
HAL Id: lirmm-00818929
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00818929

Submitted on 30 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Run Time Mapping for Dynamic Reconfiguration
Management in Embedded Systems

Pascal Benoit, Lionel Torres, Gilles Sassatelli, Michel Robert, Nicolas
Saint-Jean

To cite this version:
Pascal Benoit, Lionel Torres, Gilles Sassatelli, Michel Robert, Nicolas Saint-Jean. Run Time Mapping
for Dynamic Reconfiguration Management in Embedded Systems. International Journal of Embedded
Systems, 2010, 4 (3/4), pp.276-291. �10.1504/IJES.2010.039031�. �lirmm-00818929�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00818929
https://hal.archives-ouvertes.fr

Run-time mapping for dynamic reconfiguration
management in embedded systems

Pascal Benoit*, Lionel Torres, Gilles Sassatelli,
Michel Robert and Nicolas Saint-Jean
LIRMM, Montpellier Institute of Computer Science, Robotics and Microelectronics,
University of Montpellier 2,
CNRS, UMR 5506, 161, rue Ada, 34392 Montpellier Cedex 5, France
Fax: (+33) (0)-467-85-00
E-mail: Pascal.Benoit@lirmm.fr
E-mail: Lionel.Torres@lirmm.fr
E-mail: Gilles.Sassatelli@lirmm.fr
E-mail: Michel.Robert@lirmm.fr
E-mail: Nicolas.Saint-Jean@lirmm.fr
*Corresponding author

Abstract: Dynamic reconfiguration provides attractive features such as hardware flexibility and
adaptability. Unfortunately, the lack of programming tools to manage it has limited its use in
current SoC. This paper presents a method to abstract dynamic reconfiguration management at
design time. Dynamic hardware multiplexing is a generic principle based on a scheduler
dedicated to the management of reconfigurable resources at run-time. Formal background,
implementation, simulation results and validations are exposed to illustrate the contribution of
this study.

Keywords: reconfigurable computing; run-time resource management; self-adaptability; task
relocation; task duplication; TD; task allocation and scheduling; hardware and software control;
embedded systems.

Reference to this paper should be made as follows: Benoit, P., Torres, L., Sassatelli, G.,
Robert, M. and Saint-Jean, N. (2010) ‘Run-time mapping for dynamic reconfiguration
management in embedded systems’, Int. J. Embedded Systems, Vol. 4, Nos. 3/4, pp.276–291.

Biographical notes: Pascal Benoit obtained his PhD from the University of Montpellier in 2004.
He then joined the Department of Electrical Engineering at the University of Karlsruhe in
Germany where he worked as a Scientific Assistant. Since 2005, he is an Associate Professor at
the University of Montpellier in the Flexible Architectures Group at the LIRMM Microelectronic
Research Department.

Lionel Torres obtained his PhD in 1996 from the University of Montpellier in France. From 1996
to 1997, he was involved in ATMEL Company as IP Core Methodology Engineer. He is
currently a Professor at the University of Montpellier and the Head of the Microelectronic
Department of the LIRMM laboratory.

Gilles Sassatelli holds a Full-Time Researcher position at CNRS. He obtained his PhD in 2002 in
Microelectronics. He is responsible for the flexible parallel and reconfigurable architectures
group at LIRMM.

Michel Robert is a Professor at the University of Montpellier 2. He is nominated as a member
from the French University Institute in 1997, Advisor at the Research Ministry, and Scientific
Co-Director from the STIC (Information and Communication Technology and Science)
Department of CNRS (2002–2004). He is currently the Vice President of CNFM (National
Committee of Microelectronic Education) since 1999, and the Director of LIRMM since 2005.

Nicolas Saint-Jean obtained his Master in 2005. He is currently a PhD student at LIRMM.

1 Introduction

The explosion of standards in 3G and more generally in
wireless systems goes along with a widening spectrum of
applications that portable devices have to support.

Designing a chip for every single device tends to become
less feasible (SoC complexity, lifecycle of multimedia
product, increasing non-recurring engineering costs for
deep-submicron technologies). A considered way to
overcome these problems relies on flexibility, i.e., reusing

 Run-time mapping for dynamic reconfiguration management in embedded systems

the same chip for a range of products, applications, or even
several generations of the same product. This approach
allows sharing the non-recurring engineering costs, and the
design stage comes down to a software customisation phase.
Reconfigurable architectures provide this flexibility at the
price of a silicon area overhead highly dependent on the
level of flexibility.

1.1 Related works

Recently, FPGA cores integration has become a reality
in embedded systems. Several companies as eASIC
(http://www.easic.com/) and M2000 (http://www.m2000.fr/)
offer dense customisable FPGA macros that can be used
as configurable logic associated to a general purpose
processor. Using reconfigurable logic provides an increased
flexibility since it then becomes feasible to modify the
configuration after the chip fabrication, to upgrade the
device during its life cycle, at the price of a reduced
silicon density. Dynamic reconfiguration is a third level of
flexibility and consists in modifying the configuration of the
device at run-time. For typical reconfigurable architectures
such as FPGA, run-time reconfiguration is generally costly
as it requires a large amount of data. To overcome this
drawback, coarse grain reconfigurable architectures have
been studied and developed (Table 1) for the past 15 years.

More recently, we have observed a growing interest in
dynamic reconfiguration management techniques in the
literature. Table 2 exposes a synthetic overview of different
dynamic configuration management techniques. In the
literature, most of the approaches target fine grain partially
reconfigurable devices [XC6200 (Shirazi et al., 1998; Burns

et al., 1997; Robinson and Lysaght, 1999), Virtex-II Pro
(Curd, 2003), Virtex II (Blodget et al., 2003; Carvahlo et al.,
2004; Huebner et al., 2004; Ullman et al., 2004) or
Altera-like architectures (Danne and Platzner, 2005). Some
of the proposed schemes provide a support for the relocation
of tasks (Burns et al., 1997; Robinson and Lysaght, 1999;
Carvahlo et al., 2004; Danne and Platzner, 2005; Huebner et
al., 2004) where they are handled as a fixed-size or
variable-size rectangle that can be placed on the FPGA
resource. Each method may differ in the placement and
scheduling, aiming at optimising cost functions. In the first
methods (Shirazi et al., 1998; Burns et al., 1997), the
scheduling was performed statically by heuristics and in
Robinson and Lysaght (1999), Carvahlo et al. (2004),
Huebner et al. (2004) and Ullman et al. (2004), this is
processed dynamically. A configuration controller is then
generally supposed to execute tasks as a loader in an
operating system, according to a calculated scheduling. This
one can be directly implemented in the reconfigurable logic
on the FPGA (Curd, 2003; Blodget et al., 2003; Carvahlo et
al., 2004; Huebner et al., 2004; Ullman et al., 2004).
Real-time scheduling of hardware tasks on FPGA has been
studied in Danne and Platzner (2005) and in Huebner et al.
(2004), a dynamic placement of tasks is performed thanks to
a NoC architecture. In Ullman et al. (2004), an adaptive
priority scheme allows a partial reconfiguration of
relocatable tasks. An interesting solution for multi-tasking
was also proposed in the SCORE project (Caspi et al.,
2000), a multi-threaded computational model and
architecture that rely on a scalable dynamic scheduling. The
RAW architecture (Taylor et al., 2002) allows dynamic
switching of tasks but with a compiled programme.

Table 1 Examples of dynamically reconfigurable architectures

Name Grain Type Comment Ref.

AT40K Fine Stand-alone Cell reconfig. Atmel Corporation
Xilinx Hybrid Stand-alone RSoC Partial reconfig. Xilinx Corporation
SCORE Fine Stand-alone Mesh-based Caspi et al. (2000)
RAW Coarse Stand-alone Switch-box Taylor et al. (2002)
Piperench Coarse Stand-alone Pipeline Goldstein et al. (200)
MorphoSys Coarse Co-processor Mesh-based Singh et al. (2000)
Systolic ring Coarse Co-processor Circular pipeline Sassatelli et al. (2002)

Table 2 Examples of dynamic reconfiguration management techniques

Name Sched. Reloc. Replic. Config. manager Location Ref

XC6200 Static No No No - Shirazi et al. (1998)
XC6200 Static Yes No No - Burns et al. (1997)
XC6200 Dyn. Yes No No - Robinson and Lysaght (1999)
V2-Pro Static No No SW PowerPC FPGA Curd (2003)
V2 Static No No SW µBlaze FPGA Blodget et al. (2003)
SCORE Static No No HW Dedicated module Caspi et al. (2000)
RAW Static No No Compiler - Taylor et al. (2002)

P. Benoit et al.

1.2 Our approach

Dynamic reconfiguration management techniques become
mandatory in a SoC context where next generation circuits
will have to be able to handle several applications
simultaneously in an adaptive manner. In the literature,
most of the approaches target fine grain partially
reconfigurable circuits. But a major drawback of
fine grain architectures is the latency introduced by
their reconfiguration time. Coarse grain reconfigurable
architectures allow to significantly reduce the configuration
time, then allowing an increased reactivity to dynamic
environments. For these kinds of architectures, only
compiler support has been proposed to manage the dynamic
reconfiguration. Our purpose is to explore a dynamic
reconfiguration technique based on a run-time controller
support allowing an adaptive placement and scheduling of
unpredictable task scenarios.

The objective of this paper is then to present a technique
to handle dynamic configuration with the hardware,
allowing the application designer to abstract dynamic
reconfiguration management constraints. This technique is
based on a run-time scheduler implementing an algorithm
called dynamic hardware multiplexing (DHM). Thanks to
this approach, the configuration of each application is
generated at design time. At run-time, the scheduler
takes care of the placement and modifies the original
configuration in order to adapt the computational resources
to handle several applications or to implement different
qualities of service. The efficiency of our approach is
characterised by two-metrics showing the increase in the
resource usage and multi-application management. The
suggested method has been designed and validated on a
coarse grain reconfigurable architecture.

This paper is organised as follows: Section 2 presents a
context analysis to derive the formal framework and
characterisation metrics; Section 3 describes the dynamic
HW multiplexing algorithms; Section 4 illustrates the
implementation of DHM carried out on a coarse grain
reconfigurable architecture; simulation results are exposed
in Section 5 and HW/SW DHM schedulers validations are
discussed in Section 6; finally, conclusions and perspectives
are drawn.

2 Context analysis and formalisation

Self-adaptability represents a real challenge in the SoC
context. One promising approach to achieve it consists in
using a reconfigurable co-processing unit as illustrated in
Figure 1.

To achieve this objective of adaptability, it is
necessary to provide a middleware layer to allow a smart
configuration management (the ‘configuration manager’ in
the figure). This unit must be able to communicate relevant
information to the operating system so that it allows a local
and a global supervision of the co-processor configurations.
In this section, we develop a formal framework for this

issue, in order to define a solution to multi-application
handling through dynamic reconfiguration.

Figure 1 Simplified overview of the targeted SoC

P E 0,0

P E 0,1

PE 1,0

PE 1,1

PE 2,0

PE 2,1

PE 3,0

PE 3,1

C
on

fig
ur

at
io

n
M

an
ag

er

D
at

a
I/O

Bus
Arbi ter

C entra l
Processing

Un it

Memory

D MA
C ontro lle r

Timer

UAR T

Bus
Arb ite r

Processor / Memory B us

Reconfigurable Coprocessor Bus

Peripherals Bus

2.1 Execution scenario

We assume a set θ of random tasks potentially assignable to
the reconfigurable co-processor as a hardware task (which
assumes that this task is time-consuming in a software
fashion implementation). The cardinal of this set represents
the number of requests from the OS. We assume the system
is running during n cycles (from 0 to n). Each task Tk ∈ θ is
executed during nk cycles (nk is a non-deterministic variable,
e.g., depends on how long the user wants to run the
application). At each cycle of [0, n], the co-processor is
running a set of tasks Γ ⊆ θ. At cycle n, the co-processor
has handled card ε tasks where ε is the set of executed tasks
(ε ⊆ θ).

The reconfigurable co-processor is modelled as a set of
homogenous processing elements P (further along, our
model will consider the memory bandwidth between the co-
processor and the memory as a set of memory channels C).
Each task Tk is represented by a set of processing elements
Pk (and further along by a set of memory channels Ck).
Figure 2 illustrates three possible scenarios (a, b, c) with
four tasks, θ = {Task 1, Task 2, Task 3, Task 4}, and with
different starting points. The co-processor has eight
processing elements as depicted in Figure 1. The time is
represented on the X-axis in Figure 2, and the resource
utilisation (PE) on the Y-axis. In scenario (a), all requests
are handled by the reconfigurable co-processor; there is no
particular observation in this example: each new task starts
after the completion of the previous task. In scenario (b),
Task 3 is started before the completion of Task 1. There are
three PE required and three are available. The task is
potentially assignable but this requires a relocation of the
initial configuration. In scenario (c), Task 2 is started before
the completion of Task 1. However, Task 2 and Task 1
cannot be executed simultaneously as they require more
than the total of available PE (the area above P3.1). This
entails that the system must be able to stall either the
execution of Task 1 on the reconfigurable co-processor if
Task 2 has a higher priority (pre-emption) and make it

 Run-time mapping for dynamic reconfiguration management in embedded systems

possible to execute Task 2 or Task 1 alternatively on
another resource of the system (the CPU, i.e.).

Figure 2 Execution scenarios of task processing and
co-processor utilisation

(a)

(b)

(c)

2.2 Task configuration management

The management of the configurations depends on a set of
conditions. From the previous observations, we define the
three following lemmas:

Lemma 1: A task Tk ∈ θ can be handled if the number of
required resources is currently available i.e., card(Pk) ≤
card(P) – ΣTr∈Γ card(Pr) and card(Ck) ≤ card(C) – ΣTr∈Γ
card(Cr).

Lemma 2: A task Tk ∈ θ is allocated to the reconfigurable
accelerator if Lemma 1 is verified and if the configurations
of the running tasks are compatible with the configuration
of Tk i.e., (ΣTr∈Γ Pr) ∩ Pk = ∅ and (ΣTr∈Γ Cr) ∩ Ck = ∅.

Lemma 3: If Lemma 1 or Lemma 2 are not respected and if
Tk ∈ θ has a higher priority than at least one of the running
tasks, then this task is temporarily stalled for lemma 1 and
lemma 2 analyses. If both are verified, the stalled task is
permanently removed from the co-processor and migrated
to another resource of the system (the CPU, i.e.). Or else,

another task with lower priority is also temporary stalled
and so on. This step is done until the compatibility is found;
otherwise the OS chooses an alternative resource to execute
Tk.

The critical part of previous propositions is to determine
a new configuration from the initial one, to fit the current
state of the reconfigurable co-processor resources. This
process is commonly named ‘relocation’ of a hardware task.
This has been studied in the literature for FPGA but from
our knowledge, never deeply explored for coarse grain
reconfigurable architectures. In this case, the relocation
process can be formalised as follows: if f(Ti) is the function
implemented by Ti the function transform() must verify
f(Tk) = f(transform(Tk)), In other words, transform() is a
relocation process able to generate a new configuration
{Pk, Ck}, functionally equivalent to the configuration of Tk.
This function depends on the targeted architecture, i.e., the
interconnection topology, the homogeneity of the PE, type
of I/Os, memories, etc.

The example exposed in Figure 3 illustrates this
proposition. The coarse grain reconfigurable architecture (a)
is a four PE structure. Each PE has the same reconfigurable
functionality, i.e., each one can implement the same
predefined set of arithmetic functions. Assuming that
this reconfigurable architecture has to compute the
following function: f(a, b) = (a + b) * (a – b), one possible
configuration can be the one exposed in (b). But the same
functionality can be also achieved with the configuration in
(c). This functionally equivalent configuration is actually
obtained with a modulo relocation process, i.e.:

() (), ,()%2 ,i j i j tf P f P +=

where t is a translation of the functionality to the adjacent
PE, and two because of the two parallel PE.

The modulo-relocation process can be adapted to any
architecture based on a torus or a ring topology. Anyway,
this methodology can also be applied to any architecture
with respect to its properties in terms of PE functionality,
interconnection topology, I/Os… Moreover, as we will see
in the next section, the ‘modulo relocation’ process can be
used for other purposes, such as task duplication (TD), i.e.,
to increase the intrinsic performances.

2.3 Characterisation metrics

In order to evaluate the quality of the configuration
management, it is necessary to define metrics. The
multi-tasking efficiency (MTeff) computes the percentage of
tasks handled by the reconfigurable co-processor compared
to the number of OS requests:

()100
()eff

cardMT
card

ε
θ

= ⋅

This metric represents the task acceptance ratio and it is
basically dependant on the system workload.

P. Benoit et al.

Figure 3 Coarse grain reconfigurable architecture example (a) and (b) (c) implementations of (a + b)*(a – b)

Figure 4 Task scenario modelled with the proposed formalism

The system workload is dependent on the load that each
task of θ implies on a given architecture, during a given
time. Thus, we define the metric WL as follows:

()
100

()
k

k k
T

card P n

WL
ncard P

θ∈

⋅

= ⋅
∑

We define another metric, R, to represent the time usage
ratio:

100 k

k
T

n

R
n
ε∈= ⋅
∑

The processing efficiency (Peff) is defined to calculate
the space and time utilisation percentage ratio of the
co-processing resources:

() ()100
()

k

eff k k
t

P card P n
n card P ε∈

= ⋅ ⋅
⋅ ∑

Figure 4 depicts an example of a set of tasks
θ = {T0, T1, T2, T3} handled by a reconfigurable architecture
with P= {p0,0, p0,1, p1,0, p1,1, p2,0, p2,1}. This example shows
that for this set of tasks, a multi-tasking efficiency of 75% is
achieved with a 55% overall processing efficiency and
relative Peff is 66% with a time usage ratio R = 83%
(Figure 5).

 Run-time mapping for dynamic reconfiguration management in embedded systems

Figure 5 Architecture characterisation with the proposed metrics

3 Dynamic hardware multiplexing (DHM)

DHM is the proposed approach to address the objective of
system-on-chip adaptability with reconfigurable hardware.
It is based on a dedicated application design flow and a
reconfigurable system platform with a so-called dynamic
hardware multiplexer.

3.1 DHM design flow

The proposed design flow is depicted in Figure 6. It is based
on a two-phase process: the first step is performed at
design-time and the second one at run-time.

The application is represented as a task graph. A first
analysis allows to partition the graph and to classify each
task. The non-critical tasks are compiled as software tasks
(SW). Each critical task (time/power consuming) is given a
priority level. Then, they are both compiled as SW tasks and
as HW configurations (configware or CW). A header is
attached to each HW task: it contains information about the
task priority level, the number of required operators, etc.
The compiled SW tasks produce an object code, and the
HW tasks a configuration bitstream. They are finally linked
together in a unique executable which includes both object
codes and configuration bitstreams.

The task allocation is performed at run-time under OS
control. A dedicated system call is used for this purpose:
each time a task has been assigned to HW, the header is sent
to the OS which communicates a co-processing request to
the DHM unit: this one analyses the task header and
compares the task requirements and the state of
reconfigurable hardware (number of available operators,
priorities of running tasks, etc.). The DHM unit takes the
decision either to accept or reject the co-processing request.
In the first case, the configuration bitstream is loaded into

the reconfigurable co-processor, in the second one; the task
object code is scheduled by the OS on the CPU.

Figure 6 DHM design flow

The DHM unit acts as a dedicated service of the OS for HW
management. This service is detailed in the following
section.

3.2 DHM services: mapping analysis, relocation and
replication

The DHM unit is implemented as an OS service allowing an
adaptive task mapping on a given reconfigurable
architecture. It is composed of two procedures: the first one
is dedicated to the mapping analysis and relocation
(simultaneous multi-tasking mapping algorithm), and the
second one to the replication (TD mapping algorithm).

3.2.1 Mapping analysis and task relocation

The first function of the DHM unit is to perform a mapping
analysis regarding the co-processing (OsTaskRequest)
request through the header. The OsTaskRequest is
structured as follows:

typedef struct OsTaskRequest {

 On;

 TaskId;

P. Benoit et al.

 Header;

 * ConfigTaskAddress;

}OsTaskRequest;

The On field is a Boolean that indicates if the task starts or
ends up. The TaskId is a number attributed by the OS to
identify the task. The ConfigTaskAddress is a pointer to the
configuration bitstream memory location. The Header field
is defined as follows:

typedef struct ConfigurationHeader {

 nOp;

 nChannels;

 Topology[N];

 Priority;

}ConfigurationHeader;

This header allows to determine whether the task can be
mapped. The number of required resources in terms of
operators and memory channels (nOp for the number of
processing units, card (Pi) as previously mentioned, and
nChannels, the number of DMA channels required,
card(Ci)) is first analysed in Proposition 1 (i.e., Lemma 1).
Then, a topological compatibility test (Topology[N], or as
previously mentioned {Pi, Ci}) is realised in Proposition 2
(i.e., Lemma 2). If both propositions are true, the task
Tk is directly allocated: the corresponding configuration
bitstream is then loaded in the configuration memory
without changes. If Proposition2 is not verified, the
transform() function is executed to compute a new
configuration with an equivalent functionality (as exposed
in the previous section) until a compatible solution is
found or all the equivalent configurations have been tested
(TransformationIsPossible becomes false). Consequently, a
map function is used to load the configuration and apply the
required transformations on the topology. When a task
needs more than the available resources or cannot be
adapted to the current state of running tasks, tasks are sorted
by priority levels and mapped accordingly. When a task has
to be removed or when it cannot be handled by the
co-processor, the DHM unit generates a CPU equivalent
context (initial or current) and transmits it to the OS: the
SW task is then executed by the CPU.

3.2.2 Task replication

Task replication has several advantages like increasing
the processing efficiency (Peff) or minimising power
consumption (if a computational task is duplicated, the
operating frequency can be divided by 2 with the same
performance): this is the role of the TD mapping function
(Figure 8). The principle is quite simple and similar to the
task relocation: after sorting the running tasks by priority
levels, it tries to map a second instance of each task on the
free resources. This process is executed each time the SMT
mapping is executed and when a new task request is
pending, a background routine suspends all duplicated tasks.

Figure 7 Task mapping analysis and relocation process

 1: process SmtMapping()
2: Γ←∅
3: wait for OsTaskRequest
4: if OsTaskRequest.On then
5: k ← OsTaskRequest.TaskId
6: Tk.Header ← OsTaskRequest.Header
7: if Proposition1 then
8: if Proposition2 then
9: ConfigBitStream ← OsTaskRequest→ConfigAddress
10: Map(Tk, ConfigBitStream)
11: Γ ← Γ ∪ Tk
12: else
13: do
14: Tk.Header.Config ←Transform(Tk.Header.Config)
15: if Proposition2 then
16: ConfigBitStream ← OsTaskRequest→ConfigAddress
17: Map(Tk, Tk.Header.Config, ConfigBitStream)
18: Γ ← Γ ∪ Tk
19: UnMapped ← false
20: end if
21: while UnMapped && TransformationIsPossible
22: if UnMapped
23: for each Ti ∈ Γ
24: i ← QuickSortLowPriority(Γ)
25: if Tk.Header.Priority > Ti.Header.Priority
26: UnMap(Ti, ConfigBitStream)
27: Γ ← Γ -{ Ti }
28: go to 8
29: end if
30: end for
31: end if
32: end if
33: else
34: for each Ti ∈ Γ
35: i ← QuickSortLowPriority(Γ)
36: if Tk.Header.Priority > Ti.Header.Priority
37: UnMap(Ti, ConfigBitStream)
38: Γ ← Γ -{ Ti }
39: go to 7
40: end if
41: end for
42: end if
43: else
44: k ← OsTaskRequest.TaskId
45: Γ ← Γ -{ Tk }
46: else
47: TrMapping(Γ)
48: end if
49: end while
50: end process

Figure 8 Task relocation process

 51: process TdMapping(Γ)
52: for each Ti ∈ Γ do
53: k ← QuickSortHighPriority(Γ)
54: dTk.Header ← Tk.Header
55: if Proposition1 then
56: if Proposition2 then

57: ConfigBitStream ← (Tk.(Header→ConfigAddress))
58: MapAgain(Tk,dTk.Header.Config,ConfigBitStream)
59: else
60: do

61: dTk.Header.Config ← Transform(dTk.Header.Config)
62: if Proposition2 then

63: ConfigBitStream ← (Tk.(Header→ConfigAddress)
64: MapAgain(Tk, dTk.Header.Config, ConfigBitStream)

65: Duplicated ← true
66: end if
67: while !Duplicated && TransformationIsPossible
68: end if
69: end if
70: end for
71: end process (go to 3, wait for OsTaskRequest)

3.3 DHM interaction with the OS micro kernel

The micro kernel is globally considered to operate as a
classical pre-emptive and interrupt driven operating system.
It manages the task-control by keeping track of the status or
state of each task. In our approach, a task can typically be in
any one of the following states:

 Run-time mapping for dynamic reconfiguration management in embedded systems

1 executing

2 ready

3 suspended or blocked

4 co-executing.

A task is said to be executing when it is actually running as
SW code in the CPU. Tasks in the ready state are those that
are ready to run but are not running. Tasks that are waiting
on a particular resource, and thus are not ready, are said to
be in the suspended or blocked state. A task identified as
critical at design time is set as a HW task and can then be
executed either as SW or CW code depending on the
co-processing resource availability. When the micro kernel
loads such a task, it generates a request to the DHM unit
which performs a mapping analysis. During this time, the
task is set to suspended mode in the micro kernel task list.
When the analysis is completed, it generates an interrupt to
the micro kernel which indicates whether the task can be
implemented in SW or in CW fashion. In the first case, the
task is set to ready and in the second one to co-executing.

When a process is killed, if the task is executing or
ready, it is simply removed from the task list of scheduling
and dispatching units of the OS. If it is suspended or
co-executing, an OS request is sent to the reconfigurable
co-processor to indicate that the task is being resumed. In
this way, the resources involved are released and the task is
removed from the OS task list.

4 Case study

4.1 Targeted architecture

The systolic ring is a customisable coarse grain
reconfigurable model. It features a compact DSP-like coarse
grain reconfigurable datapath, the Dnode, which is the
building block of the architecture. The architecture is
configured by a microinstruction code loaded from the
memory to a local sequencer using dedicated registers as a
configuration memory. Figure 9 describes this architecture.

Figure 9 Processing element architecture

Figure 10 System overview

P. Benoit et al.

The specific structure of the operating layer is depicted in
Figure 10. The ring topology allows an efficient
implementation of pipelined datapath. The switch
components establish a full connectivity between two
layers. The systolic ring also provides an alternative
connection bus network which proves useful for recursive
operations, i.e. It allows to feedback data to previous layers
implemented from each switch in the structure. Each switch
in the architecture has a read access on each switch’s bus.

Each configuration programme line is able to set the
configuration of an entire Dnode layer (2 Dnodes on the
8 Dnodes systolic ring depicted in Figure 10) each cycle. Up
to 12.5% of the Dnodes can be reconfigured at each cycle in
the actual version, but this can be tailored, especially when
d/l varies, d being the number of Dnodes per layer and l the
number of layers. An assembler/simulator environment has
been developed. This environment also generates the object
code running on the global sequencer and dynamically
managing the configuration.

With the formalism developed in Section 3, we can
describe the architecture as P = {{p0,0, p0,1, …, p0,d–1},
{p1,0, p1,1, …, p1,d–1},…, {pl–1,0, pl–1,1, …, pl–1,d–1}}and
C = {c0, c1, …, c1} with dim P = l × d and dim C = l. The
total number of processing elements of the architecture is
then given by card P = l.d.

Figure 11 Task mapping with rotation-based transformation
scheme

Acc

Acc

Systolic Ring configured for MAD

P = {{1, 1}, {1, 1}, {0, 0}, {0, 0}}

T0 (MAD) is running

P0 = {{1, 1}, {1, 1}, {0, 0}, {0, 0}}, R = T0

→ New_Task_Start T1(DCT):

P1 = {{1, 1}, {1, 1}, {0, 0}, {0, 0}}

Step 1.

Condition 1: card P1 = 4 ≤ card P – card P0 = 4

→ TRUE

Condition 2: P0 ∩ P1 = {{1, 1}, {1, 1}, {0, 0}, {0, 0}}

→ FALSE

Acc

Acc

Acc

Acc

MAD + DCT

P = {{1, 1}, {1, 1}, {1, 1}, {1, 1}}

Initial State Final State

Step 2.

Rotation of T1 ⇒ P1’= {{0, 0}, {1, 1}, {1, 1}, {0, 0}}

Condition 2: P0 ∩ P1’= {{0, 0}, {1, 1}, {0, 0}, {0, 0}}

→ FALSE

Step 3.

Rotation of T1 ⇒ P1’’= {{0, 0}, {0, 0}, {1, 1}, {1, 1}}

Condition 2: P0 ∩ P1’’= {{0, 0}, {0, 0}, {0, 0}, {0, 0}}

→ TRUE

Automated
Dynamic

Reconfiguration

DHM

4.2 Transform process implementation

The proposed DHM algorithms can be applied to any
coarse grain reconfigurable architecture supporting run-time
partial reconfiguration. The only architecture-dependent
function is the transformation process applied to modify the
configuration. This can be easily derived from the topology
of the targeted architecture. For instance, the systolic ring
architecture is based on a homogenous ring topology

where each processing element is able to implement the
same set F of arithmetic and logic functions. Thus, a simple
rotation (an example is depicted in Figure 11) of the
configuration following the dataflow direction (i) is
functionally-equivalent. The following formula formalises
this lemma and is used in the DHM algorithm in order to
find equivalent implementations:

() ()
() ()

, ()% ,

()%

, [0.. 1] and [0.. 1],

and where

i j i r l j

j i r l

r i l j d f p f p

f c f c f F

+

+

∀ ∈ − ∈ − =

= ∈

4.3 Multi-tasking scenario with image processing
kernels

Image processing is well known as a time consuming
application field. Therefore, its implementation is often
inefficient on general purpose processors making alternative
approaches attractive. Several test benches have been
implemented on the systolic ring in order to validate our
purpose on real world applications. We focus here on the
kernel acceleration which represents generally more than
80% of the CPU time required on a general purpose
processor.

Figure 12 details the even-odd frequencies
decomposition of a discrete cosine transform (DCT) (Chen
et al., 1977) implementation. This decomposition splits the
calculations into two matrix products. Once the first layer
calculations have been carried out, the sums and differences
of the samples are sent to the following layer which
performs the multiplication-accumulation.

Several studies have proven that the wavelet transform
is an efficient alternative to the classical DCT, and thus, it
has been chosen for the JPEG2000 standard. Our
implementation uses the lifting scheme (Sweldens, 1998)
algorithm and operates a 2D direct transform on a
1,024 × 768 pixels 16 bits coded image. One pixel sample is
computed each clock cycle, thanks to the use of 4 Dnodes,
two based on local-mode implementation (Figure 13) and
two global buses.

Block matching, and especially full search block
matching (FSBM) algorithm is the most popular
implementation, also recommended by several standard
committees for motion estimation (Park and Burleson,
1997) (MPEG-video-, and H.261 – videoconferencing –
standards). Figure 14 illustrates its implementation on the
systolic ring.

Figure 15 depicts the scheduling and the mapping of
previous tasks obtained thanks to the use of the DHM unit
with the systolic ring on several scenarios. Thanks to the
relocation scheme, the same task can be mapped on
different processing elements with the same behaviour and
functionality as expected at design time.

 Run-time mapping for dynamic reconfiguration management in embedded systems

Figure 12 DCT implementation onto the systolic ring (see online version for colours)

+

MacFIFO output

FIFO input

FIFO input

-

MacFIFO output

FIFO input

FIFO input

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
+
+
+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

δ−ββ−δ
αα−α−α
β−δ−δβ

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

43

52

61

70

6

4

2

0 1111

xx
xx
xx
xx

z
z
z
z

α = cos (π/4)

β = cos (π/8)

δ = sin (π/8) ⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
+
+
+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

δ−ββ−δ
αα−α−α
β−δ−δβ

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

43

52

61

70

6

4

2

0 1111

xx
xx
xx
xx

z
z
z
z

α = cos (π/4)

β = cos (π/8)

δ = sin (π/8)

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−
−
−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

λ−γμ−ν
γνλ−μ
μ−λ−ν−γ
νμγλ

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

43

52

61

70

7

5

3

1

xx
xx
xx
xx

z
z
z
z λ = cos (π/16)

γ = cos (3π/16)

μ = sin (3π/16)

ν = sin (π/16)
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−
−
−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

λ−γμ−ν
γνλ−μ
μ−λ−ν−γ
νμγλ

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

43

52

61

70

7

5

3

1

xx
xx
xx
xx

z
z
z
z λ = cos (π/16)

γ = cos (3π/16)

μ = sin (3π/16)

ν = sin (π/16)

xNT
N

z)(2
= xNT

N
z)(2
=

xn x(N-1) - n

zn

xn x(N-1) - n

zn+1

DCT coef. DCT coef.

+

+

xn x(N-1) - n

-

x

DCT coef.

+

x

DCT coef.

zn zn+1

Data Flow Graph of the
Even/Odd DCT kernel

Even/Odd DCT Implementation

With N = 8

Mapping on 4
Dnodes

Figure 13 Wavelet transform implementation onto the systolic

ring (see online version for colours)

Figure 14 Block matching implementation onto the systolic ring
(see online version for colours)

P. Benoit et al.

Figure 15 Task mapping/scheduling in three different scenarios (see online version for colours)

5 Evaluation and experimental results

The DHM unit has been implemented and attached to the
systolic ring, and then tested on three DSP kernels.
Simulations have demonstrated the run-time adaptability on
different application scenarios. In order to generalise our
approach on larger sets of scenarios, a simulation
framework has been developed and is presented in this
section.

Figure 16 depicts the simulation environment developed
to explore and characterise the proposed approach. The
generation of task scheduling and the DHM mapping is
completely automated allowing to produce results on a large
number of scenarios. The simulation framework is
composed of a C++ programme with constants defined
to tune the scenario characteristics or architecture generic
parameters. This programme is interfaced with a
spreadsheet programme calculating and probing the
resulting task mapping. Also, the previous metrics are
automatically computed and plotted for characterisation.

Figure 16 The simulation environment (see online version
for colours)

 Run-time mapping for dynamic reconfiguration management in embedded systems

Two instances of the systolic ring have then been
experimented: an eight processing element version (l = 4,
d = 2) and a 32 processing element instance (l = 8, d = 4).
For a given architecture, ten scenarios are generated with a
random task sequence and a given range of scenario
parameters. For each scenario, the parameters have been
drawn lots: the task requirements in terms of processing
elements and memory bandwidth, the workload (number of
tasks from 2 to 80 (card θ ∈ [2, 80], on a given time n with
variable task duration nk), and the task sequence. Each
generated scenario corresponds to a task scheduling. Three
mapping procedures are then performed: one without
the DHM capabilities, other ones with simultaneous
multi-tasking procedure (DHM-SMT), and the last one with
SMT and task duplication (DHM-SMT-TD). In order to
extract statistical results, a total of 300 scenarios have been
simulated for a given workload. Thus, the presented values
in the following figures correspond to a mean value on
300 samples.

Figure 17 depicts the resulting task scheduling (ten
tasks) with a relative workload for both tested architectures
(80% for 8-PE systolic ring, and 20% for 32-PE systolic
ring). The Blue histogram represents the cumulated resource
requirements at a given time. The size and shape of the
tasks were inspired from the image processing kernels
presented in the previous section. During a run-time
duration equal to 5,000 seconds, ten tasks are run. We
observe a maximum of 13 resources required and a mean
value around six processing elements.

Figure 17 Example of a generated task-scheduling

We have depicted in Figure 18 and Figure 19 the resulting
placement and scheduling on both 8-PE systolic ring and
32-PE systolic ring. In Figure 18, we notice that without any
relocation possibility, the co-processor is underexploited
and it rejects a lot of task requests. With DHM SMT, the
resource utilisation is clearly higher. Because of its
relocation feature, the task acceptance is improved. Thanks
to the TD of DHM, we observe on the yellow histogram that
the maximum of available resource can be reached while on
the other ones it is either seldom (with SMT) or never.
However, this technique does not increase the task
acceptance.

Figure 18 Task scheduling on 8-PE

Figure 19 Task scheduling on 32-PE

Figure 20 Characterisation with 8-PE

In Figure 19, with the same scenario, we show that the
resulting placement/scheduling are exactly the same without
any relocation feature. This results in a high under-usage of
the available resources. With DHM SMT, all the task
requests are accepted and thanks to the TD feature, a
maximum of 26 parallel operations is reached. However, the
systolic ring with 32-PE remains underused compared to the

P. Benoit et al.

large number of available resources. This can be explained
by the fact that resulting workload is four times lower.

Figure 21 Characterisation with 32 PE

Figure 22 and Figure 23 show the evolution of the MTeff
and Peff performances on different system workloads.
There are five different workload levels compared in this
survey: from very low workloads (scenario #1) to very high
workloads (scenario #5). Please, notice that in each case, the
WL produced by these scenarios is always four times lower
for 32-PE systolic ring. The histograms plotted here
highlight the difference between two different instances of
the systolic ring (8-PE in Figure 22, and 32-PE in Figure
23). The results presented above were done for a high
workload scenario (scenario #4). We observe here the
evolution in Peff and MTeff. Basically, Peff increases in
both cases but grows quickly in the smallest systolic ring. It
reaches a value between 80% to 90% for high and very high
workloads, with a typical value around 70%. However, the
MTeff decreases to a value around 60% for very high
workloads. For the biggest systolic ring, the increase in Peff
is slower but it reaches a value of 60% for the very high
workloads, and still the task acceptance is higher than 90%.

Figure 22 Peff and MTEff on 8-PE with different task schedules

Note: With a workload from 20 to 100.

Figure 23 Peff and MTEff on 32-PE with different task schedules

Note: Same scenarios as Figure 22 resulting in a 0.05 to

25 workload.

Figure 20 and Figure 21 characterise both scenarios and
architectures thanks to the metrics suggested in Section 3.
These results here emphasise the improvements obtained
thanks to DHM through SMT and TD features. On the
smallest systolic ring, the processing efficiency is clearly
increased from 30% to almost 90%. The multi-tasking
efficiency is also basically improved as it is more than
doubled (from 30% to 70%) and the co-processor is used
almost all the time (more than 95% of run-time). In
Figure 21, we observe that all the tasks have been accepted
(multi tasking efficiency equals 100%) and the systolic ring
is used 100% of the run-time. But the processing efficiency
is lower than the previous one as the set of tasks used for the
simulation has a lower workload (20%).

When the set of tasks simulated is compounded with
bigger sized tasks (Figure 24), the obtained results show an
improved processing efficiency but the multi-tasking
efficiency is lowered down.

Figure 24 Task scheduling on 32-PE

6 HW and SW implementations

To evaluate the cost and performances of hardware and
software implementations, we have designed both of them.
In this section, we show the obtained results and we analyse
the perspectives of each one.

6.1 HW DHM: Saturn ring system

The Saturn controller is a DHM unit implementation
for the systolic ring architecture. This unit is a dedicated
configuration processor. It is mainly composed of a
programme counter (PC) that allows the generation of the
programme memory addresses. Data coming from this
memory are either headers or configuration words. Different
logic blocks are used for topology matching analysis

 Run-time mapping for dynamic reconfiguration management in embedded systems

between the current state of the reconfigurable accelerator
and the header fields. When a compatibility is found (after a
configuration rotation or not), a configuration word is read
from the memory and then modified accordingly. Dedicated
registers are used to store the state of the systolic ring
resources (e.g., Dnodes) at each cycle in order to allocate
them if necessary.

Figure 25 Task scheduling on 32 PE (see online version
for colours)

The Saturn controller is a finite state machine (FSM)
designed to make decisions as quickly as possible for fast
dynamic reconfiguration. It is used to schedule the different
steps of the DHM management, by generating chip enable
(ce) signals to the datapath. The complexity of this FSM is
about 52 states in the first version, where TD is not possible.
Enabling this implies 20 additional states in the FSM.

Table 3 Performance and overhead of HW DHM

Saturn Area
(mm²)

Min. lat
(cycles)

Max. lat
(cycles)

Power cons.
(mW/MHz)

DHM SMT 0.38 6 25 0.10
DHM
SMT-TD

0.40 6 25 0.12

Saturn has been designed in behavioural VHDL and then
synthesised with Cadence design flow as illustrated in
Table 3. The design kit used is AMS 0.35 µ with four metal
layers (3.3 V). The maximum accessible frequency in this
technology for the synthesised hardware is 30 MHz.

6.2 SW DHM: the plasma processor

We have used a soft processor to implement the DHM
algorithm with a software programme. This one is a
MIPS-like processor. It is based on a 32 bits CPU, a local
memory and an UART. The CPU is based on a three stage
pipelined unit, an ALU, a shifter and a multiplier.

The DHM programme is first compiled with a gcc cross
compiler with the third level of optimisation allowing a gain
on the performances around 20%. This code is then loaded

into the local memory and executed indefinitely. Two
different implementations have been tested: one optimised
for memory, the other optimised for speed. The results are
summarised in the table below. Several memories were
synthesised from the manufacturer website following the
size required for the code. The maximum accessible
frequency for the synthesised processor is 30 MHz for an
area equal to 1.44 mm2.

Table 4 Performance and overhead of SW DHM

Plasma Mem.
(KB)

Min. lat.
(cycles)

Max. lat.
(cycles)

Power cons
(mW/MHz)

DHM1 SMT 23 3,806 65,902 1.25
DHM1
SMT-TD

25 3,806 65,902 1.36

DHM2 SMT 16 1,200 188,359 1.12
DHM2
SMT-TD

18 1,200 188,359 1.16

6.3 Performance comparisons

HW and SW-DHM controllers have been designed both for
a systolic ring instance composed with 8 Dnodes. After
synthesis, the designs have been validated by simulations.
For HW-DHM, the whole algorithm takes less than
25 cycles (0.8µs@30MHz) to dynamically modify and
(re-)allocate a pre-defined configuration. The area overhead
is about 0.4 mm2, which represents less than 10% of the
systolic ring. For SW-DHM, the 32 bits processor has a
silicon area of 1.44 mm2 (about 36% of the systolic ring
area) and implies in the worst case up to 65,902 cycles
(2.1mms@100MHz) to perform the same allocation task.
These results are listed in Table 5.

Table 5 Comparison of performance and overhead of HW and
SW DHM

 HW-DHM scheduler SW-DHM scheduler

Area (mm2) 0.40 1.44
Time (µs) 0.83 2,186.73
1/(A.T) 3 3.10–4

Not surprisingly, these results clearly show the superiority
of the dedicated approach with a global performance [1/AT
(DeHon, 1998)] 10,000 times better than the SW-DHM.
However, the HW-DHM requires much more design effort,
while the SW-DHM can be easily changed by simply
reprogramming the processor. Moreover, the software
approach is far more scalable as it requires no area overhead
for different instances. In terms of latency introduced by the
mapping process, the quality of service obtained with
hardware DHM is better than the software DHM as it is less
than a microsecond, which certifies a very fast
reconfiguration. However, for some applications, a
maximum latency of 2 ms can be acceptable (i.e., audio
applications require less than 8 ms).

P. Benoit et al.

Table 6 Our contribution compared to the existing solutions

Name Sched. Reloc. Replic. Config. manager Location Ref

XC6200 Static No No No - Shirazi et al. (1998)
XC6200 Static Yes No No - Burns et al. (1997)
XC6200 Dyn. Yes No No - Robinson and Lysaght (1999)
V2-Pro Static No No SW PowerPC FPGA Curd (2003)
V2 Static No No SW µBlaze FPGA Blodget et al. (2003)
SCORE Static No No HW Dedicated module Caspi et al. (2000)
RAW Static No No Compiler - Taylor et al. (2002)
Our approach Dyn. Yes Yes HW or SW Dedicated module

7 Conclusions and future works

In this article, we have proposed and implemented a method
for dynamic reconfiguration management. This method is
based on a DHM algorithm allowing an abstraction, at
design-time, of the dynamic reconfiguration management.
The DHM algorithm aims at exploiting more efficiently the
processing resources thanks to an adaptive online
scheduling technique. A case study on the systolic ring
architecture has proven the feasibility of the proposed
approach. The simulation results show an improved
processing efficiency and dynamic reconfiguration is
directly and automatically managed by the hardware. The
HW-scheduler offers a clearly better performance/area
trade-off, while the SW-DHM approach is attractive from
the point of view of its flexibility. The features of our
approach compared to related works are depicted in Table 6.

A ‘fine-grain’ implementation could also be considered
but we strongly believe that our method takes its
whole sense on coarse grain architectures and proposed
DHM is very easy to adapt to any processing element
interconnection topology. The main limitation stands
actually on the processing element programming. We are
therefore exploring a new architectural support for DHM
based on a mesh network of RISC processors that we can
directly address with a C code.

References

Blodget, B., McMillan, S. and Lysaght, P. (2003) ‘A lightweight
approach for embedded reconfiguration of FPGAs’, in
DATE‘03, pp.399–400, Germany.

Burns, J., Donlin, A., Hogg, J., Singh, S. and Wit, M. (1997) ‘A
dynamic reconfiguration run-time system’, in FCCM‘97,
pp.66–75, USA.

Carvahlo, E., Calazans, N., Briao, E.W. and Moraes, F.G.
(2004) PADReH – a framework for the design and
implementation of dynamically and partially reconfigurable
systems’, 17th Symposium on Integrated Circuits and
Systems Design – SBCCI 2004, pp.10–15, ACM Press, New
York.

Caspi, E., Chu, M., Huang, R., Yeh, J., Wawrzynek, J. and
DeHon, A. (2000) ‘Stream computations organized for
reconfigurable execution (SCORE)’, FPL 2000, pp.605–614.

Chen, W.H., Smith, C.H. and Fralick, S. (1977) ‘A fast

computational algorithm for the discrete cosine transform’,
IEEE Trans. Commun., September, Vol. COM-25,
pp.1004–1009.

Curd, D. (2003) ‘Dynamic reconfiguration of RocketIO MGT
attributes’, Xilinx Application Note XAPP660, V2.1,
November.

Danne, K. and Platzner, M. (2005) ‘A heuristic approach to
schedule periodic real-time tasks on reconfigurable
hardware’, FPL 2005, pp.568–573.

DeHon, A. (1998) ‘Comparing computing machines’, in
Configurable Computing: Technology and Applications,
Vol. 3526, pp.124–133.

Goldstein, S.C., Schmit, H., Budiu, M., Cadambi, S., Moe, M.,
Reed Taylor, R. (2000) ‘PipeRench: a reconfigurable
architecture and compiler’, IEEE Computer, Vol. 33, No. 4,
pp.70–77.

Huebner, M., Ullmann, M., Braunn, L., Klausmann, A. and
Becker, J. (2004) ‘Scalable application-dependent network on
chip adaptability for dynamical reconfigurable real-time
systems’, FPL‘2004, LNCS 3203, pp.1037–1041.

Park, S.R. and Burleson, W. (1997) ‘Reconfiguration for power
saving in real-time motion estimation’, ICASSP.

Robinson, D. and Lysaght, P. (1999) ‘Modeling and synthesis of
configuration controllers for dynamically reconfigurable logic
systems using the DCS CAD framework’, in FPL‘99, Lecture
Notes in Computer Science, Vol. 1673, UK.

Sassatelli, G., Torres, L., Benoit, P., Gil, T., Diou, C., Cambon, G.
and Galy, J. (2002) ‘Highly scalable dynamically
reconfigurable systolic ring-architecture for DSP
applications’, DATE 2002, pp.553–558.

Shirazi, N., Luk, W. and Cheung, P. (1998) ‘Run-time
management of dynamically reconfigurable designs’, in
FPL’98, Lecture Notes in Computer Science, Vol. 1482,
Springer-Verlag, Heidelberg, Estonia.

Singh, H., Lee, M-H., Lu, G., Kurdahi, F.J., Bagherzadeh, N.,
Chaves Filho, E.M. (2000) ‘MorphoSys: an integrated
reconfigurable system for data-parallel and
computation-intensive applications’, IEEE Trans. Computers,
Vol. 49, No. 5, pp.465–481.

Sweldens, W. (1998) ‘The lifting scheme: a construction of second
generation wavelets’, SIAM Journal on Mathematical
Analysis, Vol. 29, No. 2, pp.511–546.

Taylor, M.B., Kim, J.S., Miller, J., Wentzlaff, D., Ghodrat, F.,
Greenwald, B., Hoffmann, H., Johnson, P., Lee, J-W.,
Lee, W., Ma, A., Saraf, A., Seneski, M., Shnidman, N.,
Strumpen, V., Frank, M., Amarasinghe, S.P. and Agarwal, A.

 Run-time mapping for dynamic reconfiguration management in embedded systems

(2002) ‘The raw microprocessor: a computational fabric for
software circuits and general-purpose programs’, IEEE
Micro, Vol. 22, No. 2, pp.25–35.

Ullman, M., Hübner, M., Grimm, B. and Becker, J. (2004)
‘On-demand FPGA run-time system for dynamical
reconfiguration with adaptive priorities’, Becker, J.,
Platzner, M. and Vernald, S. (Eds.): FPL 2004, LNCS 3203,
pp.454–463, Springer-Verlag.

Websites
Atmel Corporation, available at http://www.atmel.com.
eASIC, available at http://www.easic.com/.
M2000 – Embedded FPGA, available at http://www.m2000.fr/.
Xilinx Corporation, available at http://www.xilinx.com.

