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Abstract: Dynamic reconfiguration provides attractive features such as hardware flexibility and 
adaptability. Unfortunately, the lack of programming tools to manage it has limited its use in 
current SoC. This paper presents a method to abstract dynamic reconfiguration management at 
design time. Dynamic hardware multiplexing is a generic principle based on a scheduler 
dedicated to the management of reconfigurable resources at run-time. Formal background, 
implementation, simulation results and validations are exposed to illustrate the contribution of 
this study. 
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1 Introduction 

The explosion of standards in 3G and more generally in 
wireless systems goes along with a widening spectrum of 
applications that portable devices have to support. 

Designing a chip for every single device tends to become 
less feasible (SoC complexity, lifecycle of multimedia 
product, increasing non-recurring engineering costs for 
deep-submicron technologies). A considered way to 
overcome these problems relies on flexibility, i.e., reusing 
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the same chip for a range of products, applications, or even 
several generations of the same product. This approach 
allows sharing the non-recurring engineering costs, and the 
design stage comes down to a software customisation phase. 
Reconfigurable architectures provide this flexibility at the 
price of a silicon area overhead highly dependent on the 
level of flexibility. 

1.1 Related works 

Recently, FPGA cores integration has become a reality  
in embedded systems. Several companies as eASIC 
(http://www.easic.com/) and M2000 (http://www.m2000.fr/) 
offer dense customisable FPGA macros that can be used  
as configurable logic associated to a general purpose 
processor. Using reconfigurable logic provides an increased 
flexibility since it then becomes feasible to modify the 
configuration after the chip fabrication, to upgrade the 
device during its life cycle, at the price of a reduced  
silicon density. Dynamic reconfiguration is a third level of 
flexibility and consists in modifying the configuration of the 
device at run-time. For typical reconfigurable architectures 
such as FPGA, run-time reconfiguration is generally costly 
as it requires a large amount of data. To overcome this 
drawback, coarse grain reconfigurable architectures have 
been studied and developed (Table 1) for the past 15 years. 

More recently, we have observed a growing interest in 
dynamic reconfiguration management techniques in the 
literature. Table 2 exposes a synthetic overview of different 
dynamic configuration management techniques. In the 
literature, most of the approaches target fine grain partially 
reconfigurable devices [XC6200 (Shirazi et al., 1998; Burns 

et al., 1997; Robinson and Lysaght, 1999), Virtex-II Pro 
(Curd, 2003), Virtex II (Blodget et al., 2003; Carvahlo et al., 
2004; Huebner et al., 2004; Ullman et al., 2004) or  
Altera-like architectures (Danne and Platzner, 2005). Some 
of the proposed schemes provide a support for the relocation 
of tasks (Burns et al., 1997; Robinson and Lysaght, 1999; 
Carvahlo et al., 2004; Danne and Platzner, 2005; Huebner et 
al., 2004) where they are handled as a fixed-size or  
variable-size rectangle that can be placed on the FPGA 
resource. Each method may differ in the placement and 
scheduling, aiming at optimising cost functions. In the first 
methods (Shirazi et al., 1998; Burns et al., 1997), the 
scheduling was performed statically by heuristics and in 
Robinson and Lysaght (1999), Carvahlo et al. (2004), 
Huebner et al. (2004) and Ullman et al. (2004), this is 
processed dynamically. A configuration controller is then 
generally supposed to execute tasks as a loader in an 
operating system, according to a calculated scheduling. This 
one can be directly implemented in the reconfigurable logic 
on the FPGA (Curd, 2003; Blodget et al., 2003; Carvahlo et 
al., 2004; Huebner et al., 2004; Ullman et al., 2004).  
Real-time scheduling of hardware tasks on FPGA has been 
studied in Danne and Platzner (2005) and in Huebner et al. 
(2004), a dynamic placement of tasks is performed thanks to 
a NoC architecture. In Ullman et al. (2004), an adaptive 
priority scheme allows a partial reconfiguration of 
relocatable tasks. An interesting solution for multi-tasking 
was also proposed in the SCORE project (Caspi et al., 
2000), a multi-threaded computational model and 
architecture that rely on a scalable dynamic scheduling. The 
RAW architecture (Taylor et al., 2002) allows dynamic 
switching of tasks but with a compiled programme. 

Table 1 Examples of dynamically reconfigurable architectures 

Name Grain Type Comment Ref. 

AT40K Fine Stand-alone Cell reconfig. Atmel Corporation 
Xilinx Hybrid Stand-alone RSoC Partial reconfig. Xilinx Corporation 
SCORE Fine Stand-alone Mesh-based Caspi et al. (2000) 
RAW Coarse Stand-alone Switch-box Taylor et al. (2002) 
Piperench Coarse Stand-alone Pipeline Goldstein et al. (200) 
MorphoSys Coarse Co-processor Mesh-based Singh et al. (2000) 
Systolic ring Coarse Co-processor Circular pipeline Sassatelli et al. (2002) 

Table 2 Examples of dynamic reconfiguration management techniques 

Name Sched. Reloc. Replic. Config. manager Location Ref 

XC6200 Static No No No - Shirazi et al. (1998) 
XC6200 Static Yes No No - Burns et al. (1997) 
XC6200 Dyn. Yes No No - Robinson and Lysaght (1999) 
V2-Pro Static No No SW PowerPC FPGA Curd (2003) 
V2 Static No No SW µBlaze FPGA Blodget et al. (2003) 
SCORE Static No No HW Dedicated module Caspi et al. (2000) 
RAW Static No No Compiler - Taylor et al. (2002) 



P. Benoit et al.  

1.2 Our approach 

Dynamic reconfiguration management techniques become 
mandatory in a SoC context where next generation circuits 
will have to be able to handle several applications 
simultaneously in an adaptive manner. In the literature, 
most of the approaches target fine grain partially 
reconfigurable circuits. But a major drawback of  
fine grain architectures is the latency introduced by  
their reconfiguration time. Coarse grain reconfigurable 
architectures allow to significantly reduce the configuration 
time, then allowing an increased reactivity to dynamic 
environments. For these kinds of architectures, only 
compiler support has been proposed to manage the dynamic 
reconfiguration. Our purpose is to explore a dynamic 
reconfiguration technique based on a run-time controller 
support allowing an adaptive placement and scheduling of 
unpredictable task scenarios. 

The objective of this paper is then to present a technique 
to handle dynamic configuration with the hardware, 
allowing the application designer to abstract dynamic 
reconfiguration management constraints. This technique is 
based on a run-time scheduler implementing an algorithm 
called dynamic hardware multiplexing (DHM). Thanks to 
this approach, the configuration of each application is 
generated at design time. At run-time, the scheduler  
takes care of the placement and modifies the original 
configuration in order to adapt the computational resources 
to handle several applications or to implement different 
qualities of service. The efficiency of our approach is 
characterised by two-metrics showing the increase in the 
resource usage and multi-application management. The 
suggested method has been designed and validated on a 
coarse grain reconfigurable architecture. 

This paper is organised as follows: Section 2 presents a 
context analysis to derive the formal framework and 
characterisation metrics; Section 3 describes the dynamic 
HW multiplexing algorithms; Section 4 illustrates the 
implementation of DHM carried out on a coarse grain 
reconfigurable architecture; simulation results are exposed 
in Section 5 and HW/SW DHM schedulers validations are 
discussed in Section 6; finally, conclusions and perspectives 
are drawn. 

2 Context analysis and formalisation 

Self-adaptability represents a real challenge in the SoC 
context. One promising approach to achieve it consists in 
using a reconfigurable co-processing unit as illustrated in 
Figure 1. 

To achieve this objective of adaptability, it is  
necessary to provide a middleware layer to allow a smart 
configuration management (the ‘configuration manager’ in 
the figure). This unit must be able to communicate relevant 
information to the operating system so that it allows a local 
and a global supervision of the co-processor configurations. 
In this section, we develop a formal framework for this 

issue, in order to define a solution to multi-application 
handling through dynamic reconfiguration. 

Figure 1 Simplified overview of the targeted SoC 
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2.1 Execution scenario 

We assume a set θ of random tasks potentially assignable to 
the reconfigurable co-processor as a hardware task (which 
assumes that this task is time-consuming in a software 
fashion implementation). The cardinal of this set represents 
the number of requests from the OS. We assume the system 
is running during n cycles (from 0 to n). Each task Tk ∈ θ is 
executed during nk cycles (nk is a non-deterministic variable, 
e.g., depends on how long the user wants to run the 
application). At each cycle of [0, n], the co-processor is 
running a set of tasks Γ ⊆ θ. At cycle n, the co-processor 
has handled card ε tasks where ε is the set of executed tasks  
(ε ⊆ θ). 

The reconfigurable co-processor is modelled as a set of 
homogenous processing elements P (further along, our 
model will consider the memory bandwidth between the co-
processor and the memory as a set of memory channels C). 
Each task Tk is represented by a set of processing elements 
Pk (and further along by a set of memory channels Ck). 
Figure 2 illustrates three possible scenarios (a, b, c) with 
four tasks, θ = {Task 1, Task 2, Task 3, Task 4}, and with 
different starting points. The co-processor has eight 
processing elements as depicted in Figure 1. The time is 
represented on the X-axis in Figure 2, and the resource 
utilisation (PE) on the Y-axis. In scenario (a), all requests 
are handled by the reconfigurable co-processor; there is no 
particular observation in this example: each new task starts 
after the completion of the previous task. In scenario (b), 
Task 3 is started before the completion of Task 1. There are 
three PE required and three are available. The task is 
potentially assignable but this requires a relocation of the 
initial configuration. In scenario (c), Task 2 is started before 
the completion of Task 1. However, Task 2 and Task 1 
cannot be executed simultaneously as they require more 
than the total of available PE (the area above P3.1). This 
entails that the system must be able to stall either the 
execution of Task 1 on the reconfigurable co-processor if 
Task 2 has a higher priority (pre-emption) and make it 
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possible to execute Task 2 or Task 1 alternatively on 
another resource of the system (the CPU, i.e.). 

Figure 2 Execution scenarios of task processing and  
co-processor utilisation 

 
(a) 

 
(b) 

 
(c) 

2.2 Task configuration management 

The management of the configurations depends on a set of 
conditions. From the previous observations, we define the 
three following lemmas: 

Lemma 1: A task Tk ∈ θ can be handled if the number of 
required resources is currently available i.e., card(Pk) ≤ 
card(P) – ΣTr∈Γ card(Pr) and card(Ck) ≤ card(C) – ΣTr∈Γ 
card(Cr). 

Lemma 2: A task Tk ∈ θ is allocated to the reconfigurable 
accelerator if Lemma 1 is verified and if the configurations 
of the running tasks are compatible with the configuration 
of Tk i.e., (ΣTr∈Γ Pr) ∩ Pk = ∅ and (ΣTr∈Γ Cr) ∩ Ck = ∅. 

Lemma 3: If Lemma 1 or Lemma 2 are not respected and if 
Tk ∈ θ has a higher priority than at least one of the running 
tasks, then this task is temporarily stalled for lemma 1 and 
lemma 2 analyses. If both are verified, the stalled task is 
permanently removed from the co-processor and migrated 
to another resource of the system (the CPU, i.e.). Or else, 

another task with lower priority is also temporary stalled 
and so on. This step is done until the compatibility is found; 
otherwise the OS chooses an alternative resource to execute 
Tk. 

The critical part of previous propositions is to determine 
a new configuration from the initial one, to fit the current 
state of the reconfigurable co-processor resources. This 
process is commonly named ‘relocation’ of a hardware task. 
This has been studied in the literature for FPGA but from 
our knowledge, never deeply explored for coarse grain 
reconfigurable architectures. In this case, the relocation 
process can be formalised as follows: if f(Ti) is the function 
implemented by Ti the function transform() must verify  
f(Tk) = f(transform(Tk)), In other words, transform() is a 
relocation process able to generate a new configuration  
{Pk, Ck}, functionally equivalent to the configuration of Tk. 
This function depends on the targeted architecture, i.e., the 
interconnection topology, the homogeneity of the PE, type 
of I/Os, memories, etc. 

The example exposed in Figure 3 illustrates this 
proposition. The coarse grain reconfigurable architecture (a) 
is a four PE structure. Each PE has the same reconfigurable 
functionality, i.e., each one can implement the same 
predefined set of arithmetic functions. Assuming that  
this reconfigurable architecture has to compute the  
following function: f(a, b) = (a + b) * (a – b), one possible 
configuration can be the one exposed in (b). But the same 
functionality can be also achieved with the configuration in 
(c). This functionally equivalent configuration is actually 
obtained with a modulo relocation process, i.e.: 

( ) ( ), ,( )%2 ,i j i j tf P f P +=  

where t is a translation of the functionality to the adjacent 
PE, and two because of the two parallel PE. 

The modulo-relocation process can be adapted to any 
architecture based on a torus or a ring topology. Anyway, 
this methodology can also be applied to any architecture 
with respect to its properties in terms of PE functionality, 
interconnection topology, I/Os… Moreover, as we will see 
in the next section, the ‘modulo relocation’ process can be 
used for other purposes, such as task duplication (TD), i.e., 
to increase the intrinsic performances. 

2.3 Characterisation metrics 

In order to evaluate the quality of the configuration 
management, it is necessary to define metrics. The  
multi-tasking efficiency (MTeff) computes the percentage of 
tasks handled by the reconfigurable co-processor compared 
to the number of OS requests: 

( )100
( )eff

cardMT
card

ε
θ

= ⋅  

This metric represents the task acceptance ratio and it is 
basically dependant on the system workload. 
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Figure 3 Coarse grain reconfigurable architecture example (a) and (b) (c) implementations of (a + b)*(a – b) 

 

Figure 4 Task scenario modelled with the proposed formalism 

 

 
The system workload is dependent on the load that each 
task of θ implies on a given architecture, during a given 
time. Thus, we define the metric WL as follows: 

( )
100

( )
k

k k
T

card P n

WL
ncard P

θ∈

⋅

= ⋅
∑

 

We define another metric, R, to represent the time usage 
ratio: 

100 k

k
T

n

R
n
ε∈= ⋅
∑

 

The processing efficiency (Peff) is defined to calculate  
the space and time utilisation percentage ratio of the  
co-processing resources: 

( ) ( )100
( )

k

eff k k
t

P card P n
n card P ε∈

= ⋅ ⋅
⋅ ∑  

Figure 4 depicts an example of a set of tasks  
θ = {T0, T1, T2, T3} handled by a reconfigurable architecture 
with P= {p0,0, p0,1, p1,0, p1,1, p2,0, p2,1}. This example shows 
that for this set of tasks, a multi-tasking efficiency of 75% is 
achieved with a 55% overall processing efficiency and 
relative Peff is 66% with a time usage ratio R = 83%  
(Figure 5). 
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Figure 5 Architecture characterisation with the proposed metrics 

 

3 Dynamic hardware multiplexing (DHM) 

DHM is the proposed approach to address the objective of 
system-on-chip adaptability with reconfigurable hardware. 
It is based on a dedicated application design flow and a 
reconfigurable system platform with a so-called dynamic 
hardware multiplexer. 

3.1 DHM design flow 

The proposed design flow is depicted in Figure 6. It is based 
on a two-phase process: the first step is performed at  
design-time and the second one at run-time. 

The application is represented as a task graph. A first 
analysis allows to partition the graph and to classify each 
task. The non-critical tasks are compiled as software tasks 
(SW). Each critical task (time/power consuming) is given a 
priority level. Then, they are both compiled as SW tasks and 
as HW configurations (configware or CW). A header is 
attached to each HW task: it contains information about the 
task priority level, the number of required operators, etc. 
The compiled SW tasks produce an object code, and the 
HW tasks a configuration bitstream. They are finally linked 
together in a unique executable which includes both object 
codes and configuration bitstreams. 

The task allocation is performed at run-time under OS 
control. A dedicated system call is used for this purpose: 
each time a task has been assigned to HW, the header is sent 
to the OS which communicates a co-processing request to 
the DHM unit: this one analyses the task header and 
compares the task requirements and the state of 
reconfigurable hardware (number of available operators, 
priorities of running tasks, etc.). The DHM unit takes the 
decision either to accept or reject the co-processing request. 
In the first case, the configuration bitstream is loaded into 

the reconfigurable co-processor, in the second one; the task 
object code is scheduled by the OS on the CPU. 

Figure 6 DHM design flow 

 

The DHM unit acts as a dedicated service of the OS for HW 
management. This service is detailed in the following 
section. 

3.2 DHM services: mapping analysis, relocation and 
replication 

The DHM unit is implemented as an OS service allowing an 
adaptive task mapping on a given reconfigurable 
architecture. It is composed of two procedures: the first one 
is dedicated to the mapping analysis and relocation 
(simultaneous multi-tasking mapping algorithm), and the 
second one to the replication (TD mapping algorithm). 

3.2.1 Mapping analysis and task relocation 

The first function of the DHM unit is to perform a mapping 
analysis regarding the co-processing (OsTaskRequest) 
request through the header. The OsTaskRequest is 
structured as follows: 

typedef struct OsTaskRequest { 

 On; 

 TaskId; 
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 Header; 

 * ConfigTaskAddress; 

}OsTaskRequest; 

The On field is a Boolean that indicates if the task starts or 
ends up. The TaskId is a number attributed by the OS to 
identify the task. The ConfigTaskAddress is a pointer to the 
configuration bitstream memory location. The Header field 
is defined as follows: 

typedef struct ConfigurationHeader { 

 nOp; 

 nChannels; 

 Topology[N]; 

 Priority; 

}ConfigurationHeader; 

This header allows to determine whether the task can be 
mapped. The number of required resources in terms of 
operators and memory channels (nOp for the number of 
processing units, card (Pi) as previously mentioned, and 
nChannels, the number of DMA channels required, 
card(Ci)) is first analysed in Proposition 1 (i.e., Lemma 1). 
Then, a topological compatibility test (Topology[N], or as 
previously mentioned {Pi, Ci}) is realised in Proposition 2 
(i.e., Lemma 2). If both propositions are true, the task  
Tk is directly allocated: the corresponding configuration 
bitstream is then loaded in the configuration memory 
without changes. If Proposition2 is not verified, the 
transform() function is executed to compute a new 
configuration with an equivalent functionality (as exposed 
in the previous section) until a compatible solution is  
found or all the equivalent configurations have been tested 
(TransformationIsPossible becomes false). Consequently, a 
map function is used to load the configuration and apply the 
required transformations on the topology. When a task 
needs more than the available resources or cannot be 
adapted to the current state of running tasks, tasks are sorted 
by priority levels and mapped accordingly. When a task has 
to be removed or when it cannot be handled by the  
co-processor, the DHM unit generates a CPU equivalent 
context (initial or current) and transmits it to the OS: the 
SW task is then executed by the CPU. 

3.2.2 Task replication 

Task replication has several advantages like increasing  
the processing efficiency (Peff) or minimising power 
consumption (if a computational task is duplicated, the 
operating frequency can be divided by 2 with the same 
performance): this is the role of the TD mapping function 
(Figure 8). The principle is quite simple and similar to the 
task relocation: after sorting the running tasks by priority 
levels, it tries to map a second instance of each task on the 
free resources. This process is executed each time the SMT 
mapping is executed and when a new task request is 
pending, a background routine suspends all duplicated tasks. 

Figure 7 Task mapping analysis and relocation process 

 1: process SmtMapping() 
2:  Γ←∅ 
3:  wait for OsTaskRequest  
4:   if OsTaskRequest.On then 
5: k ← OsTaskRequest.TaskId 
6:    Tk.Header ← OsTaskRequest.Header 
7:    if Proposition1 then 
8:     if Proposition2 then 
9:      ConfigBitStream ← OsTaskRequest→ConfigAddress 
10:     Map(Tk, ConfigBitStream) 
11:     Γ ← Γ ∪ Tk  
12:    else 
13:     do 
14:      Tk.Header.Config ←Transform(Tk.Header.Config)  
15:      if Proposition2 then 
16:       ConfigBitStream ← OsTaskRequest→ConfigAddress 
17:       Map(Tk, Tk.Header.Config, ConfigBitStream) 
18:       Γ ← Γ ∪ Tk 
19:       UnMapped ← false 
20:      end if 
21:     while UnMapped && TransformationIsPossible 
22:     if UnMapped 
23:      for each Ti ∈ Γ 
24:       i ← QuickSortLowPriority(Γ) 
25:       if Tk.Header.Priority > Ti.Header.Priority 
26:        UnMap(Ti, ConfigBitStream) 
27:        Γ ← Γ -{ Ti } 
28:        go to 8 
29:       end if 
30:      end for 
31:     end if 
32:    end if 
33:   else  
34:    for each Ti ∈ Γ 
35:     i ← QuickSortLowPriority(Γ) 
36:     if Tk.Header.Priority > Ti.Header.Priority 
37:      UnMap(Ti, ConfigBitStream) 
38:      Γ ← Γ -{ Ti } 
39:      go to 7 
40:     end if 
41:    end for 
42:   end if 
43:  else  
44:   k ← OsTaskRequest.TaskId 
45:   Γ ← Γ -{ Tk } 
46:  else 
47:    TrMapping(Γ) 
48:  end if 
49: end while 
50: end process  

Figure 8 Task relocation process 

 51: process TdMapping(Γ) 
52:  for each Ti ∈ Γ do 
53:   k ← QuickSortHighPriority(Γ) 
54:   dTk.Header ← Tk.Header 
55:   if Proposition1 then 
56:    if Proposition2 then 

57:     ConfigBitStream ← (Tk.(Header→ConfigAddress)) 
58:     MapAgain(Tk,dTk.Header.Config,ConfigBitStream)  
59:    else 
60:     do 

61:      dTk.Header.Config ← Transform(dTk.Header.Config)
62:      if Proposition2 then 

63:       ConfigBitStream ← (Tk.(Header→ConfigAddress) 
64:       MapAgain(Tk, dTk.Header.Config, ConfigBitStream)

65:       Duplicated ← true 
66:      end if 
67:    while !Duplicated && TransformationIsPossible 
68:   end if 
69:  end if 
70: end for 
71: end process (go to 3, wait for OsTaskRequest)  

3.3 DHM interaction with the OS micro kernel 

The micro kernel is globally considered to operate as a 
classical pre-emptive and interrupt driven operating system. 
It manages the task-control by keeping track of the status or 
state of each task. In our approach, a task can typically be in 
any one of the following states: 
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1 executing 

2 ready 

3 suspended or blocked 

4 co-executing. 

A task is said to be executing when it is actually running as 
SW code in the CPU. Tasks in the ready state are those that 
are ready to run but are not running. Tasks that are waiting 
on a particular resource, and thus are not ready, are said to 
be in the suspended or blocked state. A task identified as 
critical at design time is set as a HW task and can then be 
executed either as SW or CW code depending on the  
co-processing resource availability. When the micro kernel 
loads such a task, it generates a request to the DHM unit 
which performs a mapping analysis. During this time, the 
task is set to suspended mode in the micro kernel task list. 
When the analysis is completed, it generates an interrupt to 
the micro kernel which indicates whether the task can be 
implemented in SW or in CW fashion. In the first case, the 
task is set to ready and in the second one to co-executing. 

When a process is killed, if the task is executing or 
ready, it is simply removed from the task list of scheduling 
and dispatching units of the OS. If it is suspended or  
co-executing, an OS request is sent to the reconfigurable  
co-processor to indicate that the task is being resumed. In 
this way, the resources involved are released and the task is 
removed from the OS task list. 

4 Case study 

4.1 Targeted architecture 

The systolic ring is a customisable coarse grain 
reconfigurable model. It features a compact DSP-like coarse 
grain reconfigurable datapath, the Dnode, which is the 
building block of the architecture. The architecture is 
configured by a microinstruction code loaded from the 
memory to a local sequencer using dedicated registers as a 
configuration memory. Figure 9 describes this architecture. 

Figure 9 Processing element architecture 

 

Figure 10 System overview 
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The specific structure of the operating layer is depicted in 
Figure 10. The ring topology allows an efficient 
implementation of pipelined datapath. The switch 
components establish a full connectivity between two 
layers. The systolic ring also provides an alternative 
connection bus network which proves useful for recursive 
operations, i.e. It allows to feedback data to previous layers 
implemented from each switch in the structure. Each switch 
in the architecture has a read access on each switch’s bus. 

Each configuration programme line is able to set the 
configuration of an entire Dnode layer (2 Dnodes on the  
8 Dnodes systolic ring depicted in Figure 10) each cycle. Up 
to 12.5% of the Dnodes can be reconfigured at each cycle in 
the actual version, but this can be tailored, especially when 
d/l varies, d being the number of Dnodes per layer and l the 
number of layers. An assembler/simulator environment has 
been developed. This environment also generates the object 
code running on the global sequencer and dynamically 
managing the configuration. 

With the formalism developed in Section 3, we can 
describe the architecture as P = {{p0,0, p0,1, …, p0,d–1},  
{p1,0, p1,1, …, p1,d–1},…, {pl–1,0, pl–1,1, …, pl–1,d–1}}and  
C = {c0, c1, …, c1} with dim P = l × d and dim C = l. The 
total number of processing elements of the architecture is 
then given by card P = l.d. 

Figure 11 Task mapping with rotation-based transformation 
scheme 
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P1 = {{1, 1}, {1, 1}, {0, 0}, {0, 0}}
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Condition 1: card P1 = 4 ≤ card P – card P0 = 4

→ TRUE

Condition 2: P0 ∩ P1 = {{1, 1}, {1, 1}, {0, 0}, {0, 0}} 

→ FALSE
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→ FALSE

Step 3.

Rotation of T1 ⇒ P1’’= {{0, 0}, {0, 0}, {1, 1}, {1, 1}}

Condition 2: P0 ∩ P1’’= {{0, 0}, {0, 0}, {0, 0}, {0, 0}} 

→ TRUE

Automated
Dynamic

Reconfiguration

DHM

 

4.2 Transform process implementation 

The proposed DHM algorithms can be applied to any  
coarse grain reconfigurable architecture supporting run-time  
partial reconfiguration. The only architecture-dependent 
function is the transformation process applied to modify the 
configuration. This can be easily derived from the topology 
of the targeted architecture. For instance, the systolic ring 
architecture is based on a homogenous ring topology  

where each processing element is able to implement the 
same set F of arithmetic and logic functions. Thus, a simple 
rotation (an example is depicted in Figure 11) of the  
configuration following the dataflow direction (i) is 
functionally-equivalent. The following formula formalises 
this lemma and is used in the DHM algorithm in order to 
find equivalent implementations: 

( ) ( )
( ) ( )

, ( )% ,

( )%

, [0.. 1] and [0.. 1],

and  where 

i j i r l j

j i r l

r i l j d f p f p

f c f c f F

+

+

∀ ∈ − ∈ − =

= ∈
 

4.3 Multi-tasking scenario with image processing 
kernels 

Image processing is well known as a time consuming 
application field. Therefore, its implementation is often 
inefficient on general purpose processors making alternative 
approaches attractive. Several test benches have been 
implemented on the systolic ring in order to validate our 
purpose on real world applications. We focus here on the 
kernel acceleration which represents generally more than 
80% of the CPU time required on a general purpose 
processor. 

Figure 12 details the even-odd frequencies 
decomposition of a discrete cosine transform (DCT) (Chen 
et al., 1977) implementation. This decomposition splits the 
calculations into two matrix products. Once the first layer 
calculations have been carried out, the sums and differences 
of the samples are sent to the following layer which 
performs the multiplication-accumulation. 

Several studies have proven that the wavelet transform 
is an efficient alternative to the classical DCT, and thus, it 
has been chosen for the JPEG2000 standard. Our 
implementation uses the lifting scheme (Sweldens, 1998) 
algorithm and operates a 2D direct transform on a  
1,024 × 768 pixels 16 bits coded image. One pixel sample is 
computed each clock cycle, thanks to the use of 4 Dnodes, 
two based on local-mode implementation (Figure 13) and 
two global buses. 

Block matching, and especially full search block 
matching (FSBM) algorithm is the most popular 
implementation, also recommended by several standard 
committees for motion estimation (Park and Burleson, 
1997) (MPEG-video-, and H.261 – videoconferencing – 
standards). Figure 14 illustrates its implementation on the 
systolic ring. 

Figure 15 depicts the scheduling and the mapping of 
previous tasks obtained thanks to the use of the DHM unit 
with the systolic ring on several scenarios. Thanks to the 
relocation scheme, the same task can be mapped on 
different processing elements with the same behaviour and 
functionality as expected at design time. 
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Figure 12 DCT implementation onto the systolic ring (see online version for colours) 

 

+

MacFIFO output

FIFO input

FIFO input

-

MacFIFO output

FIFO input

FIFO input

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
+
+
+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

δ−ββ−δ
αα−α−α
β−δ−δβ

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

43

52

61

70

6

4

2

0 1111

xx
xx
xx
xx

z
z
z
z

α = cos (π/4) 

β = cos (π/8)

δ = sin (π/8) ⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
+
+
+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

δ−ββ−δ
αα−α−α
β−δ−δβ

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

43

52

61

70

6

4

2

0 1111

xx
xx
xx
xx

z
z
z
z

α = cos (π/4) 

β = cos (π/8)

δ = sin (π/8) 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−
−
−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

λ−γμ−ν
γνλ−μ
μ−λ−ν−γ
νμγλ

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

43

52

61

70

7

5

3

1

xx
xx
xx
xx

z
z
z
z λ = cos (π/16) 

γ = cos (3π/16) 

μ = sin (3π/16) 

ν = sin (π/16)
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−
−
−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

λ−γμ−ν
γνλ−μ
μ−λ−ν−γ
νμγλ

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

43

52

61

70

7

5

3

1

xx
xx
xx
xx

z
z
z
z λ = cos (π/16) 

γ = cos (3π/16) 

μ = sin (3π/16) 

ν = sin (π/16)

xNT
N

z )(2
= xNT

N
z )(2
=

xn x(N-1) - n

zn

xn x(N-1) - n

zn+1

DCT coef. DCT coef.

+

+

xn x(N-1) - n

-

x

DCT coef.

+

x

DCT coef.

zn zn+1

Data Flow Graph of the 
Even/Odd DCT kernel

Even/Odd DCT Implementation

With N = 8

Mapping on 4 
Dnodes

 

 
Figure 13 Wavelet transform implementation onto the systolic 

ring (see online version for colours) 

 

 

Figure 14 Block matching implementation onto the systolic ring 
(see online version for colours) 
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Figure 15 Task mapping/scheduling in three different scenarios (see online version for colours) 

 

 

5 Evaluation and experimental results 

The DHM unit has been implemented and attached to the 
systolic ring, and then tested on three DSP kernels. 
Simulations have demonstrated the run-time adaptability on 
different application scenarios. In order to generalise our 
approach on larger sets of scenarios, a simulation 
framework has been developed and is presented in this 
section. 

Figure 16 depicts the simulation environment developed 
to explore and characterise the proposed approach. The 
generation of task scheduling and the DHM mapping is 
completely automated allowing to produce results on a large 
number of scenarios. The simulation framework is 
composed of a C++ programme with constants defined  
to tune the scenario characteristics or architecture generic 
parameters. This programme is interfaced with a 
spreadsheet programme calculating and probing the 
resulting task mapping. Also, the previous metrics are 
automatically computed and plotted for characterisation. 
 

Figure 16 The simulation environment (see online version  
for colours) 
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Two instances of the systolic ring have then been 
experimented: an eight processing element version (l = 4,  
d = 2) and a 32 processing element instance (l = 8, d = 4). 
For a given architecture, ten scenarios are generated with a 
random task sequence and a given range of scenario 
parameters. For each scenario, the parameters have been 
drawn lots: the task requirements in terms of processing 
elements and memory bandwidth, the workload (number of 
tasks from 2 to 80 (card θ ∈ [2, 80], on a given time n with 
variable task duration nk), and the task sequence. Each 
generated scenario corresponds to a task scheduling. Three 
mapping procedures are then performed: one without  
the DHM capabilities, other ones with simultaneous  
multi-tasking procedure (DHM-SMT), and the last one with 
SMT and task duplication (DHM-SMT-TD). In order to 
extract statistical results, a total of 300 scenarios have been 
simulated for a given workload. Thus, the presented values 
in the following figures correspond to a mean value on  
300 samples. 

Figure 17 depicts the resulting task scheduling (ten 
tasks) with a relative workload for both tested architectures 
(80% for 8-PE systolic ring, and 20% for 32-PE systolic 
ring). The Blue histogram represents the cumulated resource 
requirements at a given time. The size and shape of the 
tasks were inspired from the image processing kernels 
presented in the previous section. During a run-time 
duration equal to 5,000 seconds, ten tasks are run. We 
observe a maximum of 13 resources required and a mean 
value around six processing elements. 

Figure 17 Example of a generated task-scheduling 

 

We have depicted in Figure 18 and Figure 19 the resulting 
placement and scheduling on both 8-PE systolic ring and 
32-PE systolic ring. In Figure 18, we notice that without any 
relocation possibility, the co-processor is underexploited 
and it rejects a lot of task requests. With DHM SMT, the 
resource utilisation is clearly higher. Because of its 
relocation feature, the task acceptance is improved. Thanks 
to the TD of DHM, we observe on the yellow histogram that 
the maximum of available resource can be reached while on 
the other ones it is either seldom (with SMT) or never. 
However, this technique does not increase the task 
acceptance. 

Figure 18 Task scheduling on 8-PE 

 

Figure 19 Task scheduling on 32-PE 

 

Figure 20 Characterisation with 8-PE 

 

In Figure 19, with the same scenario, we show that the 
resulting placement/scheduling are exactly the same without 
any relocation feature. This results in a high under-usage of 
the available resources. With DHM SMT, all the task 
requests are accepted and thanks to the TD feature, a 
maximum of 26 parallel operations is reached. However, the 
systolic ring with 32-PE remains underused compared to the 
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large number of available resources. This can be explained 
by the fact that resulting workload is four times lower. 

Figure 21 Characterisation with 32 PE 

 

Figure 22 and Figure 23 show the evolution of the MTeff 
and Peff performances on different system workloads. 
There are five different workload levels compared in this 
survey: from very low workloads (scenario #1) to very high 
workloads (scenario #5). Please, notice that in each case, the 
WL produced by these scenarios is always four times lower 
for 32-PE systolic ring. The histograms plotted here 
highlight the difference between two different instances of 
the systolic ring (8-PE in Figure 22, and 32-PE in Figure 
23). The results presented above were done for a high 
workload scenario (scenario #4). We observe here the 
evolution in Peff and MTeff. Basically, Peff increases in 
both cases but grows quickly in the smallest systolic ring. It 
reaches a value between 80% to 90% for high and very high 
workloads, with a typical value around 70%. However, the 
MTeff decreases to a value around 60% for very high 
workloads. For the biggest systolic ring, the increase in Peff 
is slower but it reaches a value of 60% for the very high 
workloads, and still the task acceptance is higher than 90%. 

Figure 22 Peff and MTEff on 8-PE with different task schedules 

  
Note: With a workload from 20 to 100. 

Figure 23 Peff and MTEff on 32-PE with different task schedules 

  
Note: Same scenarios as Figure 22 resulting in a 0.05 to 

25 workload. 

Figure 20 and Figure 21 characterise both scenarios and 
architectures thanks to the metrics suggested in Section 3. 
These results here emphasise the improvements obtained 
thanks to DHM through SMT and TD features. On the 
smallest systolic ring, the processing efficiency is clearly 
increased from 30% to almost 90%. The multi-tasking 
efficiency is also basically improved as it is more than 
doubled (from 30% to 70%) and the co-processor is used 
almost all the time (more than 95% of run-time). In  
Figure 21, we observe that all the tasks have been accepted 
(multi tasking efficiency equals 100%) and the systolic ring 
is used 100% of the run-time. But the processing efficiency 
is lower than the previous one as the set of tasks used for the 
simulation has a lower workload (20%). 

When the set of tasks simulated is compounded with 
bigger sized tasks (Figure 24), the obtained results show an 
improved processing efficiency but the multi-tasking 
efficiency is lowered down. 

Figure 24 Task scheduling on 32-PE 

  

6 HW and SW implementations 

To evaluate the cost and performances of hardware and 
software implementations, we have designed both of them. 
In this section, we show the obtained results and we analyse 
the perspectives of each one. 

6.1 HW DHM: Saturn ring system 

The Saturn controller is a DHM unit implementation  
for the systolic ring architecture. This unit is a dedicated 
configuration processor. It is mainly composed of a 
programme counter (PC) that allows the generation of the 
programme memory addresses. Data coming from this 
memory are either headers or configuration words. Different 
logic blocks are used for topology matching analysis 
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between the current state of the reconfigurable accelerator 
and the header fields. When a compatibility is found (after a 
configuration rotation or not), a configuration word is read 
from the memory and then modified accordingly. Dedicated 
registers are used to store the state of the systolic ring 
resources (e.g., Dnodes) at each cycle in order to allocate 
them if necessary. 

Figure 25 Task scheduling on 32 PE (see online version  
for colours) 

 

The Saturn controller is a finite state machine (FSM) 
designed to make decisions as quickly as possible for fast 
dynamic reconfiguration. It is used to schedule the different 
steps of the DHM management, by generating chip enable 
(ce) signals to the datapath. The complexity of this FSM is 
about 52 states in the first version, where TD is not possible. 
Enabling this implies 20 additional states in the FSM. 

Table 3 Performance and overhead of HW DHM 

Saturn Area 
(mm²) 

Min. lat 
(cycles) 

Max. lat 
(cycles) 

Power cons. 
(mW/MHz) 

DHM SMT 0.38 6 25 0.10 
DHM 
SMT-TD 

0.40 6 25 0.12 

Saturn has been designed in behavioural VHDL and then 
synthesised with Cadence design flow as illustrated in  
Table 3. The design kit used is AMS 0.35 µ with four metal 
layers (3.3 V). The maximum accessible frequency in this 
technology for the synthesised hardware is 30 MHz. 

6.2 SW DHM: the plasma processor 

We have used a soft processor to implement the DHM 
algorithm with a software programme. This one is a  
MIPS-like processor. It is based on a 32 bits CPU, a local 
memory and an UART. The CPU is based on a three stage 
pipelined unit, an ALU, a shifter and a multiplier. 

The DHM programme is first compiled with a gcc cross 
compiler with the third level of optimisation allowing a gain 
on the performances around 20%. This code is then loaded 

into the local memory and executed indefinitely. Two 
different implementations have been tested: one optimised 
for memory, the other optimised for speed. The results are 
summarised in the table below. Several memories were 
synthesised from the manufacturer website following the 
size required for the code. The maximum accessible 
frequency for the synthesised processor is 30 MHz for an 
area equal to 1.44 mm2. 

Table 4 Performance and overhead of SW DHM 

Plasma Mem. 
(KB) 

Min. lat. 
(cycles) 

Max. lat. 
(cycles) 

Power cons 
(mW/MHz) 

DHM1 SMT 23 3,806 65,902 1.25 
DHM1  
SMT-TD 

25 3,806 65,902 1.36 

DHM2 SMT 16 1,200 188,359 1.12 
DHM2  
SMT-TD 

18 1,200 188,359 1.16 

6.3 Performance comparisons 

HW and SW-DHM controllers have been designed both for 
a systolic ring instance composed with 8 Dnodes. After 
synthesis, the designs have been validated by simulations. 
For HW-DHM, the whole algorithm takes less than  
25 cycles (0.8µs@30MHz) to dynamically modify and  
(re-)allocate a pre-defined configuration. The area overhead 
is about 0.4 mm2, which represents less than 10% of the 
systolic ring. For SW-DHM, the 32 bits processor has a 
silicon area of 1.44 mm2 (about 36% of the systolic ring 
area) and implies in the worst case up to 65,902 cycles  
(2.1mms@100MHz) to perform the same allocation task. 
These results are listed in Table 5. 

Table 5 Comparison of performance and overhead of HW and 
SW DHM 

 HW-DHM scheduler SW-DHM scheduler 

Area (mm2) 0.40 1.44 
Time (µs) 0.83 2,186.73 
1/(A.T) 3 3.10–4 

Not surprisingly, these results clearly show the superiority 
of the dedicated approach with a global performance [1/AT 
(DeHon, 1998)] 10,000 times better than the SW-DHM. 
However, the HW-DHM requires much more design effort, 
while the SW-DHM can be easily changed by simply 
reprogramming the processor. Moreover, the software 
approach is far more scalable as it requires no area overhead 
for different instances. In terms of latency introduced by the 
mapping process, the quality of service obtained with 
hardware DHM is better than the software DHM as it is less 
than a microsecond, which certifies a very fast 
reconfiguration. However, for some applications, a 
maximum latency of 2 ms can be acceptable (i.e., audio 
applications require less than 8 ms). 



P. Benoit et al.  

Table 6 Our contribution compared to the existing solutions 

Name Sched. Reloc. Replic. Config. manager Location Ref 

XC6200 Static No No No - Shirazi et al. (1998) 
XC6200 Static Yes No No - Burns et al. (1997) 
XC6200 Dyn. Yes No No - Robinson and Lysaght (1999) 
V2-Pro Static No No SW PowerPC FPGA Curd (2003) 
V2 Static No No SW µBlaze FPGA Blodget et al. (2003) 
SCORE Static No No HW Dedicated module Caspi et al. (2000) 
RAW Static No No Compiler - Taylor et al. (2002) 
Our approach Dyn. Yes Yes HW or SW Dedicated module  

 
7 Conclusions and future works 

In this article, we have proposed and implemented a method 
for dynamic reconfiguration management. This method is 
based on a DHM algorithm allowing an abstraction, at 
design-time, of the dynamic reconfiguration management. 
The DHM algorithm aims at exploiting more efficiently the 
processing resources thanks to an adaptive online 
scheduling technique. A case study on the systolic ring 
architecture has proven the feasibility of the proposed 
approach. The simulation results show an improved 
processing efficiency and dynamic reconfiguration is 
directly and automatically managed by the hardware. The 
HW-scheduler offers a clearly better performance/area 
trade-off, while the SW-DHM approach is attractive from 
the point of view of its flexibility. The features of our 
approach compared to related works are depicted in Table 6. 

A ‘fine-grain’ implementation could also be considered 
but we strongly believe that our method takes its  
whole sense on coarse grain architectures and proposed 
DHM is very easy to adapt to any processing element 
interconnection topology. The main limitation stands 
actually on the processing element programming. We are 
therefore exploring a new architectural support for DHM 
based on a mesh network of RISC processors that we can 
directly address with a C code. 
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