N

N

Power-aware dynamic mapping heuristics for NoC-based
MPSoCs using a unified model-based approach
Luciano Ost, Marcelo Mandelli, Gabriel Marchesan Almeida, Leandro Moller,
Leandro Soares Indrusiak, Gilles Sassatelli, Pascal Benoit, Manfred Glesner,
Michel Robert, Fernando Gehm Moraes

» To cite this version:

Luciano Ost, Marcelo Mandelli, Gabriel Marchesan Almeida, Leandro Moller, Leandro Soares In-
drusiak, et al.. Power-aware dynamic mapping heuristics for NoC-based MPSoCs using a unified
model-based approach. ACM Transactions on Embedded Computing Systems (TECS), 2013, 12 (3),
pp.75:22. 10.1145/2442116.2442125 . lirmm-00818925

HAL Id: lirmm-00818925
https://hal-lirmm.ccsd.cnrs.fr /lirmm-00818925
Submitted on 1 Jun 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00818925
https://hal.archives-ouvertes.fr

Power-Aware Dynamic Mapping Heuristics for NoC-Based MPSoCs
Using a Unified Model-Based Approach

LUCIANO OST, LIRMM, CNRS, University of Montpellier I

MARCELO MANDELLLI, PUCRS, Brazil

GABRIEL MARCHESAN ALMEIDA, ITIV, KIT

LEANDRO MOLLER, Darmstadt University of Technology

LEANDRO SOARES INDRUSIAK, University of York

GILLES SASSATELLI and PASCAL BENOIT, LIRMM, CNRS, University of Montpellier IT
MANFRED GLESNER, Darmstadt University of Technology

MICHEL ROBERT, LIRMM, CNRS, University of Montpellier II

FERNANDO MORAES, PUCRS, Brazil

The mapping of tasks to processing elements of an MPSoC has critical impact on system performance and
energy consumption. To cope with complex dynamic behavior of applications, it is common to perform task
mapping during runtime so that the utilization of processors and interconnect can be taken into account
when deciding the allocation of each task. This paper has two major contributions, one of them targeting the
general problem of evaluating dynamic mapping heuristics in NoC-based MPSoCs, and another focusing on
the specific problem of finding a task mapping that optimizes energy consumption in those architectures.

Categories and Subject Descriptors: C.1.2 [Processor Architectures|: Multiple Data Stream Architec-
tures (Multiprocessors)—Interconnection architectures; C.3 [Computer Systems Organization]: Special-
purpose and Application-based Systems—Real-time and embedded systems; B.8.2 [Performance and Re-
liability]: Performance Analysis and Design Aids

General Terms: Design, Performance

Additional Key Words and Phrases: Modeling, NoC-based MPSoCs, design space exploration, power-aware
mapping

ACM Reference Format:

Ost, L., Mandelli, M., Almeida, G. M., Moller, L., Indrusiak, L. S., Sassatelli, G., Benoit, P., Glesner, M.,
Robert, M., and Moraes, F. 2013. Power-aware dynamic mapping heuristics for NoC-based MPSoCs using a
unified model-based approach. ACM Trans. Embedd. Comput. Syst. 12, 3, Article 75 (March 2013), 22 pages.
DOI: http://dx.doi.org/10.1145/2442116.2442125

Authors’ addresses: L. Ost, LIRMM, Montpellier, France; email: ost@lirmm.fr; M. Mandelli, PUCRS, Porto
Alegre, Brazil; email: marcelo.mandelli@acad.pucrs.br; G. M. Almeida, KIT, Karlsruhe, Germany; email:
gabriel.almeida@kit.edu; L. Moller, Darmstadt University of Technology, Darmstadt, Germany; email:
moller@mes.tu-darmstadt.de; L. S. Indrusiak, University of York, York, U.K.; email: lsi@cs.youk.ac.uk;
G. Sassatelli, LIRMM, Montpellier, France; email: sassatelli@lirmm.fr; Pascal Benoit, LIRMM, Montpel-
lier, France; email: pascal.benoit@kurnn.fr; Manfred Glesner, Darmstadt University of Technology, Darm-
stadt, Germany; email: glesner@mes.tu-darmstadt.de; Michel Robert, LIRMM, Montpellier, France; email:
michel.robert@lirmm.fr; F. Moraes, PUCRS, Porto Alegre, Brazil; email: fernando.moraes@pucrs.br.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2013 ACM 1539-9087/2013/03-ART75 $15.00

DOTI: http://dx.doi.org/10.1145/2442116.2442125

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 3, Article 75, Publication date: March 2013.

75:2 L. Ost et al.

1. INTRODUCTION

HDTYV, multiple wireless communication standards, and media players are examples of
applications executing in existing embedded systems, requiring high performance al-
lied to low power consumption. To cope with such requirements, the electronic industry
has adopted MPSoCs (Multiprocessor Systems-on-Chip), due to their power efficiency
and capability to increase system performance by using multiple processing elements
(PEs). The interconnection between PEs plays an important role on the system perfor-
mance, but also accounts for a significant part of the total power consumption [Kahng
et al. 2009; Lee and Bagherzadeh 2009]. The present work assumes NoCs (Networks-
on-Chip) as the interconnection architecture, due to their scalability, flexibility and
power efficiency [Marculescu et al. 2009].

Most embedded applications cause time-varying workloads on the underlying MP-
SoC [Singh et al. 2010]. In many cases, the variations cannot be accurately predicted
during design time, such as the scenarios when the system interacts with complex de-
ployment environments or user-driven requests [Chou and Marculescu 2010]. In those
cases, offline mapping techniques are sub-optimal or inadequate [Faruque et al. 2008;
Wildermann et al. 2009; Molnos et al. 2010]. A typical example was described in Jalier
et al. [2010], where a mobile communication system has to handle multiple data stream
processing tasks over 4G mobile communication protocols following the LTE standard.

To cope with such scenarios, the deployment of new techniques to achieve runtime
system adaptability is mandatory [Almeida et al. 2009; Molnos et al. 2010]. Dynamic
task mapping, task migration, distributed DVFS (dynamic voltage and frequency scal-
ing), and power gating are examples of runtime techniques that make possible to
optimize various parameters such as application performance or power consumption.

Because of the complexity of typical MPSoCs, it is necessary to provide system de-
signers with flexible frameworks that enable the exploration of different architectural
options, tuning the platform to the applications needs. Such frameworks must provide
accurate performance metrics such as latency, throughput, and energy consumption.
Furthermore, they must be able to produce those metrics in a short amount of time,
since fast evaluation covers larger design space. For instance, design exploration at the
register transfer level (RTL) may be unfeasible because a single simulation scenario
may easily take several hours or even days. One promising alternative to evaluate
MPSoCs is to use accurate abstract models of the application running on a specific
platform.

In this context, this work presents a model-based framework that simplifies the
development and the validation of MPSoCs by providing flexible application model-
ing features ([M&aattd et al. 2009]), high level and high accuracy NoC models (e.g.
[Ost et al. 2009; Indrusiak and Santos 2011]), and dynamic task mapping heuris-
tics, making it possible to rapidly assess resulting gains in terms of performance and
power consumption. The fundamental principle behind the multi-layer framework is
the complete separation between the different layers—application, mapping, and plat-
form [Indrusiak et al. 2010]. Therefore, new application models, platform templates,
and mapping heuristics can be integrated into the framework as long as they follow
the pre-defined inter-layer APIs.

The main objective of this paper is to extend the multi-layer framework to support
runtime system adaptability by means of dynamic mapping heuristics. The main ben-
efits of employing the multi-layer framework includes (i) design flexibility, since users
do not have to deal with detailed platform implementation; (ii) the platform is not
restricted to small system configurations; (iii) increased debugging capability.

The contributions of this paper may be summarized as follows: (i) proposition of
a power-aware dynamic multi-task mapping heuristic that uses an optimized search

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 3, Article 75, Publication date: March 2013.

Power-Aware Dynamic Mapping Heuristics for NoC-Based MPSoCs 75:3

algorithm to define the position allocation of tasks at run-time; (ii) integration of the
proposed heuristic, as well as other reference mapping heuristics, into the unified
model-based framework; (iii) evaluation of the proposed heuristic, demonstrating its
effectiveness in terms of latency and energy consumption reduction within several
application scenarios, (iv) validation and execution of the proposed heuristic in a real
RTL-model platform.

The paper is organized as follows. Section 2 summarizes the basic aspects of the
adopted multi-layer model-based approach. Section 3 describes related works in power-
aware dynamic mapping. Section 4 presents the proposed power-aware dynamic map-
ping. A set of experiments that were used to validated the proposed mapping heuristic
are presented in Section 5. Section 6 points out conclusions and directions for future
work.

2. MULTI-LAYER MODEL-BASED APPROACH

The proposed approach supports the joint validation of applications mapped onto the
platform model, enabling design space exploration. Three modeling layers divide
the MPSoC design space exploration: (i) application, (ii) mapping, and (iii) platform.
The first layer comprises application modeling and validation (functionality and re-
quirements), while the second layer defines how such applications are mapped onto
the MPSoC platform (third layer).

The present work provides a library with applications and platform models, as well
as static and dynamic mapping heuristics, which can be used for the design space
exploration of NoC-based MPSoCs. The main benefit of the multi-layer model-based
approach is the separation between such modeling layers, which allows designers to
model and to validate the main functionalities of their own applications (e.g., commu-
nication behavior) and platform models, individually. Once both models are validated,
designers can successively evaluate the performance of an application running over a
platform by using several mapping heuristics, allowing extensively exploration of the
system. Another advantage of using this multi-layer model is that mapping heuristics
can be easily integrated and validated.

2.1. Application Layer

The first layer provides the software engineer with the possibility to develop and
validate different applications considering only their functionality and requirements.
It uses executable models based on UML sequence diagrams and actor-orientation
[Indrusiak et al. 2007; M&aatta et al. 2008]. UML is a standard modeling language
used by most part of the software development industry due to its flexibility, support
to the real time requirements through profiles (e.g., Profile for Modeling and Analysis
of Real-Time and Embedded Systems, MARTE [OMG 2010]) and tool support. On the
other hand, actor orientation design is a component methodology, which separates the
functionality concerns (modeled as actors) from the component interaction concerns
(modeled as frameworks). It includes the definition of the execution semantics as a
part of the model rather than of the underlying simulation engine. This means that
applications can be described using distinct models of concurrent computation (e.g.,
process networks, event-based synchronization, dataflow) allowing specifications that
use time and concurrency primitives that better reflect their nature. As a result, the
concurrent behavior and the interdependencies of the application tasks are accurately
captured [Lee and Neuendorffer 2004; Lee et al. 2006]. We claim here that the com-
bination of UML and actor-orientation provides increased design flexibility to specify
the application tasks, their dependencies, synchronization mechanisms, and data ex-
changes, when compared to application modeling approaches based on task graphs.

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 3, Article 75, Publication date: March 2013.

75:4 L. Ost et al.

APPLICATION MODEL

AB, internal view
AB; internal view

Sequence diagram (SD)

2022
g

LT

ERERES

Mapping table
MAPPER
MODEL
e PLATFORM
MODEL

PE11

communication
link

N

performance metrics
local port capture and analysis

PEOD

Fig. 1. An example of a unified model representation. For the sake of simplicity, the mapper model layer is
represented by a static Mapper Actor’s behavior.

At the application layer, designers specify application blocks (represented as life-
lines), implemented as a set of communicating application actors (e.g., AB; and ABg
in the upper part of Figure 1), according to the modeling strategy proposed in Maatta
et al. [2008, 2010].

Application blocks are tasks (e.g., AB4), which may contain more than one function
that are grouped (e.g., T1 and T2 represented as circles in Figure 1), according to
the software engineer’s decision. Application actors have input and output ports for
sending and receiving messages. UML sequence diagrams (SDs like SD1 and SD2) are
sequencing actors that constrain the order of the messages exchanged by application
actors. Application actors are defined as active or passive and are represented as
lifelines within one or more SDs (for instance, AB, is represented in both SDI and

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 3, Article 75, Publication date: March 2013.

Power-Aware Dynamic Mapping Heuristics for NoC-Based MPSoCs 75:5

SD2). Active actors (e.g., AB;) are those that initiate a communication while passive
actors (e.g., AB3y) react or initiate a communication after receiving a message from an
active actor.

The application model is formally described as follows. Assuming that A is a set
of actors and C is a set of communication links, an application model is a directed
bipartite multigraph, G(A, C). Given that AB is a set of application actors and SA is
a set of sequencing actors, A = AB U SA. For the example in Figure 1, AB = {AB;,
ABj, AB3, AB4, AB5, ABg}, while AS = {SD1, SD2}. The set EM = {m1, m2, m3, m4,
mb, m6, m7, m8, m9} represent the messages exchanged by the application actors in
the application model illustrated in Figure 1. Following, C is the vertex set of G and
represents all communication links in the application model. C is in fact a set of triples
with C ¢ AB x AS x EM U AS x AB x EM. Each communication link is defined
by two triples in C. For the example in Figure 1, AB; and ABy exchange mi. This is
represented in C by the elements (AB1, SDI1, m1), (SDI1, ABy, m1). The whole C set for
the example in Figure 1is C = {(AB;, SD1, m1),(SD1, ABy, m1),(ABy SD1, m2), (SD1,
AB1, m2),(ABy, SD1, m3), (SD1, ABs, m3), (ABs, SD1, m4), (SD1, AB4, m4), (AB4 SD1,
mb), (SD1, AB3, m5), (ABs SD1, m6), (SD1, AB4, m6), (ABy, SD2, m7),(SD2, ABs5, m7),
(AB5. SD2, m8), (SD2, ABg, m8), (AB4. SD2, m9), (SD2, ABg, m9)}.

2.2. Platform Layer

The platform layer provides multi-accuracy and executable platforms models, allowing
designers to trade-off accuracy and simulation time. The target architecture is a 2D
mesh NoC, with one PE connected to the local port of each router. The adopted NoC-
based platform can be seen as a directed graph H = G(PE,C), where PE is a set
of processing elements and C are the communication channels through which PEs
exchange data packets.

Designers need tools to observe and debug the execution of the set of applications
running on top of an NoC model. In this context, the platform layer includes Scope
actors that can be used to check the running status of the system, as well as to col-
lect performance results that can be used for application/platform model optimization.
Examples of Scopes used in this work: PowerScope, LatencyScope and MapperScope.
The PowerScope applies the volume-based power model, generating a power report. The
LatencyScope provides end-to-end communication latency figures for each task commu-
nication (e.g., number of clock cycles to delivery m1 from AB; to ABs in the upper part
of Figure 1). The end-to-end latency is defined as the delay between the instant a PE
starts its message transmission and the time the target PE receives the message. The
MapperScope is used to monitor the mapping layer (e.g., capturing each task requesting
time) and to generate mapping results, as the number of hops among communicating
tasks.

2.3. Mapping Layer

The mapping layer is the link between the application and the platform layers, and it
is responsible for mapping tasks (lifelines) onto PEs. A lifeline is the smallest grain of
the proposed mapping approach and the Mapper Actor can map one or more lifelines,
according to the adopted mapping heuristic, onto one of the available PEs of the plat-
form. For the example in Figure 1, PE 01 (AB; and ABy) and PE 00 (ABs and AB,)
received two tasks, whereas PE 10 and PE 11, received one task each. Thus, keeping
the example in Figure 1, let AB = {AB;, ABys AB3 AB4 AB5 , and ABg} be the set of n
tasks, and PE = {PE00, PE0O1, PE10, and PE11} be the set of m processing elements of
an MPSoC = <PE, C>. A mapping is an injective function f: AB — PE, which associates
tasks to PEs.

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 3, Article 75, Publication date: March 2013.

75:6 L. Ost et al.

L e N R e e e

m1 (150)

m2 (100) R | | | |

m3(100) ——AB.— - -

(@) (b)

Fig. 2. (a) Application described as UML diagram, where m1, m2, and m3 represent the communication
volume between tasks; (b) search space to map the ABjg task, and one possible mapping for ABj3.

The Mapper Actor implements the mapping heuristics. The present work supports
static [Ost et al. 2010] and dynamic mapping heuristics (described in Section 4 of this
work). In the related works the mapping process is manual or pure random selection
(e.g., [Kangas et al. 2006; Ha 2008; Pimentel et al. 2008; Mischkalla et al. 2010]).
In a concrete MPSoC implementation, a given processor executes the function of the
Mapper Actor, where the MPSoC might have a centralized control [Carara et al. 2009],
or it can be controlled by the operating system running onto each PE in a decentralized
fashion.

2.4. Unified Model Execution

This section illustrates the interactions among the modeling layers. The numbers in-
side blue circles in Figure 1 exemplify the interactions in the unified model. Considering
that messages m1 and m2 were already sent by and received at their respective appli-
cations blocks, the application block AB; then sends the message m3 to the sequencing
actor SD1, which receives it (event 1 in application layer of Figure 1). When m3 is
received, a message within its sequence diagram is triggered (event 2 in application
layer, the message m3 sent from lifeline AB; to lifeline AB3). When this happens, the
corresponding director Director 2 interrupts the message delivery and notifies the Map-
per Actor about the message (event 3 in mapper layer). Following the guidelines stated
in Lee and Neuendorffer [2004], such directors (link between application and mapper
layers) control the messages’ delivery order (e.g., total or partial) between application
blocks, considering the communication behavior described in its sequence diagram.
Since the Mapper Actor is responsible for assigning each lifeline to a PE, it knows
that for instance lifeline AB; is mapped to PE 01, whereas AB3 is mapped to PE 00.
Once the Mapper Actor receives the information about the triggered message, it will
command the processing element (PE 01) associated to the sender of the message (m3)
to generate the corresponding traffic into the NoC platform. Thus, it creates a packet
and writes it on the local input port of the corresponding Router 01 (event 4 in the
platform layer). The platform model simulates the message delivery by transmitting
packets from the source to the target tasks (e.g., packets of m3 in Figure 2). Then the
Mapper Actor waits until the processing element (PE 01) associated to the receiver of
the message (m3, event 5 in the platform layer) notifies the complete reception of the
packet (event 6 in the mapper layer). Upon notification, the Mapper Actor calls back
the Director 2, which has notified the triggering of the message, and informs it that the
message can now be delivered (event 7 in the application layer). After that, the Director
2 can forward the message to the output port of the SD1, and the message reaches its

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 3, Article 75, Publication date: March 2013.

Power-Aware Dynamic Mapping Heuristics for NoC-Based MPSoCs 757

destination (AB3) with the exact latency that it would take if the application had been
executed on top of the implementation platform (event 8 in the application layer).

3. BASIC CONCEPTS AND DYNAMIC MAPPING REVIEW

Task mapping literature is wide, requiring a taxonomy to classify different mapping
approaches. In this context, we classify the mapping process according to four criteria:
(i) the moment in which it is executed; (ii) the number of tasks per PE; (iii) the entity
responsible for controlling the mapping; (iv) the target architecture.

Considering the moment when tasks are mapped, the following approaches may be
used.

—At design time. Called static or offline, it may use complex heuristics (such as simu-
lated annealing or genetic algorithms) to better explore the MPSoC resources, result-
ing in optimized solutions. However, static mapping is not able to handle a dynamic
workload.

—At run-time. Called dynamic or online, it requires simple and fast heuristics since
it may interfere with the applications execution time. Two dynamic mapping ap-
proaches are found in the literature.

—With resources reservation. The mapping heuristics verify if there are enough
resources in the MPSoC before mapping the application tasks. The clear advantage
of this method is to guarantee the complete application mapping. On the other side,
the application may demand more time to start its execution if resources are not
available when the application is requested.

—Without resources reservation. The mapping heuristics map one or more initial
tasks of the application (those without dependences on other tasks), placing the
remaining tasks whenever necessary. This approach may start applications faster,
but some tasks may wait for available resources if the system usage is high.

—Dynamic re-mapping. Also called task migration, it may employ dynamic mapping
heuristics together with some criteria (e.g., PE workload, communication overhead)
in order to increase the overall performance of the system (e.g., load balancing).

Considering the number of tasks mapped per PEs, the following approaches may be
used:

—DMono-task. In this approach, only one task is assigned to each PE.

—Multi-task. In this approach, clustering methods are used within the mapping heuris-
tics to group tasks according to some criteria, such as communication, execution time
and task deadlines. As PEs are often processors executing multi-task operating sys-
tems, multi-task mapping can better utilize existing resources.

Dynamic mapping requires an entity, called in this paper a Mapper Actor, responsible
for mapping the tasks at runtime. The mapping control may be the following.

—~Centralized. One PE is responsible for receiving the mapping requests, reading the
task code from an external memory (task repository), executing the mapping heuris-
tic, and sending the task to the chosen PE. This approach is not scalable, and may
lead to hotspots! in the NoC, while reducing the performance of the whole system.

—Distributed. The MPSoC is divided in regions (clusters), and one PE in each re-
gion is responsible for executing the mapping heuristic on it. Despite the increased
scalability, one bottleneck subsists: the access to the task repository, which is global
to the system.

IThis term refers to instants where power dissipation reaches a peak value, which may increase the temper-
ature at specific regions of the chip that can, consequently, generate hotspots.

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 3, Article 75, Publication date: March 2013.

75:8 L. Ost et al.

Finally, the mapping can be classified according to the architecture model.

—Homogeneous. All PEs are identical. This makes task mapping and task migration
easier, because it is not necessary to consider the PE type in the heuristics.

—Heterogeneous. Different PEs are used in the same architecture, such as DSPs, ded-
icated IPs, accelerators. Before mapping, a binding process is executed, assigning to
each PE the task that it may execute.

3.1. Power-Aware Dynamic Mapping Review

According to the literature, static mapping will be insufficient to handle the dynamic
and unpredictable behavior of future embedded applications running in parallel [Chou
and Marculescu 2008; Holzenspies et al. 2008, Schranzhofer et al. 2010]. Thus, research
approaches on power-aware dynamic mapping have been proposed.

In Smit et al. [2005], an iterative hierarchical dynamic mapping approach is pro-
posed. This approach aims to reduce energy consumption of the SoC, while providing
the required quality-of-service (QoS). In such a strategy, tasks are first grouped by being
assigned to a system resource type (e.g., FPGA, DSP, ARM), according to performance
constraints. Then, each task inside a group is mapped, minimizing the distance among
them and reducing communication cost. Finally, the resulting mapping is checked, and
if it does not meet the application requirements, a new iteration is required.

In Ngouanga et al. [2006] a force-directed mapping heuristic is presented for homoge-
neous NoC-based MPSoCs. The heuristic selects the new position for a task according
to a resulting force proportional to the communication volume and distance between
tasks.

Chou and Marculescu [2007] introduce an incremental dynamic mapping process ap-
proach, where PEs connected to the NoC have multiple voltage levels, while the network
has its own voltage—frequency domain. A global manager (OS-controlled mechanism)
is responsible for finding a contiguous area to map an application, and for defining the
position of the tasks within this area, as well. According to the authors, the strategy
avoids the fragmentation of the system and aims to minimize communication energy
consumption, which is calculated according to Ye et al. [2002]. This work was extended
in Chou and Marculescu [2008, 2009], incorporating the user behavior information in
the mapping process. The user behavior corresponds to the application profile data,
including the application periodicity in the system and data volume transferred among
tasks. For real applications considering the user behavior information, the approach
achieved around 60% energy savings compared to a random allocation scenario.

Holzenspies et al. [2008] investigate a run-time spatial mapping technique with real-
time requirements, considering streaming applications mapped onto heterogeneous
MPSoCs. In the proposed work, the application remapping is determined according to
a set of information (i.e., latency/throughput) that is collected at design time, aiming
to satisfy the QoS requirements, as well as to optimize the resources usage and to
minimize the energy consumption. A similar approach is proposed in Schranzhofer
et al. [2010], merging pre-computed template mappings (defined at design time) and
online decisions that define newly arriving tasks to the PEs at run-time. Compared to
the static-mapping approaches, obtained results reveal that it is possible to achieve an
average reduction on power dissipation of 40—-45%, while keeping the introduced over-
head to store the template mappings as low as 1kB. Another power-aware approach is
presented in Wilderman et al. [2009]. This approach employs a heuristic that includes a
Neighborhood metric inspired by rules from Cellular Automata, which allows decreas-
ing the communication overhead and, consequently, the power dissipation imposed by
dynamic applications. In Hosseinabady and Nunez [2010] a stochastic dynamic task
mapping and a routing algorithm are used to minimize reconfiguration overhead. Lu

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 3, Article 75, Publication date: March 2013.

Power-Aware Dynamic Mapping Heuristics for NoC-Based MPSoCs 75:9

et al. [2010] propose a dynamic mapping algorithm, called Rotating Mapping Algo-
rithm (RMA), which aims to reduce the overall traffic congestion (take in account the
buffer space) and communication energy consumption of applications (reduction of
transmission hops between tasks).

In turn, Mandelli et al. [2011] propose a power-aware task mapping heuristic, which
is validated using a NoC-based MPSoC described at the RTL level, with a clock-cycle
accurate ISS describing processors. The mapping heuristic is performed in a given
PE of the system that executes a preemptive operating system [Carara et al. 2009].
Due to the use of a low level description, accurate performance evaluation of several
heuristics (execution time, latency, energy consumption) is supported. However, the
scope of the work is limited to small systems configurations due to the simulation time.
In the previous works, only one task is assigned to each PE. A multi-task dynamic
mapping approach was proposed in Singh et al. [2010]. This work extends the work
described in Carvalho et al. [2009], which uses an RTL NoC and abstract PEs imple-
mented in System-C. In this work, different mapping heuristics were used to evaluate
the power dissipation as the product of number of bits to be transferred and distance
between source-destination pair. Differently from other works, Faruque et al. [2008]
and Weichslgartner et al. [2011] proposed the use of distributed dynamic mapping
approaches. Faruque et al. [2008] present a distributed agent-based mapping scheme.
The proposed scheme divides the system into virtual clusters. A cluster agent (CA) is
responsible for all mapping operations within a cluster. Global agents (GAs) store infor-
mation about all the clusters of the NoC and use a negotiating policy with CAs in order
to define to which cluster an application will be mapped. In turn, Weichslgartner et al.
[2011] explore different implementations of a decentralized self-embedding algorithm,
aiming to minimize network contention and latency while providing fault-tolerance
support for NoC-based systems.

Table I summarizes the reviewed works according to the proposed taxonomy for
dynamic mapping. Most reviewed works reserve resources according to the number of
the tasks, defining, for instance, pre-computed mapping templates for each application
[Holzenspies et al. 2008]. On the other side, Carvalho et al. [2009] and Singh et al.
[2010] do not employ resource reservation but rather allocate PEs whenever actually
required. Considering that not all tasks execute concurrently, allocating resources
for all application tasks may underutilize the MPSoC, as well as possibly requiring
larger systems. The work present in Singh et al. [2010] is the only one to support
dynamic multi-task mapping. Excluding the work proposed by Faruque et al. [2008]
and Weichslgartner et al. [2011], the mapping control management is centralized;
which can become the bottleneck for large multiprocessors systems.

In the context of dynamic mapping heuristics, the present work proposes a mapping
heuristic according to the last line of Table I. The homogenous architecture model may
be easily extended to heterogeneous architectures by adding a binding heuristic before
the mapping process. The centralized approach is a drawback for large MPSoCs with
hundreds of PEs. One way to move to distributed mapping is to divide the MPSoC
in clusters, including a mapper at each cluster. In the scope of this work, our goal is
to propose a mapping heuristic (presented in Section 4.3), integrated into the unified
multi-layer model, described in Section 2.

4. DYNAMIC MAPPING HEURISTICS

This section presents the dynamic mapping heuristics integrated in the Mapper Actor.
Section 4.1 presents the mapping heuristics used as reference for the experiments.
Section 4.2 details the DN (Dependences Neighborhood) and LEC-DN (Low Energy
Consumption-Dependences Neighborhood). Following, the proposed Premap-DN is pre-
sented in Section 4.3.

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 3, Article 75, Publication date: March 2013.

75:10 L. Ost et al.

Table I. Related Work Classified According to the Proposed Taxonomy for Dynamic Mapping Heuristics

Author Resource | Multi/Mono | Architecture Control Optimization

Year reservation task model manager Goal

Smit et al. [2005] Yes Mono-task | Heterogeneous | Centralized |Energy Consumption and
QoS application
requirements

Ngouanga et al. Yes Mono-task | Homogeneous | Centralized | Communication volume,

[2006] Computation load

Chou and Yes Mono-task | Homogeneous | Centralized | Energy Consumption,

Marculescu Internal and external

[2007, 2008, Network contention

2010]

Holzenspies et al. Yes Mono-task | Heterogeneous | Centralized | Energy Consumption and

[2007, 2008] QoS application
requirements

Al Faruque et al. No Mono-task | Heterogeneous | Distributed | Execution time, Mapping

[2008] time and Monitoring
traffic

Wildermann No Mono-task | Homogeneous | Centralized | Communication Latency,

et al. [2009] Energy consumption

Hosseinabady Yes Mono-task | Homogeneous | Distributed | Reconfiguration overhead

and Nunez

[2009]

Schranzhofer Yes Mono-task | Heterogeneous | Centralized |Energy Consumption

et al. [2010]

Lu et al. [2010] not available | Mono-task | Homogeneous | Centralized | Communication Latency
and Energy Consumption

Carvalho et al. No Mono-task | Heterogeneous | Centralized | Network contention,

[2010] Communication volume

Singh et al. No Multi-task | Heterogeneous | Centralized | Network contention,

[2009, 2010] Communication volume
and energy consumption

Weichslgartner Yes Mono-task | Homogeneous | Distributed | Communication Latency

et al. [2011] and Network contention

Proposed work No Multi-task | Homogeneous | Centralized | Energy Consumption

All application tasks are dynamically mapped, except the initial task(s) (those that do
not have dependences to other tasks, e.g., AB; in Figure 1, modeled as active actors). In
the present work, their positions in the MPSoC are manually defined. The criterion to
select the position of a given initial task in the MPSoC is to virtually divide the MPSoC
in & regions, & being the number of applications to be executed simultaneously, and
assign the initial task of each application in the center of each region. The reasoning
for selecting this criterion is to minimize the resource sharing among tasks. As future
work, the initial task mapping can be easily integrated into the mapping layer.

4.1. Reference Mappings Heuristics

Due to its simplicity, the nearest Neighbor (NN) is used as reference mapping heuristics
for dynamic single-task and multi-task purpose. The NN mapping considers only the
proximity of an available resource to execute the required task. NN starts searching
for a free PE able to execute the task near the requesting task. The search tests all
n-hop neighbors, n varying from 1 to the NoC size in a spiral way, stopping when the
first PE free is found.

The NN heuristic was extended and integrated in the proposed model-based approach
to support multi-task mapping, according to the definitions presented in Singh et al.

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 3, Article 75, Publication date: March 2013.

Power-Aware Dynamic Mapping Heuristics for NoC-Based MPSoCs 75:11

[2010]. In this extension, the Mapper Actor verifies if the requesting task PE (0 hop
distance) is able to receive the required task instead of looking for the neighbor PEs
at 1 hop distance. This extended version is used as a reference dynamic multi-task
heuristic.

4.2. DN and LEC-DN Mappings Heuristics

Differing from the NN heuristic, which tries to map the requested task as closely as pos-
sible to the requesting task, the DN heuristic considers all dependencies between tasks,
mapping the requested task as closely as possible to the already mapped tasks with
which it communicates, by employing a proximity (in number of hops) cost function.

The LEC-DN heuristic extends the DN, employing two cost functions: (i) proximity in
number of hops and (ii) communication energy involved in the data transfer/reception
between tasks. This second criterion employs the volume-based energy model proposed
by Hu and Marculescu [2005] to select the position of the task to be mapped, and it is
used when a given task communicates with at least two mapped tasks. In this situation,
the new task is mapped closer to the task with higher communication volume.

When the requested task has only one communicating task already mapped, LEC-DN
uses the NN search method (spiral search). If there is more than one communicating
task already mapped, the LEC-DN searches for a PE inside the bounding box defined
by the position of such tasks.

Consider the application illustrated in Figure 2(a), containing 4 tasks, where AB;
and AB; are initial tasks. The mapping of task ABj is fired by the first communication
with it. The search space to map task ABj3 corresponds to the bounding box defined
by the position of AB; and AB; tasks (Figure 2(b)). Thus, AB3 will be mapped nearest
to task AB;, since according to the application sequence diagram the communication
volume AB;—ABj3 is higher than AB;—AB3. Note that task AB4 is not mapped, since
it depends on the task ABs.

The implementation of the LEC-DN heuristic is described in Algorithm 1. The heuris-
tic starts by inserting the mapped tasks that communicate with the requested task ¢;
in the communicating tasks list (line 3). If the communicating tasks_list has just one
element (cy), the NN algorithm is executed (lines 6-19). If the communicating tasks_list
has more than one communicating task mapped (lines 21-44), the algorithm first set
the energy to a maximum value (line 22), and defines the coordinates of the bounding
box according to the elements inside the communicating tasks_list (line 23). Line 26
gets all PEs inside the bounding box. The loop between lines 27 to 39 computes the
communication energy to map each PE inside the bounding box (line 32), selecting the
PE that results in the mapping with the smallest energy cost. The bounding box size is
increased one hop in all directions (line 41), if there is not a free PE inside the bounding
box. The loop between lines 2443 is repeated until finding an available pe, or untill
all PEs were visited. If no pe is found, the Mapper Actor schedules the task ¢; to be
mapped when a PE becomes available.

The theoretical complexity of LEC-DN is O(|PE|?), where |PE| corresponds to the
number of processing elements. The algorithm part comprising the NN execution (lines
6-19) has two nested loops (line 8 and line 11). The loop starting at line 8 varies the
parameter dist from 1 to the NoC size (maximum of the x or y NoC side). The inner loop,
line 11, visits all PEs at a dist distance. In this way, in the worst case when executing
the code between lines 6-19, all PEs are visited once. Therefore, the complexity of the
first part of the algorithm is O(|PE|).

The second part of the algorithm (lines 22—43) has three nested loops (lines 24, 27,
31). The loops started at lines 24 and 27 can be seen as one, since the goal is to visit all
PEs of the MPSoC once. The inner loop (lines 31-33) may also visit all PEs, if the task
to be mapped is connected to all other tasks. Therefore, the complexity of the second

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 3, Article 75, Publication date: March 2013.

75:12 L. Ost et al.

ALGORITHM 1: LEC-DN Mapping Heuristic Pseudocode

Input: A task ¢; to be mapped, the set T; containing the tasks ¢; communicates with.
Output: The PE to map the task ¢.

1. pe < —1

2. I/ Get all t; communicating tasks already mapped

3. communicating_tasks_list < mapped _tasks(T;)

4. /] If there is only one communicating task

5. if size(communicating tasks list) = 1 then

6

7

8

dist < 1// Initializes the search distance to 1 hop
/l Search until the distance dist = NoC_size
while dist!= NoC _size do

9. ¢y < first element of the communicating_tasks_list
10. pelist < neighbors(dist, c,) // Get all neighbors of ¢, within a distance dist¢
11. for all elements p; in pe_list

12. /l Checks PE occupation

13. if state(p;) = free then

14. pe < p;

15. return pe /! PE is found, stop searching

16. end if

17. end for

18. dist < dist + 1 // Go to next range of neighbors
19. end while

20. end if

21. if size(communicating tasks list) > 1 then

22. min_energy < oo // Initializes energy with highest value

23. bounding_box<area(communicating tasks list) //set the bounding box’s coordinates
24. while while bounding box <= NoC_size and pe= —1 do

25. /I Get the PEs inside the bounding box

26. pelist < search_PEs(bounding _box)

217. for all elements p; in pe_list

28. /I Checks PE occupation

29. if state(p;) = free then

30. energy < 0

31. for all ¢; in communicating tasks_list

32. energy < energy + commaunication volume(c;,p;)*distance(c;,p;)
33. end for

34. // Set the minimum energy and the target PE
35. if energy pe < min_energy then

36. min_energy < energy_pe

37. pe < p;

38. end if

39. end for

40. if pe = —1 then

41. increase(bounding _box)

42. end if

43. end while

44. end if

45. return pe

part of the algorithm is O(|PE |2). In practice, each task is connected to few other
tasks, minimizing the search space in the inner loop (lines 31-33). The experiments
demonstrate that the execution time of the heuristicis small, since in most applications,
tasks send/receive messages from few other tasks.

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 3, Article 75, Publication date: March 2013.

Power-Aware Dynamic Mapping Heuristics for NoC-Based MPSoCs 75:13

BN 5 o o0 00 o oe T = PEA 01 PE 11
m1(500) A B soo Cso0 D 100
m2(500) B A 500 CB: |
m3(100) c A 500
D E 200 A 100 Fso |
S m5(300) E G3oo D 200
m6(50) F Dso Has D
m7es) | G [Eae ® —{mapper
H Fas
PE 00 PE 10

(a) (b) (c)

Fig. 3. Premap example, considering up to three tasks per PE.

Before integrating LEC-DN in the Mapper Actor, LEC-DN was validated in a homo-
geneous NoC-based MPSoC, described in synthesizable VHDL [Mandelli et al. 2011].
LEC-DN reduced the execution time (4.3% on average) and the energy consumption

(10.8% on average), when compared to other dynamic mapping heuristics (NN and Best
Neighbor -BN).

4.3. Premap-DN

This section proposes a multi-task dynamic mapping, called Premap-DN. The Premap-
DN integrates the LEC-DN heuristic and the premap clustering method. The goal of
the premap clustering method is to group a set of communicating tasks into the same
PE, without reserving resources for the whole application. Thus, when a given task is
pre-mapped, only its placement is reserved. Therefore, the effective mapping of the pre-
mapped tasks is executed when it is requested. Figure 3(a) shows a sequence diagram
that describes the communication pattern of an application with 8 tasks, ¢4 being
the initial task. The premap uses a data structure named CTL (communication task
list), created by the CTL Capture actor, during system startup. This CTL structure
is illustrated in Figure 3(b). Each entry of the CTL is a task #;, containing the set
C = {t,t,...,1,}, corresponding to all tasks connected to ¢;, sorted according to their
communication volume with ¢;. Figure 3(c) shows a possible partial pre-mapping of the
application (Figure 3(a)) onto a 2x2 NoC-based MPSoC, which is composed of three PEs
that are able to execute up to 3 tasks each. Note that one of the PEs is responsible for
managing the MPSoC, including the mapping process.

During the system startup, the initial tasks are mapped according to the positions
chosen by the designer, and a first execution of the premap occurs. In the example
illustrated in Figure 3, the initial task ¢4 is mapped onto PE 01. The Mapper Actor
selects a task ¢; in the set C(¢4) iff ¢; does not have any communication with higher
volume than its communication with ¢ 4. In the example C(¢4) = {tg, tc, tp}, Ctg) = {ta},
C(tc) = {ta}, Cltp) = {tg, ta, tp}, as tp and t¢ are the ones with higher communication
with ¢4, and they only communicate with this task, they are pre-mapped with ¢4 onto
PE 01. During ¢4 execution, tg and ¢¢ are required to be mapped. As they were already
pre-mapped, LEC-DN is not executed and they are effectively mapped (assignment
of the lifelines to the PEs). Next ¢p is required to be mapped. As this task was not
pre-mapped, the LEC-DN chooses PE 00, which is the nearest PE to ¢4 (it could also
be PE 11 in this case). As tp “opened” a new PE, the premap is executed. In this case
C(tp) = {tg,ta tr}, C(tg) = {te,tp}, Clta) = {tB,tc.tp}, C(tr) = {tp,tu}. The premap
evaluates the task that will be mapped with ¢p according to C(¢p) order. Thus, the
first task to be evaluated will be the one with highest communication with ¢p, that
is, tg. Next tp is evaluated, and it is pre-mapped with ¢p because the communication
volume tp—tp (m6(50)) is higher than ¢g—tr (m7(25)). PE 00 finished the premap with
two tasks. The third task slot can be used later by LEC-DN.

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 3, Article 75, Publication date: March 2013.

75:14 L. Ost et al.

The implementation of the premap clustering method is described in Algorithm 2.
The method begins assigning to the set T}, the list of all the tasks that ¢; communicates
with (line 2). Then nT; receives the non-mapped tasks of 7; (line 4). The next step
evaluates each task d; from nTj;, to choose which tasks will be pre-mapped onto p;.
This evaluation (line 7-17) happens while the PE has less than TASK PER_PE (the
maximum number of tasks supported per PE) mapped/pre-mapped tasks onto it, or if
all possible tasks in nT; were already evaluated. For each task d;, the first task A; of
its CTL D; is obtained (line 11). So, the communication volume of A; is compared to
the communication volume ¢; (line 12) to verify if d; communicates with the highest
volume with ¢;. In an affirmative case, d; is pre-mapped onto p;, also increasing the p;
task number of mapped/pre-mapped tasks (line 13-16). Otherwise, if available, another
task from nT; is evaluated.

ALGORITHM 2: Premap Method Pseudocode

Input: The PE p;, the task ¢; mapped onto p;
Output: A set of tasks pre-mapped onto p;

1. // T; contains the tasks which ti communicates with

2. T; < list (T)
3. // nT; contains all tasks in 7; which were not mapped.
4. nT; < non-mapped_tasks(T})
5. /] Get the first task in the nT;
6.
7.
8.

d; < first (nT;)
while tasks(p;)<TASKS_PER _PE or lend(nT;) do
/I D; contains the tasks which d; communicates with
9. D; < list(d;)
10. // Get the first task A; (with highest communication volume) in D;
11. h; < first(D;)
12. if if comm_volume(h;) > comm_volume(¢;) then

13. /l pre-map d; into p;

14. premap(d; p;)

15. // increase the number of mapped/pre-maped tasks into p;
16. tasks(p;)++

17. endif

18. // Get the next task in the nT;
19. d; < next(nT};)
20. end while

The theoretical complexity of premap is O(TASKS _PER_PE* | PE|). The loop started
in line 7 executes, in worst case, TASKS_PER_PE* | PE | times, since it is possible to have
a given task connected to all other tasks. The maximum number of tasks is defined by
the number of processors, | PE |, multiplied by the number of tasks each processor can
simultaneously execute, TASKS_PER_PE. In this case, |nT;| = TASKS_PER_PE* |PE|.
In practice, as previously mentioned, each task communicates with few others tasks,
resulting in small execution time.

The premap method and the LEC-DN were integrated into the Mapper Actor, which
executes the mapping process according to the diagram illustrated in Figure 4. When
a task ¢; is requested to be mapped, the Mapper Actor initially checks if there is some
available PE in the system. If there is no available PE, the task ¢; is scheduled to
be mapped later. The schedule mechanism is out of the scope of this work. In the
other case, the flow proceeds to the next step. The next step verifies if the target task
is already pre-mapped. In an affirmative case, the task is allocated to the assigned
PE; otherwise, the LEC-DN mapping heuristic is executed. The LEC-DN executes and

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 3, Article 75, Publication date: March 2013.

Power-Aware Dynamic Mapping Heuristics for NoC-Based MPSoCs 75:15

Request task t;

No X
available resource

in the system ?

Y

Task tjis
premapped onto a
PE?

Schedule the task Yes
to be mapped later

Y
Map tionto the PE
where it is
premmaped

Execute LEC-DN

y

Map tionto the PE
pichosen by
LEC-DN

Call PREMAP
- —
method

Fig. 4. Integration of the premap and LEC-DN into the Mapper Actor.

returns the PE p; where the task ¢; should be mapped. After this, it checks if p; has just
one task, which means that it contains just task ¢;. If it is true, the premap method is
called to find out the tasks communicating with #;, which may be pre-mapped onto p;
and the flow is finished.

5. RESULTS

This section illustrates the use of the multi-layer model-based approach to evaluate
different system configurations.

—Application layer. Six applications were modeled: (i) VOPD (Video Object Plan
Decoder), with 12 application blocks, transmitting 30 fps [Milojetic et al. 2009];
(il)) MWD (Multi-Window Display) with 12 application blocks [Marcon et al. 2008];
(iii) Automotive application, with 10 application blocks [Maatta et al. 2008]; (iv) Cir-
cuit Application, a synthetic application with 4 application blocks; (v) Image Segmen-
tation, with 6 application blocks; (vi) MPEG4 decoder, with 12 application blocks and
transmitting 30 fps [Milojetic et al. 2009].

—Mapping layer. Three mono-task dynamic heuristics: NN, DN, LEC-DN; four multi-
task heuristic: NN (multi-task), CNN (Communication-aware Nearest Neighbor)
[Singh et al. 2010], PNN (Packing-based Nearest Neighbor) [Singh et al. 2010] and
the proposed Premap-DN. For the multi-task heuristics, the number of tasks per PE
varies among 3 to 5.

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 3, Article 75, Publication date: March 2013.

75:16 L. Ost et al.

—Platform layer. The set of fixed platform parameters are 2D-mesh topology, XY rout-
ing algorithm, 32-bit flit size, packets with 128 flits and handshake control flow. The
NoC power model was calibrated using X-FAB XCMOS (extended CMOS) 180 nm 1.8
V process, adopting clock gating and a 250 MHz clock frequency. The design space
exploration varied only the NoC dimensions. It would be also possible to vary the
buffer depth, the routing algorithm, and the packet size, as explored in Ost et al.
[2009, 2010]. The platform used to evaluate the mapping heuristics is configured as
follows: 7 x 6 (41 general PEs and one manager PE) for mono-task mapping and 3 x 5
(14 general PEs and one manager PE) for multi-task mapping.

The adopted applications were chosen since several authors in the NoC research
field employ them as benchmarks due to their characteristics. For instance, the MPEG4
application contains as a relevant feature a high degree of connections: 2 of the 12 tasks
are connected to upto 7 other tasks. The VOPD application presents smaller inter-task
dependency when compared to MPEG4. The Automotive and the Segmentation Image
applications present several parallel communications. Circuit and MWD present a
dataflow behavior. These applications are grouped in four scenarios, with applications
executing simultaneously for one second, allowing at least one application iteration
(e.g., one video decoding) of each application.

—Scenario A. 30 tasks: MPEG4, VOPD, and Image Segmentation.
—Scenario B. 40 tasks: MPEG4, VOPD, MWD and Circuit.

—Scenario C. 34 tasks: MPEG4, MWD, Image Segmentation and Circuit.
—Scenario D. 38 tasks: MPEG4, VOPD, Automotive and Circuit.

5.1. Communication Energy Consumption Evaluation

Table II presents the communication energy consumption in the NoC (routers and
links), with the gain w.r.t the NN heuristic. The first column of Table II presents the
maximum number of tasks that each processor may receive. The single and multi-task
NN mapping heuristic is used as reference.

The first analysis concerns the advantage of the multi-task mapping to reduce the
communication energy consumption. As expected, the multi-task mapping reduces
the communication energy consumption compared to the single-task mapping, due to
the fact that the number of communications (messages exchanged) through the NoC
decreases. For instance, comparing the single-task NN to the multi-task implementa-
tion (first column of Table II), the observed reduction is on average 39.5%, 53.3%, and
53.7% for 3, 4, and 5 tasks per processor, respectively. The communication energy would
be zero if all tasks were mapped in the same PE. However, this is not possible, since
each PE may execute a limited set of tasks simultaneously, and this would penalize the
application execution time.

The second analysis concerns the single-task mapping (I task/PE). As can be ob-
served, the LEC-DN performs similarly to NN, with a reduction of 4.36% in scenario
B (with 40 tasks to be mapped in 41 PEs). The small difference observed between the
heuristics is explained by the choice of the initial tasks in virtual regions (as explained
in Section IV), reducing the resource sharing among tasks.

The third analysis concerns the multi-task mapping. As the MPSoC has 14 PEs to
execute tasks (NoC size equal to 3 x 5 in the multi-task evaluation), it is possible to
execute simultaneously up to 42, 56, and 60 tasks for 3, 4, and 5 tasks per proces-
sor, respectively. Observing the lines 3 tasks/PE in the table, the mapping heuristics
are stressed in this case due to small search space (number of PEs almost equal to
the number of tasks to be executed). On average, the proposed Premap-DN reduced
the energy consumption by 8.5%, reducing the energy consumption in the best case
by 16.9%. Increasing the number of tasks per processor reduces the advantages of

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 3, Article 75, Publication date: March 2013.

Power-Aware Dynamic Mapping Heuristics for NoC-Based MPSoCs 75:17

Table II. Evaluation of the Communication Energy consumption (nJ) and the Gain/Loss (%) when Compared to
the NN Heuristic

SCENARIO A
HEURISTIC NN DN LEC-DN CNN PNN PREMAP-DN
1 task/PE 17,255 | 19,279 | —11.37% | 16,993 1.52% - - -
3 tasks/PE 9,490 - - 9,233 2.71% | 9,186 2.711% | 8,855 | 6.69%
4 tasks/PE 8,273 - - 9,219 | —11.43% | 9,141 | —11.43% | 7,847 | 5.15%
5 tasks/PE 8,155 - - 8,837 | —-8.36% | 8,758 | —8.36% | 8,155 | 0.00%
SCENARIO B
HEURISTIC NN DN LEC-DN CNN PNN PREMAP-DN

1 task/PE 16,864 | 16,129 4.36% | 16,129 4.36% - -
3 tasks/PE 9,717 - - 8,527 12.25% | 10,868 | —11.85% | 8,074 | 16.91%

4 tasks/PE 7,030 - - 7,868 | —11.92% | 7,727 | -991% | 6,881 | 2.12%
5 tasks/PE 7,282 - - 7,498 | —-297% | 17,730 | —6.15% | 7,126 | 2.14%
SCENARIO C
HEURISTIC NN DN LEC-DN CNN PNN PREMAP-DN

1 task/PE 11,885 | 12,640 | —6.35% | 12,010 | —1.05% ; - ;
3 tasks/PE 8,466 - - 7,627 9,91% | 17,941 6.20% | 17,654 | 9.59%

4 tasks/PE 6,647 - - 6,772 | —-1,88% | 6,475 2.59% | 6,475 | 2.59%
5 tasks/PE 6,121 - - 6,324 | —3,32% | 5,965 2.55% | 5,965 | 2.55%
SCENARIO D
HEURISTIC | NN DN | LEC-DN CNN PNN PREMAP-DN

1 task/PE 17,553 | 16,797 4.31% | 17,996 | —2.52% - - -

3 tasks/PE | 10,215 - - 11,304 | —10.66% | 8,709 | 14.74% | 10,166 | 0.48%
4 tasks/PE 7,245 - - 8,621 | —18.99% | 8,389 | —15.79% | 7,204 | 0.57%
5 tasks/PE 7,635 - - 8,320 | —-8.97% | 7,991 | —4.66% | 7,387 | 3.25%

Premap-DN, since the search space increases and simpler heuristics in this case may
also produce good mapping solutions. Note that in all cases, the Premap-DN is similar
or outperforms NN. Different behavior is observed with heuristics CNN/PNN, which
present worse results than NN in most cases. The reason CNN presents worse results
is the cost function of maping new tasks, which requires empty PEs or PEs with tasks
belonging to the same application. The worst results observed with the heuristic PNN
come from the packing strategy and the corresponding search method.

Therefore, the proposed Premap-DN effectively reduces the communication energy,
compared to other state-of-the-art heuristics. It is important to highlight that the
Premap-DN presents the higher communication energy consumption reduction when
the number of available resources is small (e.g., up to 3 tasks/PE), due to the proposed
resource reservation strategy.

5.2. Latency Evaluation

Latency is an important metric related to the mapping heuristics. A non-optimized
mapping may increase the latency and energy consumption due to distance between
tasks and to the congestion induced inside the NoC.

As in the communication energy consumption evaluation, the multi-task mapping
also reduces the latency when compared to the single-task mapping. In scenarios A
and C, the latency reduction is superior by 20% for 4 and 5 tasks per processor.

The obtained latency results were similar for all evaluated scenarios and heuristics.
Only PNN and the proposed Premap-DN achieved latency reduction (average and
accumulated) superior to 1% when compared to NN. For the Premap-DN, in scenario
A the latency reduction w.r.t NN was 4.7% and 4.5% for 3 and 4 tasks/PE, respectively,

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 3, Article 75, Publication date: March 2013.

75:18 L. Ost et al.

Table IIl. Latency in Clock Cycles for the Premap-DN Heuristic for the 4 Simulated Scenarios where

Scenario A Scenario B Scenario B Scenario D
PREMAP-DN Av. L. Ac. L. Av. L. Ac. L. Av. L. Ac. L. Av. L. Ac. L.
3 Task/PE 4,124 222,734 3,239 171,712 3,109 183,485 2,914 177,780
4 Task /PE 3,857 208,308 3,211 170,223 2,826 166,785 2,866 174,847
5 Task /PE 3,863 208,644 3,215 170,445 2,656 156,749 2,863 174,668

Note: Av. L. means Average Latency, Ac. L. Accumulated Latency.

ACDC
StripeM
IQuant

ARM

StripeM
IQuant

NN PNN) Premap-DN

RUN |v_uPsamp

Fig.5. Multi-task mapping in the 3x5 MPSoC, considering up to 3 tasks/PE executing simultaneously. Blue:
circuit application; Yellow: MPEG4; White: VOPD; Gray: MWD. The center PE is the manager processor,
which executes the Mapper Actor.

and in scenarios B and D the reduction was 1.9% and 1.4%, respectively, for 3 tasks/PE.
Such latency reduction is converted using less power consumption when Premap-DN
is employed, since it uses as cost function the communication energy involved in the
data transfer/reception between tasks, during the mapping process. For the PNN, in
scenario D (3 tasks per processor), the latency reduction was 2.9% (note that this latency
reduction induced a reduction in the communication energy consumption). Table III
illustrates the latency values for the Premap-DN heuristic.

This result was expected, since all heuristics minimize the number of hops between
tasks. However, it demonstrates clearly how important is to consider not only the
number of hops in the mapping heuristic, but also the communication energy, as in the
proposed Premap-DN, to obtain optimized mappings.

5.3. Application Distribution Evaluation

The mapping quality can also be evaluated by the application distribution, as illus-
trated in Figure 5, corresponding to Scenario B with 3 tasks/PE.

In this scenario, PEs may receive more than 3 tasks, due to the dynamic behavior
of the mapping. When a given task finishes it execution, the PE may receive a new
task. As shown in Figure 5, Premap-DN groups the communicating tasks belonging to
each application in continuous regions, resulting in smaller communication energy and
latency compared to other heuristics. It is also important to show that the Premap-DN
reduces the number of used PEs, allocating 8 PEs instead of 9. The final mapping of
heuristics CNN, NN, and PNN spread some tasks of MPEG4 and MWD applications,
reducing the performance of such applications.

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 3, Article 75, Publication date: March 2013.

Power-Aware Dynamic Mapping Heuristics for NoC-Based MPSoCs

Table IV. Energy Consumption (EC, in nJ) and Execution Time (ET, in clock cycles)

75:19

Scenario A Scenario B Scenario C Scenario D
H CNN Premap-DN CNN Premap-DN CNN Premap-DN CNN Premap-DN
EC| 9,179,970 | 9,221,348 | 9,431,786 | 8,848,600 | 7,269,261 | 7,326,460 |12,640,634| 8,803,531
ET | 18,720,437 | 18,044,285 | 16,194,666 | 16,132,761 | 18,772,808 | 18,032,187 | 19,925,839 | 16,264,489

Note: Using CNN and Premap-DN dynamic mapping heuristics considering Scenarios A, B, C, and D, with
up to three tasks per processor.

5.4. Validation of the Premap-DN in an RTL NoC-based MPSoC Platform

The proposed Premap-DN and CNN heuristics were integrated and validated in a ho-
mogeneous NoC-based MPSoC, described in synthesizable VHDL [Carara et al. 2009],
named HeMPS. Both Premap-DN and the CNN were evaluated considering two per-
formance metrics: energy consumption and execution time [Mandelli et al. 2011b].

The same 4 scenarios were used to evaluate the mapping heuristics. The multi-layer
model-based approach has a module that generates C code from the UML modeled
applications to the HeMPS platform [Ost et al. 2011], which uses an MPI-like API
for message passing. Due to the higher execution time of the RTL simulation, the
four scenarios were simulated for less than 0.2 seconds. Table IV shows the energy
consumption (nJ) and the execution time of both CNN and Premap-DN.

The results reported in Table IV show that in scenarios A and C, CNN presents a
small reduction in the energy consumption when compared to Premap-DN, 0.45% and
0.79%, respectively. In scenarios B and D, the Premap-DN presents a reduction in the
energy consumption when compared to CNN, equal to 6.18% and 30.36% respectively.
The total execution time is reduced when using Premap-DN in all scenarios, with a
higher reduction in scenario D, 18.37%.

Scenario D penalizes the CNN heuristic due to the (i) number of tasks, 38, which
restrains the search space and (ii) the automotive application having tasks with long
execution times, sending and receiving a high volume of data. As mentioned previously,
CNN heuristic maps new tasks in empty PEs or PEs with tasks belonging to the same
application. As some tasks take longer to finish, this decreases the number of available
PEs that can receive other application tasks when the CNN heuristic is employed.
Thus, if there is no available PE, the CNN heuristic increases the execution time of
a given application, since new application tasks will only be mapped when a PE is
released.

The two last evaluations are concerned with the speedup provided by the abstract
model and the accuracy of the power model. The simulation of scenario A (3 tasks/PE)
for one second in the HeMPS platform (NoC modeled in VHDL and PEs modeled in
cycle-accurate SystemC) took 7 hours, while the same scenario using our unified-model
took on average 30 minutes (Xeon 64 bits, quadcore, 6 GB RAM). Considering that real
embedded applications may run for seconds or minutes, we claim that the adoption
of the present approach increases the evaluation speed, since different heuristics and
application scenarios can be quickly explored. As the power model is the same for both
platforms, abstract and RTL, the difference observed is less than 2%, in this case.

6. CONCLUSIONS AND FUTURE WORK

This paper presented a unified model-based framework, which employs high-level and
accurate NoC models that enable rapid design space exploration. Beyond the intrin-
sic benefits of the modeling approach, this framework makes it possible to assess
gains obtained in term of performance and power consumption resulting from the
use of dynamic mapping techniques in MPSoC platforms. The unified model-based
framework was used to comparatively evaluate an original mapping heuristic that

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 3, Article 75, Publication date: March 2013.

75:20 L. Ost et al.

uses a pre-mapping stage to cluster multiple tasks before mapping clusters to pro-
cessing elements. Results show that there exists a significant optimization potential
in communication-related energy consumption that may be exploited by a range of
dynamic task mapping techniques. Such techniques are of utmost importance in the
frame of future multi-processor platform forecasted to exhibit hundreds of processors
in the short term. In this context, our current work aims at analyzing the long-term
effects of mapping decisions made in such systems, in a short time.

This work improved the quality of the dynamic mapping for NoC-based MPSoCs
proposing a new heuristic with the following features: (i) multi-task mapping; (ii) in-
clusion of the cost of the already mapped tasks connected to the task being mapped,
while previous approaches consider only master-slave connections; (iii) using the com-
munication energy as cost function, not only the hop number. This paper also compares
multi-task mapping heuristics with single-task ones in NoC-based MPSoCs. The met-
rics evaluated are end-to-end latency and communication energy consumption. Real
and synthetic applications were evaluated. The results demonstrate that the multi-task
approach reduces the energy consumption, since the approach reduces the distance
among the tasks.

Future works include (i) evaluating the total MPSoC energy consumption, includ-
ing the PEs consumption, (ii) evaluating strategies to decentralize the mapping, (iii)
hotspots evaluation employing the rate-based power model, and (iv) the proposition of
decentralized mapping, evaluating the trade-off of controlling the decentralized method
per regions or applications.

REFERENCES

ALMEIDA, G. M., SassaTiELLI, G., BENoit, P., SAINT-JEAN, N., VARYANI, S., TORRES, L., AND RoBERT, M. 2009. An
adaptive message passing MPSoC framework. International Journal of Reconfigurable Computing.
CARARA, E., OLIVEIRA, R., CaLAzANS, N., AND MoRraAEs, F. 2009. HeMPS - A framework for NoC-based MPSoC

generation. In Proceedings of the International Symposium on Circuits and Systems (ISCAS). 1345-1348.

CarvaLHO, E., MarcoN, C., CaLAzaNs, N., AND Morags, F. 2009. Evaluation of static and dynamic task mapping
algorithms in NoC-based MPSoCs. In Proceedings of the International Conference on System-on-chip
(SoC). 87-90.

CHovu, C-L. AND MarcULEScT, R. 2007. Incremental run-time application mapping for homogeneous NoCs with
multiple voltage Levels. In Proceedings of the International Conference on Hardware / Software Codesign
and System Synthesis (CODES+ISSS). 161-166.

CHou, C-L. AND MARCULESCU, R. 2008. User-aware dynamic task allocation in networks-on-chip. In Proceedings
of the Design, Automation and Test in Europe (DATE). 1232-1237.

Caou, C-L. anpD Marcurescy, R. 2010. Run-time task allocation considering user behavior in embedded
multiprocessor networks-on-chip. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 29, 1, 78-91.

Faruque, M. A., Krist, R., AND HENKEL, J. 2008. ADAM: Run-time agent-based distributed application mapping
for on-chip communication. In Proceedings of the Design Automation Conference(DAC). 760-765.

HA, S. 2008. Model-based programming environment of embedded software for MPSoC. In Proceedings of
the Asia and South Pacific Design Automation Conference (ASP-DAC). 330-335.

Hovzenspeigs, P. K. F., HURINK, J. L., KUPER, J., AND Smit, G. J. M. 2008. Run-time spatial mapping of streaming
applications to a heterogeneous multi-processor system-on-chip (MPSoC). In Proceedings of the Design,
Automation and Test in Europe (DATE). 212-2117.

HosseNnaBapy, M., AND NUNEz-YANES, J. 2009. Run-time resource management in fault-tolerant network on
reconfigurable chips. In Proceedings of the Field Programmable Logic and Applications (FPL). 574-5717.

Hu, J., aND MarcuLEscy, R. 2005. Energy- and performance-aware mapping for regular NoC architectures.
IEEE Transaction on Computer-Aided Design of Integrated Circuits and Systems 24, 4, 551-562.

InDRUSIAK, L. S., THUY, A., AND GLESNER, M. 2007. Executable system-level specification models containing
UML-based behavioral patterns. In Proceedings of the Design, Automation and Test in Europe (DATE),
301-306.

INDRUSIAK, L. S., Ost, L., MoraEgs, F. G., MaATTA, S., NURMI, J., MOLLER, L., AND GLESNER, M. 2010. Evaluating
the impact of communication latency on applications running over on-chip multiprocessing platforms:

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 3, Article 75, Publication date: March 2013.

Power-Aware Dynamic Mapping Heuristics for NoC-Based MPSoCs 75:21

A layered approach. In Proceedings of the International Conference on Industrial Informatics (INDIN).
148-153.

INDRUSIAK, L. S., AND SANTOS, O. 2011. Fast and Accurate Transaction-Level Model of a Wormhole Network-on-
Chip with Priority Preemptive Virtual Channel Arbitration. In Design, Automation and Test in Europe
(DATE). 1-6.

JALIER, C., LATTARD, D., JERRAYA, A. A., SASSATELLLI, G., BENOIT, P., AND ToRRES, L. 2010. Heterogeneous versus
homogeneous MPSoC approaches for a mobile LTE modem. In Proceedings of the Design, Automation
and Test in Europe (DATE). 184-189.

Kaung, A., L1, B, Pen, L., anp Samapr, K. 2009. ORION 2.0: A fast and accurate NoC power and area model
for early-stage design space exploration. In Proceedings of the Design, Automation and Test in Europe
(DATE). 423-428.

Kancgas, T., Kurkara, P., Orsita, H., SAaLmINEN, E., HANNIKAINEN, M., HAMALAINEN, T., RuHiMAKi, J., AND
KuusiLinng, K. 2006. UML-based multiprocessor SoC design framework. ACM Transactions on Em-
bedded Computing Systems 5, 2, 281-320.

LEE, E. A. AND NEUENDORFFER, S. 2004. Actor-oriented models for codesign: Balancing re-use and performance.
Formal Methods and Models for System Design. Kluwer Academic Publishers, Norwell, MA. 33-56.
LEE, H. G., Ocras, U. Y., MarcuLEscy, R., AND CHANG, N. 2006. Design space exploration and prototyping for

on-chip multimedia applications. In Proceedings of the Design Automation Conference (DAC). 1-6.

LEE S. E. AND BAGHERZADEH, N. 2009. A high level power model for Network-on-Chip (NoC) router. Computers
& Electrical Engineering 35, 6, 837-845.

LI, K. 2010. A random-walk-based dynamic tree evolution algorithm with exponential speed of convergence
to optimality on regular networks. In Proceedings of the Conference Frontier of Computer Science and
Technology (FCST). 80-85.

Ly, S., Ly, C., anp Hstung., P. 2010. Congestion- and energy-aware run-time mapping for tile-based network-
on-chip architecture. In Proceedings of the Frontier Computing, Theory, Technologies and Applications
(FCTTA), 300-305.

MAATTA, S., INDRUSIAK, L. S., Ost, L., MOLLER, L., NURMI, J., GLESNER, M., AND MoRAES, F. 2008. Validation
of executable application models mapped onto network-on-chip platforms. In Proceedings of the IEEE
Symposium on Industrial Embedded Systems (SIES). 118-125.

MAATTA, S., INDRUSIAK, L. S., Ost, L., MOLLER, L., NURMI, J., GLESNER, M., AND MoRAES, F. 2009. Characterising
embedded applications using a UML profile. In Proceedings of the International Conference on System-
on-Chip (SoC). 172-175.

MAATTA, S., INDRUSIAK, L. S., Osrt, L., MOLLER, L., NUrMI, J., GLESNER, M., AND MoraEs, F. 2010. Joint valida-
tion of application models and multi-abstraction network-on-chip platforms. International Journal of
Embedded and Real-Time Communication Systems (IJERTCS) 1, 1, 86-101.

ManpeLLI, M., Ost, L., CARARA, E., GuiNDANI, G., GouvEa, T., MEDEIROS, G., AND MoRAES, F. 2011. Energy-
aware dynamic task mapping for NoC-based MPSoCs. In Proceedings of the International Symposium
on Circuits and Systems (ISCAS). 1676-1679.

ManpEeLLI, M., AMORY, A., OsT, L., AND MoraEs, F. 2011b. Multi-task dynamic mapping onto NoC-based MP-
SoCs. In Proceedings of the Symposium on Integrated Circuits and Systems Design (SBCCI). 191-196.

Magrcon, C., Moreno, E. I., Carazans, N. L. V., anD Morags, F. 2008. Comparison of network-on-chip mapping
algorithms targeting low energy consumption. IET Computers and Digital Techniques 2, 6, 471-482.

MarcuLescy, R., Ocras, U., Pen, L., JERGER, N., AND HoskoTE, Y. 2009. Out-standing research problems in NoC
design: System, microarchitecture, and circuit perspectives. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 28, 1, 3-21.

Mivosevic, D., MoNTPERRUS, L., AND VERKEST, D. 2009. Power dissipation of the network-on-chip in multi-
processor system-on-chip dedicated for video coding applications. Journal of Signal Processing Systems
57,2 ,139-153.

MiscHKALLA, F., HE, D, AND MUELLER, W. 2010. Closing the gap between UML-based modeling, simulation and
synthesis of combined HW/SW systems. In Proceedings of the Design, Automation and Test in Europe
(DATE’). 1201-1206.

MorNos, A., AMBROSE, J. A., NELSON, A., STEFAN, R., CoToFaNa, S., AND GoossEins, K. A 2010. Composable, energy-
managed, real-time MPSOC platform. In Proceedings of the Optimization of Electrical and Electronic
Equipment (OPTIM). 870-876.

NcouanGa, A., SassaterLul, G., Torrgs, L., GiL, T., SoARES, A., AND SusSIN, A. 2006. A contextual re-sources
use: proof of concept through the APACHES platform. In Proceedings of the Design and Diagnostics of
Electronic Circuits and Systems (DDECS). 42—47.

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 3, Article 75, Publication date: March 2013.

75:22 L. Ost et al.

Osr, L., INDRUSIAK, L. S., Gumnpant, G., REiNeBrecHT, C., Raupp, T., aND F. MoraEs. 2009. A high abstraction, high
accuracy power estimation model for networks-on-chip. In Proceedings of the Symposium on Integrated
Circuits and Systems Design (SBCCI). 193-198.

Osr, L., Guinpanti, G., INDRUSIAK, L. S., MAATTA, S., AND Morags, F. 2011. Exploring NoC-based MPSoC design
space with power estimation models. IEEE Design and Test of Computers 28, 2, 16—29.

Oma. 2011. Object Management Group: UML Profile for MARTE: Modeling and Analysis of Real-Time
Embedded Systems.http:/ /www.omg.org/spec/ MARTE/1.0/ PDF/.

PiMENTEL, A. D., THoMPSON, M., PoLSTRA, S., AND ERBas, C. 2008. Calibration of abstract performance models
for system-level design space exploration. J. Sig. Proc. Syst. 50, 2, 99-114.

SCHRANZHOFER, A., CHEN, dJ.-J., AND THIELE, L. 2010. Dynamic power-aware mapping of applications onto
heterogeneous MPSoC platforms. IEEE Trans. Indust. Info. 6, 4, 692-707.

Swir, L. T., HURINK, J. L., AND SumiT, G. J. M. 2005. Run-time mapping of applications to a heterogeneous SoC.
In Proceedings of the International Symposium on System-on-Chip (SoC). 78-81.

SiNGH, A. K., SRIKANTHAN, T., KUMAR, A., AND Jicang, W. 2010. Communication-aware heuristics for run-time
task mapping on NoC-based MPSoC platforms. J. Syst. Archite. 56, 7, 242-255.

WEICHSLGARTNER, A., WILDERMANN, S., AND TEICH, J. 2011. Dynamic decentralized mapping of tree-structured
applications on NoC architectures. In Proceedings of the Networks on Chip (NoC). 201-209.

WILDERMANN, S., ZIERMANN, T., AND TEIcH, J. 2009. Run time mapping of adaptive applications onto homoge-
neous NoC-based reconfigurable architectures. In Proceedings of the Field-Programmable Technology
(FPT). 514-517.

Ye, T., Benmvi, L., anp DeE MicreLL, G. 2002. Analysis of power consumption on switch fabrics in network
routers. In Proceedings of the Design Automation and Conference (DAC). 524-529.

Received March 2011; revised August, October 2011; accepted December 2011

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 3, Article 75, Publication date: March 2013.

