes a complete record
of the DTLS events that gave rise to it. The gene tree G, obtained from Go

by removing the extinct subtrees of Go, is used as the input to the parsimony
algorithm.

Csűrös and Miklós recently provided estimates of the relative magnitude of
duplication, transfer and loss rates in the domain of Archaea. For our purposes,
there results can be summarized by the average ratio of 23% duplication, 1%
gain, and 76% loss, and an approximate loss rate of 1.5 (assuming a tree with
unit height). As many transfer scenarios do not leave behind a clear signal in the
phylogenetic profile of a gene family, the gain rate can potentially underestimates
the rate of transfer and overestimates the rate of duplication.

To explore a wide as possible set of parameters we chose two different ways
of varying the rates of duplication, transfer, and loss.

In the first data set, denoted ds1, we chose a fixed loss rate of rλ = 0.7 (with
tree height h = 1) and varied values of both rδ and rτ in the interval [0.01, 0.35],
choosing 11 values of each parameter, resulting in 11 × 11 sets of rates. This
choice of parameters aims to simulate a relatively large phylogenetic time scale,
corresponding to, e.g. a bacterial or archean phylum, with realistic loss rates,
while making no assumption about the ratio of transfer and loss events, and
only requiring rδ + rτ ≤ rλ. We generated 5 gene trees per species tree and per
parameter set (6,050 in total).



In the second data set, denoted by ds2, we chose to fix the ratio of rδ + rτ

to rλ as follows: rλ/(rδ + rτ + rλ) = 0.7 (motivated by the results of Csűrös
and Miklós [2]). This choice of parameters aims at investigating the accuracy
of parsimony on different phylogenetic scales, using 4 different tree heights h =
0.2, 0.4, 0.8 and 1.6. We varied the transfer rate rτ ∈ [0, 0.3] in 11 steps (with
consequently rδ = 0.3 − rτ ). We generated 20 gene trees, per species tree and
per rate parameter set (8,800 in total).

C Complementary experimental results

In some context, such as sequence orthology prediction, only the tagging of the
nodes of G is important. Thus another way to account for errors is to compare the
tagging inferred by a parsimony reconciliation with the tagging due to the real
scenario. Fig. 8 shows error ratios when false positive and negative are judged on
the fact that the internal nodes of the gene tree are assigned to the correct event
they represent in the simulated scenario (i.e. one of DTLS). It can be noted that
both error levels for transfers decrease remarkably when accounting for transfers
in this way (compare with Fig. 7).
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Fig. 8: Ratios of false negative (a-b) and false positive (c-d) for T events, for
various combinations of heights, transfer and duplication rates, i.e. ds1 (a-c)
and ds2 (b-d) when considering a transfer to be common to αR′ and αP as soon
as the same branch of G is transferred, i.e., without looking at place where the
receiver is in S.


