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Chapter 6
Embedded Systems Security for FPGA

B. Badrignans, F. Devic, L. Torres, G. Sassatelli, and P. Benoit

Abstract The main goal of this chapter is to study FPGA devices in the field of
secured applications. We mainly address data protection based on a well defined
threat model. When dealing with FPGAs at the system level, two kinds of data are
of paramount importance: bitstream and external memory. To cover these topics,
we first review state of the art FPGA security mechanisms and good practices, fol-
lowed by performance analysis achievable using hardware implementation of cryp-
tographic algorithms in current FPGAs. We then tackle external memory protection
and how FPGAs can provide an efficient solution. Next, we highlight security is-
sues specific to FPGAs, bitstream replay attacks, for example, and suggest solutions
to improve bitstream management security, focusing on secure remote updating of
FPGA bitstreams. Finally we give the results of a concrete case, i.e., a platform
based on an FPGA device. This last section provides both a practical and an indus-
trial point of view that will enable readers to evaluate the pertinence of the solutions
proposed.

6.1 Introduction and Objectives

Motivations to employ FPGAs (Field-Programmable Gate Array) in secure systems
are multiple: hardware configuration can be updated all along system life-cycle, FP-
GAs can be finely configured to implement cryptographic functions efficiently, and
security applications generally generate low sales volumes making FPGAs more
attractive than ASICs (Application Specific Integrated Circuits). However ASICs
often contain special features that are not available in all FPGAs. For instance, most
current FPGAs do not include non-volatile memories that are useful in security ap-
plications (e.g., to store cryptographic keys). Moreover designers including FPGA
devices in their design must not only consider in its threat analysis the applicability
of attacks generally targeting ASICs and general purpose processors (e.g., memory
tampering) but must also explore threats specific to FPGAs. For instance, an adver-
sary tampering with the FPGA configuration file, a.k.a. the bitstream, can modify
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functions implemented inside the FPGA user logic and thereby impact the behavior
of the FPGA-based system. The main goal of this chapter is to explore threats poten-
tially impacting FPGA-based systems. We address data protection based on a well
defined threat model where the adversary has physical access to the FPGA-based
system.

We mainly address data/code protection since two kinds of data—bitstream and
external memory—are of paramount importance when dealing with FPGAs at the
system level. In order to highlight the importance of the threats discussed in this
chapter, we identified three security-sensitive applications potentially including FP-
GAs in their designs.

Physically Inaccessible Systems Some systems like satellite or space craft are
intrinsically protected against physical attacks since inaccessible during their de-
ployment in space. Devices can also be made inaccessible using secure rooms or
strong-box. Due to their peculiar location we can consider that they are protected
against any attack requiring physical access to the device. However the cost of this
system as well as their potential strategic importance (e.g., in military and commu-
nication satellites) emphasis the requirement to make them highly secure against
remote attacks.

Personal Hardware Security Modules—HSM Hardware security modules are
devices dedicated to provide a high level of security which generally cannot be
achieved using general purpose computers. They often offer ways to physically pro-
tect cryptographic keys or sensitive data. These systems are used in highly secure
applications such as in-line banking applications, ATMs transactions, and compa-
nies network infrastructures. Since the appearance of smart card for payment and
money withdrawal, most individual owns an increasing number of security modules
(e.g., biometric passport, mobile phone SIM card, French health insurance card).

Smart cards do not embed programmable logic yet (even though the growing
market of multi-applications cards might encourage such features in a near future
[25]) but they are not the only personal secure devices available. For instance the
smart drive provided by the French company Bull embeds an FPGA device in charge
of cryptographic and key management operations. This device, called Globull, is a
secure USB hard disk drive protected by a user PIN (Personal Identification Num-
ber). It provides also cryptographic services like smart cards, such as on-board RSA
key generation, RSA signature and encryption. Therefore we can reasonably imag-
ine that in coming years most individuals traveling with sensitive data will have
advanced personal security devices embedding FPGA devices. Applications can be:
mobile disk encryption, e-mail protection, secure key management, VPN access.

Therefore we can reasonably assume that in the near future most individuals who
travel with sensitive data will own advanced personal security devices that can take
embedded FPGA devices. Some applications are mobile disk encryption, e-mail
protection, secure key management, or VPN access. Whatever the application, per-
sonal security devices have their own constraints. Firstly, most devices assume that
attackers will never access them when they are unlocked by the user. For instance,
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laptop disk encryption is ineffective if someone steals it when its disk is unlocked.
In addition, the devices can reasonably trust their owner, after all the information
that these devices protect belong to the user.

Set-Top Boxes/Video Game Console Set-top boxes are devices generally rented
out to customers by ISP (Internet Service Provider) or pay-TV providers. Since these
systems provide access to protected multimedia content they must embed some se-
curity features to enforce digital right management. Their environments are dramat-
ically different from previous examples of applications. First such systems are not
shielded or physically protected and the user is potentially the adversary. There-
fore, the adversary has physical access and is not limited in time to carry out his/her
attack. Moreover he often benefits from a community of attackers or security re-
searchers [42] sharing their technical knowledge and discoveries online.

In order to address security concerns related to these possible scenarios, this
chapter is divided into three main parts each of which addresses one of the three
key points involved in dealing with security and FPGAs. The first point is related
to protecting data and code processed by FPGAs. We present a widely recognized
threat model and existing efforts to protect a system against these threats, and then
several possible solutions. These approaches leverage applications and FPGA char-
acteristics to reduce the cost of security. The benefit is a strong optimization com-
ponent in terms of memory overhead and performance. The second point is related
to reconfiguration management of targeted architectures. This point is very sensi-
tive as FPGAs offer considerable flexibility through dynamic reconfiguration. This
feature can not only be used to perform upgrades and bug fixing, but also allows
for reactions in the case of an attack. However, if not handled correctly, this strong
advantage can become a security breach. After describing potential threats that use
the reconfiguration link, we detail current efforts to counter them. Then we pro-
pose an original technique to perform remote partial reconfiguration. Based on such
technology, a whole protocol and architecture were designed to perform secure re-
configuration. The third point is defining a secure platform. We thoroughly analyze
what is required to obtain a fully secure FPGA based on previous solutions. A pro-
totype of this platform has been designed and offers interesting features to target,
including gigabit network encryption, SSL accelerator or offload engine, VPN ac-
celerator, Hardware Security Module with high performances.

6.2 Definitions—Glossary

In this chapter, the following vocabulary is used to distinguish the different internal
logic types in FPGA devices:

• static logic is the static part of the FPGA; the designer cannot modify its archi-
tecture. FPGA devices often embed general purpose processor in the static logic.

• user logic is the configurable logic embedded in FPGA devices. The user logic
may include LUTs, RAM blocks, hardware multipliers, DSP blocks or switch
matrix for routing signals.
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• configuration logic is the part of the static logic in charge of loading the bitstream
into the user logic, it is typically composed of a JTAG chain or any configuration
port and of the bitstream decryption engine (if any).

In the following section we distinguish four stakeholders involved in an FPGA-
based system development life cycle:

• The FPGA vendors are the companies designing, producing and providing
FPGA chips (e.g., Xilinx, Altera or Actel).

• IP designers provide reusable units of hardware units often delivered as netlist
or Hardware Description Language (HDL) codes. IP cores may be encryption
engines, general purpose processors or memory interfaces.

• The System Designer (SD) assembles IPs provided by different IP designers to
produce the final bitstream which configures the FPGA device. In case of complex
FPGA-based systems, we assume in this book that the SD is also responsible
to produce the platform potentially composed of different types of circuit (e.g.,
General purpose processors, ASICs or FPGAs).

• The system owner is the end user who exploits the system, the SDs and IP de-
signers do not necessarily trust owners.

We distinguish three types of FPGA chips with respect to their configurability
properties:

Current FPGAs can be classified in three different types:

• Anti-fuse FPGAs are historically the first non-volatile FPGAs. Each configura-
tion point is controlled by an anti-fuse element. Configuration is fixed and cannot
be changed after programming. Actel is the leader in this market.

• Flash-based FPGA configuration sites are controlled by a Flash transistor, they
are reconfigurable but non-volatile.

• The last type is SRAM based FPGAs or volatile FPGAs are composed of SRAM
memory cells and, therefore, cannot keep their configuration when power is down.
An external non-volatile memory is generally required to store the bitstream. Al-
tera and Xilinx are the leading companies in the market of SRAM FPGAs, offer-
ing low-cost as well as high-performance SRAM-based FPGA devices.

FPGAs can be configured in two main ways:

Static Reconfiguration is the classical ability of FPGA devices to be reconfig-
ured when powered down. This feature is useful for cryptography and security-
sensitive applications. Cryptographic algorithms have a limited lifetime, the system
designer can provide new algorithms during the exploitation of the system. New
attacks can also be discovered and again the system designer can provide a more
robust version of the system.

Dynamic Reconfiguration is the ability of FPGAs to be reconfigured at runtime.
Xilinx has been supplying tools and mechanisms for this purpose for many years.
This feature allows the system to swap logic blocks thus allowing many applications.
However, the process also introduces security issues since portions of the bitstream
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need to be secured. The system designer may encrypt and authenticate these pieces
of hardware in order to avoid a malicious bitstream being loaded. This has to be done
inside the user logic since the SD is in charge of partial reconfiguration through
an internal port located in the user logic, called ICAP for Internal Configuration
Access Port. Partial reconfiguration security is not addressed in this book since it
is not applicable on all FPGAs, and also because the concepts developed to secure
classical bitstreams can be used for partial reconfiguration.

6.3 Confidentiality and Integrity of Data Processed by
Reconfigurable Platforms

Data processed by general purpose processors embedded in the static logic of FP-
GAs or by IPs implemented in the user logic are commonly stored in off-chip mem-
ories. In applications where physical adversaries are considered (e.g., set top box),
an attacker can retrieve data transiting on the bus, thereby challenging data confi-
dentiality, or tamper with them, thereby challenging data integrity. In this section
we first describe the passive and active attacks allowing an adversary to retrieve
or tamper with data transiting between the FPGA chip and the memory. Then we
describe potential countermeasures to this security issue and solutions we recently
proposed.

6.3.1 Threat Analysis

Confidentiality and integrity of data stored in off-chip memory is usually a security
concern when attackers with physical access to the device are considered (e.g., in
application like set-top box). However, the main trust assumption made is that the
processor chip is resistant to all physical attacks and is thus trusted. Moreover, the
cryptographic engine required for encryption and authentication are assumed resis-
tant to side channel attacks. We consider the adversary has full control of the data
stored in memory and transiting on the bus between the FPGA chip and the mem-
ory. We consider two kinds of physical attacks an adversary can carry out: passive
and active attacks. Passive attacks consist in probing the bus to retrieve the memory
content. Such attacks challenge the confidentiality of data in memory.

In an active attack, the adversary corrupts the data residing in memory or tran-
siting over the bus; this corruption may be considered as data injection since a new
value is created. Figure 6.1 gives the example of an attacked device where an adver-
sary connects his own (malicious) memory to the targeted platform via the off chip
bus.

We distinguish between three classes of active attacks, defined with respect to
how the adversary chooses the inserted data. Figure 6.2 depicts the three active
attacks; below, we provide a detailed description of each one based on the attack
framework in Fig. 6.1:
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Fig. 6.1 An example of a
framework of attack targeting
the external memory of a
computing platform

1. Spoofing attacks: the adversary exchanges an existing memory block with an
arbitrary fake one (Fig. 6.2-a, the block defined by the adversary is stored in the
malicious memory, the adversary activates the switch command when he wants
to force the processor chip to use the spoofed memory block).

2. Splicing or relocation attacks: the attacker replaces a memory block at address
A with a block at address B , where A �= B . Such an attack can be considered

Fig. 6.2 Three kinds of active attacks: (a) spoofing, (b) splicing and (c) replay
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as a spatial permutation of memory blocks (Fig. 6.2-b: the adversary stores the
content of the block at address 1 in the genuine memory at address 5 in the mali-
cious memory. When the processor requests the data at address 5, the adversary
activates the switch command so the processor reads the malicious memory. As
a result, the processor reads the data at address 1).

3. Replay attacks: a memory block located at a given address is recorded and in-
serted at the same address at a later point in time; by doing so, the value of
the current block is replaced by an older one. Such an attack can be considered
as a temporal permutation of a memory block, for a specific memory location
(Fig. 6.2-c: at time t1, the adversary stores the content of the block at address
6 in the genuine memory at address 6 in the malicious memory. At time t2, the
memory location at address 6 has been updated in the genuine memory but the
adversary does not perform this update in the malicious memory. The adversary
activates the malicious memory when the processor requests the data at address
6, thus forcing it to read the old value stored at address 6).

6.3.2 State of the Art

Two distinct strategies are described in the state of the art to thwart the active attacks
described in our threat model. Each strategy is based on different authentication
primitives, namely a cryptographic hash function and a message authentication code
(MAC) function. In this section, we first describe how these primitives allow for
memory authentication and how they should be integrated in tree structures in order
to avoid excessive overheads in on-chip memory.

6.3.2.1 Authentication Primitives for Memory Authentication

Hash Functions The first strategy (Fig. 6.3-a) that enables memory authentica-
tion consists in storing on-chip a hash value for each memory block stored off-chip
(write operations). The integrity of read operations is checked by re-computing a
hash over the loaded block and by then comparing the resulting hash with the on-
chip hash fingerprinting the off-chip memory location. The on-chip hash is stored
in the tamper resistant area, i.e., the processor chip, and is thus inaccessible to ad-
versaries. Therefore, spoofing, splicing and replay are detected if a mismatch occurs
in the hash comparison. However, this solution may have an unaffordable on-chip
memory cost: by considering the common strategy [17, 22, 38] of computing a fin-
gerprint per cache line and assuming 128-bit hashes and 512-bit cache lines, the
overhead will be 25% of the memory space to be protect.

MAC Functions In the second approach (Fig. 6.3-b), the authentication engine
embedded on-chip computes a MAC for every data block it writes in the physical
memory. The key used in the MAC computation is securely stored on the trusted
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Fig. 6.3 Authentication primitives for memory integrity checking

processor chip such that only the on-chip authentication engine itself is able to
compute valid MACs. As a result, the MACs can be stored in untrusted memory
because the attacker is unable to compute a valid MAC over a corrupted data block.
In addition to the data contained by the block, the pre-image of the MAC func-
tion contains a nonce. This enables protection against splicing and replay attacks.
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The nonce precludes an attacker from passing off a data block at address A, along
with the associated MAC, as a valid (data block, MAC) pair for address B , where
A �= B . It also prevents the replay of a (data block, MAC) pair by distinguishing
two pairs related to the same address, but written in memory at different points in
time. In read operations, the processor loads the data to be read and its correspond-
ing MAC from the physical memory. It checks the integrity of the loaded block by
first re-computing a MAC over this block and a copy of the nonce used in the write
operation and by then comparing the result with the fetched MAC. However, to en-
sure the resistance to replay and splicing, the nonce used for MAC re-computation
must be genuine. A naive solution to assure this requirement is to store them in the
trusted and tamper-evident area, the processor chip. The related on-chip memory
overhead is 12.5% in the case of computing a MAC per 512-bit cache line using
64-bit nonces.

6.3.2.2 Integrity Trees

In the previous section, we presented two authentication primitives that can prevent
the active attacks described in our threat model. These primitives require storage of
reference values—i.e., hashes or nonces—on-chip to thwart replay attacks. They do
provide memory authentication but only at a high cost in terms of on-chip memory.
If we consider a realistic case of 1 GB of RAM memory, the hash and MAC (with
nonce) solutions require respectively at least 256 MB and 128 MB of on-chip mem-
ory. These on-chip memory requirements are clearly not affordable even for high
end processors. It is thus necessary to “securely” store these reference values off-
chip. By securely, we mean that we must be able to ensure their integrity to preclude
attacks on the reference values themselves. Several authors suggest applying the au-
thentication primitives recursively on the references. By doing so, a tree structure is
formed and only the root of the tree (the reference value obtained in the last iteration
of the recursion) needs to be stored on the processor chip, the trusted area. There
are two existing tree techniques (in addition to those described in this work):

1. Merkle Tree [10] uses hash functions and is historically the first integrity tree. It
was originally introduced by Merkle [30] to authenticate digital signatures and
adapted for integrity checking of memory content by Blum et al. [10].

2. PAT (parallelizable authentication tree) [24] overcomes the issue of non-
parallelizability of the tree update procedure by using a MAC function.

General Model of Integrity Tree The common philosophy behind integrity trees
is splitting the memory space to be protected into M equal size blocks that are
the leaf nodes of the balanced A-ary integrity tree (Fig. 6.4). The remaining tree
levels are created by recursively applying the authentication primitive f over A-
sized groups of memory blocks, until the procedure yields a single node called the
root of the tree. The arity of the constructed tree is thus defined by the number of
children A a tree node has. The root reflects the current state of the entire memory
space; making the root tamper-resistant thus ensures tampering with the memory
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Fig. 6.4 General model of
2-ary integrity tree

space can be detected. How the root is made tamper-resistant depends on the nature
of f and is detailed below. Note that the number of checks of the verification of
the integrity of one leaf node required depends on the number of iterations of f

and thus on the number of blocks M in the memory space. The number of checks
corresponds to the number of tree levels L defined by: L = lgM .

6.3.2.3 Execute-Only Memory (XOM)

XOM [28] is a security solution from Stanford University. The XOM approach,
which provides memory protection, is based on a complex key management. The
main XOM features are data ciphering, data hashing, data partitioning, interruption
and context switching protection. Figures 6.5 and 6.6 provide an overview of the
XOM architecture and mechanisms. All the security primitives are included in the
trusted zone. The only security information that is not in the trusted zone are the
session keys. That is why XOM owns a complex key management to guarantee a
secure architecture.

The first version of XOM [28] is known to have security holes, like no protection
against replay attacks. In [45], the authors extended their proposal and replaced the
AES-based ciphering scheme with a system based on OTP to guarantee protection
against replay attacks and also to increase the performances of the system. Con-
cerning the global security level of the XOM architecture, the attack possibilities are
fully dependent on the integrity checking capabilities. To succeed, attackers must
be able to pass through the integrity check in order to execute their own program
or use their own data. They may exploit some collisions in the hash algorithm used.
For example, with MD5 the signature is 128 bits long. If attackers wish to attack the
system, they need to find two inputs that will produce the same result with MD5.
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Fig. 6.5 XOM architecture for write request

Fig. 6.6 XOM architecture for read request

So they have one chance out of 2128 to get the same result. The security level of the
XOM mainly depends on the hash algorithm used, because SHA-1 could be used
for integrity checking. In this case the signature would be 160 bits long and the
probability of success would be one out of 2160.

6.3.2.4 AEGIS

AEGIS [37, 40] is an additional memory security solution from Massachusetts Insti-
tute of Technology. The confidentiality in the AEGIS solution relies on OTP encryp-
tion [39]. This encryption method typically has a small impact on memory latency
at the cost of memory space. The solution used by AEGIS for integrity checking
is called cached hash tree. This hashing approach is similar to a Merkle tree [30]
but to increase the efficiency of the method, some hash tree nodes are stored in a
cache memory included in the secure zone. The advantage is that instead of com-
puting all the tree nodes to the root, the system only needs to compute the values
until one value from the secured memory is reached. The only weakness in this so-
lution is architecture performance. Architecture performance is fully dependent on
the size of the cache memory used to store the secured nodes. Architecture perfor-
mance also depends on the algorithm used for hashing. As mentioned above, SHA-1
computation requires 80 cycles and MD5 only 64. AEGIS thus appears to be a very
complete solution to protect memory and program. The overhead is high in several
domains. The silicon area increased by 1.9 [40]. The CPU core is the part that is the
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most affected by this overhead. Moreover, all the logic needed to control the specific
mechanisms contributes to increasing the area (OTP core and hash core). The global
architecture performances depend on parameters like the size of the protected mem-
ory and of the cache memory. For security concerns, like XOM, AEGIS depends on
the integrity checking capabilities of the hash algorithm used for the Merkle tree. In
[40], the authors use SHA-1 which leads to a 160 bit signature. This means that the
likelihood of a successful attack is one out of 2160.

6.3.3 Proposed Memory Authentication Techniques

In this section, we describe memory authentication techniques proposed recently.
We first present a new authenticated encryption mode, the Block Level AREA
(Added Redundancy Explicit Authentication), which provides data integrity and
confidentiality and a cryptographic engine, called PE-ICE (Parallelized Encryption
and Integrity Checking Engine), based on this mode. We then show that the Block
Level AREA, like the authentication primitives described in Sect. 6.3.2, have to be
integrated into a tree structure called TEC-Tree (Tamper-Evident Counter Tree), in
order to avoid excessive overheads in on-chip memory. In the last part of this sec-
tion, we present another approach named AES-TASC (Time Address Segment Ci-
pher) that allows the use of a security policy to reduce the overhead due to security
mechanisms.

6.3.3.1 Block-Level AREA and PE-ICE

Block-Level AREA Block-Level AREA [15, 17] (Fig. 6.3-c) leverages the dif-
fusion property of block encryption to add an integrity checking capability to this
type of encryption algorithm. To do so, the AREA (Added Redundancy Explicit
Authentication [20]) technique is applied at the block level:

1. Redundant data (an n-bit nonce N ) is concatenated to the data D we want to
authenticate to form a plaintext block P (where P = D||N ), ECB (Electronic
CodeBook) encryption is performed to generate ciphertext C.

2. Integrity verification is done by the receiver who decrypts the ciphertext block
C′ to generate plaintext block P ′, and checks the n-bit redundancy in P ′, i.e.,
assuming P ′ = (D′||N ′), verifies whether N = N ′.

Thus, in a memory write, the on-chip authentication engine appends an n-bit
nonce to the data to be written to memory, encrypts the resulting plaintext block
and then writes the ciphertext to memory. The encryption is performed using a key
securely stored in the processor chip. In read operations, the authentication engine
decrypts the block it fetches from memory and checks its integrity by verifying that
the last n bits of the resulting plaintext block are equal to the nonce that was inserted
during encryption (in the write of the corresponding data). [15, 17] propose a system
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on chip (SoC) implementation of this technique for embedded systems. They show
that this engine can efficiently protect read only (RO) data of an application (e.g.,
its code) because RO data are not sensitive to replay attacks; therefore the address
of each memory block can be efficiently used as a nonce.1 However, for Read/Write
(RW) data (e.g. stack data) the address is not sufficient to distinguish two data writes
at the same address but at two different points in time. To recover the nonce in a read
operation while ensuring its integrity, [15, 17] propose storing the nonce on chip.
They evaluate the corresponding overhead at between 25% and 50% depending on
the block encryption algorithm implemented.

PE-ICE A Parallelized Encryption and Integrity Checking Engine, PE-ICE was
designed [15, 17], based on the block level AREA technique to encrypt and authen-
ticate off-chip memory. However, to avoid re-encryption of the whole memory when
the nonce reaches its limit (e.g., a counter that rolls over), we propose to replace it
with the chunk address concatenated with a random number. For each memory block
processed by PE-ICE, a copy of the enrolled random value is kept on chip to make
it tamper resistant and secret. In the following, a PE-ICE configuration is defined
as an implementation of PE-ICE with a given block cipher. A PE-ICE configuration
is denoted PE-ICE-bw where bw is the bit width of the block processed by the un-
derlying block cipher. In this section we first describe a PE-ICE configuration. Then
we evaluate the performances of several PE-ICE configurations at runtime.

PE-ICE-160—A PE-ICE Configuration. The Rijndael algorithm is the block ci-
pher that won the NIST contest for a new block encryption standard. The related
standard is called AES [2] (Advanced Encryption Standard). AES processes 128-bit
blocks and enrolls 128, 192 or 256-bit keys. However, the original Rijndael [11]
block cipher supports any key and block sizes that are a multiple of 32 between 128
and 256. This leads to several configurations for PE-ICE based on this block cipher.
We studied three of them, PE-ICE-128, PE-ICE-160 and PE-ICE-192, that use the
Rijndael algorithm processing respectively 128-bit (AES), 160-bit (Rijn-160) and
192-bit (Rijn-192) blocks. For the sake of clarity, we only detail PE-ICE-160 con-
figuration in this chapter; for a description of the other configurations, the reader is
referred to [15].

PE-ICE shifts the physical address by inserting tags between payloads. This
shift must be transparent for the CPU, thus PE-ICE handles the address translation
(Fig. 6.7).

Memory Consumption The amount of memory consumed by PE-ICE depends
on the tag storage of the off chip memory and on the storage of the reference ran-
dom values for the on chip memory. The off chip memory overhead is defined by
the ratio between the tag and the payload bit widths. For PE-ICE-160, the off chip
memory overhead is 25%. The on chip memory overhead is defined by the ratio
of the bit-length of a random value used to protect an RW chunk against replay to

1Note that the choice of the data address as nonce also prevents spoofing and splicing attacks on
RO data when MAC functions are used as authentication primitives.
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Fig. 6.7 Layout of a PE-ICE-160 chunk before encryption

the bit length of the corresponding protected payload. For PE-ICE-160, the on chip
memory overhead is respectively 6.25% and 25% depending if it is 8 bits or 32 bits
long. As we show in Sect. 6.3.3.2, we proposed in [15, 18] a scheme to reduce this
overhead.

The cost of data authentication in PE-ICE can be evaluated by its overhead com-
pared to AES-ECB encryption. On average this cost is 22%. This latency overhead
is partially due to the increase in the intrinsic latency of the underlying block ci-
pher. The hardware cost of PE-ICE-160 and of the AES-ECB is approximately 80
Kgates. At no additional hardware cost and with a low latency overhead, we showed
that PE-ICE:

1. Strengthens AES-ECB encryption—the tag inserted before encryption prevents
an adversary from detecting when the same data is transferred twice by monitor-
ing bus transactions.

2. Provides data authentication in addition to data confidentiality.

Performance Evaluation Results Eight benchmarks [1] designed for embedded
systems were used in this evaluation, running on an ARM processor core. The sim-
ulation results for the base platform serve as the reference and are shown in IPC
(instructions per cycle) in Fig. 6.8 for two different data cache and instruction cache
sizes (4 KB and 128 KB). We observed that the performance slowdown was mainly
related to the data cache miss rate, see Fig. 6.9.

Figure 6.10 shows the simulation results of the platforms emulating the AES-
ECB engine, PE-ICE-128, PE-ICE-160 and PE-ICE-192, in IPC normalized to the
performance of the base platform. The AES-ECB engine chart clearly shows that
the overhead of PE-ICE is mainly due to encryption; in the worst case it is 50%
(CJPEG–4 KB) and 31.5% and of 14.3% on average for a 4 KB and 128 KB data
cache, respectively. This quite significant timing performance cost can be dramati-
cally reduced by using a wider processor-memory bus (e.g. 64 bits) and by running
the encryption algorithm at its maximum frequency. We evaluated the implementa-
tion of PE-ICE with several block ciphers and showed that it provides data integrity
in addition to data confidentiality with negligible hardware cost and performance
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Fig. 6.8 Simulation results of the base platform for two different data cache sizes (4 KB and
128 KB) and two different instruction cache sizes (4 KB and 128 KB)

Fig. 6.9 Data cache miss rate for the set of benchmarks used for performance evaluation

overhead compared to standard encryption. In [15, 16], we also showed that PE-ICE
is more efficient than the conventional approach in ensuring data confidentiality and
integrity. The conventional approach is called generic composition and consists in
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Fig. 6.10 Run time overhead
of AES-ECB encryption and
of PE-ICE configurations for
two data cache sizes
(4 KB–128 KB)

chaining encryption with authentication performed with a message authentication
code algorithm. We showed that a generic composition scheme can require 50%
more hardware resources than PE-ICE and has an 18% overhead compared to an
encryption only scheme. In order to decrease the on chip memory overhead and be
sure to prevent replay attacks, we propose to build a tree that uses the block level
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AREA as authentication primitive. In the next section, we describes the TEC-Tree
(Tamper-Evident Counter Tree) [18].2

6.3.3.2 The Tamper-Evident Counter Tree (TEC-Tree)

In the TEC-Tree [18] the authentication primitive f is the Block-level AREA
(Fig. 6.4). Thus, the authentication primitive tags its input with a nonce N before
ciphering it with a block encryption algorithm in ECB mode and a secret key K kept
on-chip. The block level AREA is first applied to the memory blocks to be stored off
chip, and then recursively over A-sized groups of nonces used in the last iteration
of the recursion. The resulting ciphered blocks are stored in external memory and
the nonce used in the ciphering of the last block created—i.e., the root of the TEC-
Tree—is kept on chip, making the root tamper resistant. Indeed, without the key, an
adversary cannot create a tree node and without the on chip root nonce he cannot
replay the tree root. During verification of a data block D, D’s branch is brought
on-chip and decrypted. The integrity of D is validated if:

• Each decrypted node bears a tag equal to the nonce found in the payload of the
node in the tree level immediately above;

• The nonce obtained by decrypting the highest level node matches the on chip
nonce.

The tree update procedure consists in:

• Loading D’s branch decrypting nodes,
• Updating nonces,
• Re-encrypting nodes.

TEC-Tree authentication and update procedures are both parallelizable because
f operates on independently generated inputs: the nonces. The distinctive charac-
teristic of TEC-Tree is that it allows for data confidentiality. Indeed, as its authen-
tication primitive is based on a block encryption function, the application of this
primitive on the leaf nodes (data) encrypts them. The memory overhead3 MOTEC of
TEC-Tree [18] is:

MOTEC = 2

A − 1
.

2TEC-Tree uses nonce in its design as redundancy for the block level AREA techniques. In [15],
we first proposed to build a tree—called PRV-Tree, for PE-ICE protected Random Value Tree—
similar to TEC-Tree except that it uses random numbers instead of nonces. The purpose of the
PRV-Tree is to decrease the probability for an adversary of succeeding a replay by increasing the
length of the random number while limiting the on chip memory overhead to the storage of a single
random number (the root of PRV-Tree).
3[18] give a different formula for their memory overhead because they consider ways to optimize
it (e.g. the use of the address in the constitution of the nonce). For the sake of clarity, we give
a simplified formula of the TEC-Tree memory overhead by considering that the whole nonce is
made of a counter value.
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Table 6.1 Architectural Parameters for Simulation

Merkle Tree PAT (Parallelizable
Authentication Tree)

TEC-Tree
(Tamper-Evident
Counter Tree)

Splicing, Spoofing
Replay resistance

Yes Yes Yes

Parallelizability Tree Authentication
only

Tree Authentication
and Update

Tree Authentication
and Update

Data Confidentiality No No Yes

Memory Overhead 1/(A − 1) 3/2(A − 1) 2/(A − 1)

Comparison with Existing Trees Table 6.1 sums up the properties of the existing
integrity trees. PAT and TEC-Tree are both parallelizable for tree authentication and
update procedures while preventing all the attacks described in the state of the art.
TEC-Tree additionally provides data confidentiality. However, TEC-Tree and PAT
also have a higher off chip memory overhead than Merkle Tree, in particular because
they require storage of additional meta-data, the nonces.

6.3.3.3 AES-TASC

Memory Security Architecture The AES-TASC (Time Address Segment Ci-
pher) approach, shown in Fig. 6.11, relies on a hardware security core (HSC) fash-
ioned from FPGA logic and embedded memory that is able to manage different
security levels according to the data address received from the processor. A small
lookup table (the security memory map or SMM) is included in the core to store the
security level of memory segments accessed by tasks. Three security levels are pos-
sible for each memory segment: confidentiality only, confidentiality and integrity, or
no security. The implementation of the security policy in the SMM is independent
of the processor and associated operating system. The configuration of the SMM
and the rest of the core is contained in the encrypted FPGA bitstream. The isolation
of the SMM makes it secure against software modifications at the expense of soft-
ware level flexibility. New multi-task applications require a new FPGA bitstream to
achieve a new memory security protocol.

Security Level Management The increased use of soft and hard-core processors
in FPGAs has facilitated the use of operating systems in FPGA based systems. The
use of an OS provides a natural partitioning of the application code and data. In
Fig. 6.11, the application instructions and stack data of Task 1 have different secu-
rity levels. In this case, the application designer may wish to keep task processor
data secure to prevent copying. The application code may be less sensitive, con-
sequently eliminating the need for security. Our approach is designed to be used
in conjunction with a memory management unit (MMU). This unit ensures that a
task will not read or write memory segments that are not associated with it, which
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Fig. 6.11 Overview of the memory security system

creates a security risk if the security levels differ. The availability of configurable
security levels has an advantage over requiring all memory to perform at the high-
est security level of confidentiality and integrity checking. The amount of on chip
memory required to store tags for integrity checking can be reduced if only exter-
nal memory that requires security is protected. In addition, the latency and dynamic
power of unprotected memory accesses is minimized since unneeded security pro-
cessing is avoided. FPGA reconfigurability enables optimization of the required on
chip storage and modification via a new bitstream.

Memory Security Core Architecture Confidentiality in our system is similar
to the AES-based encryption scheme called Binary Additive Stream Cipher [29].
Rather than encrypting write data directly, our approach first generates a keystream
using AES that operates using a secret key stored in the FPGA bitstream. In our im-
plementation, a time stamp value, the data address, and the segment ID of the write
data are used as input to an AES encryption circuit to generate the keystream. These
parameters are required to protect the system against spoofing, replay and realloca-
tion attacks. This keystream is then XORed with the data to generate ciphertext that
can be transferred outside the FPGA. The time stamp is incremented during each
cache line write. The same segment ID is used for all cache lines belonging to a
particular application segment (i.e. same level of protection). The advantage of the
AES-TASC (AES in time address segment counter mode) approach over direct data
encryption of the write data can be seen during data reads. Keystream generation
can start immediately after the read address is known for read accesses. After the
data is retrieved, a simple, fast XOR operation is needed to recover the plaintext.
If direct data encryption is used, the decryption process would require many FPGA
cycles after the encrypted data arrives at the FPGA. Thus, the use of AES-TASC
significantly reduces the read latency of security. One limitation of this approach is
the need to store the time stamp (TS) values for each data value (usually a cache
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Fig. 6.12 Hardware Security Core Architecture

line) on chip so it can be used later to check data reads. A high level view of the
placement of security blocks is given in Fig. 6.12.

The percentage performance loss due to our security scheme is higher for systems
that include smaller caches. This is to be expected, since smaller caches are likely to
have a larger number of memory accesses, increasing the average fetch latency. Per-
formances are directly related to the designers security policy. A very conservative
approach in terms of security will lead to a larger performance penalty whereas a
fine tune security policy will lead to a limited reduction in performance. In practice,
the use of programmable protection allows the impact on application performance
to be reduced compared to uniform protection. An average of 12% performance
reduction was observed for a set of applications from multimedia and communica-
tion domains. This result compares favorably with other cryptographic approaches
where up to 50% performance loss can be observed. The same remarks apply to
the memory overhead, which is directly impacted by time stamp and integrity tag
values that consume secured on chip embedded memory and energy efficiency. Ex-
periments that have been conducted have shown the benefit of a flexible approach
to security.

6.4 Secure Bitstream Management

FPGAs are very specific silicon devices. Like microprocessors, they can be pro-
grammed and reprogrammed, but in the case of programmable logic devices the
architecture of the chip is changed according to a binary file called a bitstream. In
contrast, microprocessors are only programmed with instructions. If this hardware
reconfiguration capability is attractive for low-volume applications and opens a wide
range of opportunities for engineers or researchers, it can be a drawback in the field
of security sensitive applications. Therefore in the following section, we analyze the
impact of this feature on the robustness of a secure system.
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6.4.1 Threat Model

The first threat to a bitstream is an attacker who succeeds in retrieving it from the
system. The easiest way is to use the read-back capabilities of most FPGAs. This
function, generally used for debugging, allows the bitstream to be extracted from
an FPGA device at run time. Of course, this feature has to be disabled in a secure
context, but this not sufficient. For low cost SRAM FPGAs, bitstream retrieval is
very simple, even without a read-back mechanism. Indeed, the bitstream is stored
in an external non-volatile memory, so the attacker can probe the data line between
the FPGA device and this memory in order to access the bitstream. This threat does
not exist for non-volatile FPGAs because configuration data are stored inside the
device, so only intrusive attacks are possible. Bitstream encryption mechanisms are
available for most advanced FPGAs. A secret encryption key is stored inside the
programmable device, while for volatile FPGAs, an external battery is used to store
key values. Thus the device accepts an encrypted bitstream and uses its dedicated
decryption engine to obtain deciphered data. Attackers cannot decrypt the bitstream
without the secret key. With this feature, attackers have to discover the secret key
using intrusive attacks to recover bitstream data, for example. In FPGA devices with
embedded configuration memory, if the designer has taken the trouble to prevent
read-back, bitstream retrieval from the device is only possible using invasive attacks.
However, if the design is intended to be updated during its lifetime, the bitstream
will travel through insecure channels such as public networks, and the bitstream
consequently needs to be protected using cryptographic mechanisms even for non-
volatile FPGAs.

When an attacker retrieves a plaintext FPGA bitstream, many data are accessible
and may be critical. The first threat is bitstream reverse engineering, some software
projects claim to succeed in Xilinx bitstream reverse engineering [32]. Thus attack-
ers could access all data stored in the FPGA architecture, possibly secret crypto-
graphic keys or non-public cryptographic algorithms. Attackers can also inject their
own bitstream into the programmable device thereby rendering reverse engineer-
ing unnecessary, instead they can simply create a dummy system. For instance if
the FPGA chip is used to encrypt data written to a hard disk drive, the attacker
could build a system that does not cipher data. Another threat is fault injection into
the bitstream [7]. Small modifications can deeply modify the system without the
knowledge of the architecture. The last FPGA drawback is cloning. An attacker in
possession of the configuration data can clone the device ignoring potential intel-
lectual property rights. This is not a real security weakness, but rather an industrial
threat that is specific to programmable devices. A bitstream is the image of the
FPGA underlying architecture, it is similar to the ASIC “layout”, for that reason,
configuration data have to be well protected. In the following section, we provide a
more detailed state of the art on these aspects.
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Fig. 6.13 Overview of the static logic needed to enable bitstream encryption

6.4.2 State of the Art

FPGA vendors are generally sensitive to the security issues of FPGA based designs;
hence they provide tools and mechanisms that allow system designers to ensure an
acceptable level of security according to their requirements. Below we review cur-
rently available security features in main FPGA devices. However, we only consider
the leading FPGA vendors (Xilinx, Altera, Lattice and Actel).

6.4.2.1 Bitstream Encryption

Most often, the first security feature offered by FPGA vendors is bitstream encryp-
tion. This is very attractive even for applications that have no security concerns.
Bitstream encryption was originally proposed to protect the confidentiality of any
intellectual property included in the design. Without this precaution anyone gaining
access to the bitstream can at least clone the design in another FPGA.

To allow system designers to encrypt bitstream and thus the FPGA chip to de-
crypt it, FPGA vendors must add to their devices a decryption engine, a non-volatile
key register and control logic that manages configuration (see Fig. 6.13). During the
manufacturing stage of a product, the system designer introduces a random and
secret key in the non-volatile memory. Then each time the FPGA device reloads
its configuration, the decryption engine decrypts the bitstream that comes from the
configuration port and transmits the result to the configuration logic. Thanks to this
mechanism, bitstream confidentiality is ensured. Today many FPGA devices include
a decryption engine to protect the intellectual property of their customers. Currently,
Xilinx and Altera provide encrypted bitstream solutions for high end FPGA chips
in the Virtex and Stratix families respectively [8, 43]. On the other hand, Lattice
and Actel provide solutions even for low cost devices [6, 27]. The latest Xilinx low
cost devices also include bitstream encryption but only for large FPGA matrices
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(Spartan 6, Virtex 6). Since volatile FPGA vendors generally choose to avoid ex-
pensive Flash process, the FPGAs require an additional external battery to store the
bitstream decryption key value. However, the latest Xilinx devices include fuses that
allow the user to store the cryptographic key without an external battery. Bitstream
encryption is a non-negligible cost for FPGA vendors; they need to add a decryption
engine that provides a reasonable throughput to be sure the configuration time is ac-
ceptable. However for Flash-based FPGAs such as Actel, the configuration time is
less critical since they do not need to decrypt the bitstream at each power up. The
static logic includes the decryption engine and the key memory, so the security level
of the bitstream protection is determined by the FPGA vendor. For instance, if the
FPGA vendor does not take side channel attacks on configuration logic into account,
a lot of mechanisms that can be built on bitstream trustworthiness will be useless.

6.4.2.2 Bitstream Integrity Checking

If a message is only encrypted, nothing attests to its integrity, because classical en-
cryption does not ensure it. Therefore, in addition to encryption, FPGA vendors pro-
vide mechanisms to check bitstream integrity at each configuration. In the absence
of any integrity checking mechanisms, attackers can easily modify an encrypted
bitstream. However, since they do not know the decryption key value, they cannot
predict the effect of the modification. Two main effects can be obtained: (i) an incor-
rect bitstream loaded in the FPGA chip could damage the chip and the whole FPGA
based system; (ii) the bitstream does not damage the FPGA device but modifies the
behavior of a part or of the whole design in an uncontrollable way. In the latter case,
attackers can target a particular area of the bitstream (and therefore of the design),
for instance they could tamper with the embedded RNG to generate weak keys. So
FPGA vendors have to include mechanisms that are able to detect bitstream mod-
ification. This feature has to be provided by FPGA manufacturers, not by system
designers, at least during the bitstream loading time. Most FPGAs use 32- or 16-bit
cyclic redundancy code (CRC) combined with AES-CBC encryption. However, the
primary aim of CRC is to detect and correct errors during bitstream transmission.
As this is not a cryptographically secure mechanism, the probability of loading an
unauthentic bitstream is not negligible, even if the bitstream is encrypted. In the
FPGA context, a corrupted bitstream can destroy the device by causing short cuts.
This threat can be considered as a fault injected into the configuration logic. The
latest Actel devices [6] and series 6 Xilinx FPGAs (Spartan and Virtex 6) include
cryptographically secure mechanisms to ensure integrity. Actel claims to implement
a real cryptographic integrity checking mechanism by using an AES block for both
decryption (CBC mode) and integrity checking (AES-based MAC), a message au-
thentication code is included in the bitstream and the configuration logic checks it
before starting the design (Fig. 6.14). For Actel, configuration time is not critical
since the bitstream is loaded only once. Series 6 Xilinx FPGAs [44] include an in-
tegrity checking engine in the static logic using the SHA-1 algorithm. This engine
checks bitstream trustworthiness while the AES engine is decrypting it, in order to
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Fig. 6.14 Actel’s integrity bitstream mechanism

save configuration time. This mechanism is based on an HMAC algorithm that uses
SHA cryptosystem with a 256-bit key.

Cryptographic mechanisms that ensure both integrity and confidentiality already
exist, they are known as Authenticated Encryption (AE) algorithms. Therefore, the
academic literature proposes secure schemes that are suitable even for volatile FP-
GAs. These solutions can be implemented using a block cipher in a particular mode
of operation, [35] proposes to use the EAX mode and provides time and area over-
head which appear to be suitable for volatile FPGAs. Similarly, [12] proposes to use
two AES cores and [26] suggests the AES-GCM mode.

6.4.2.3 Locking Reprogramming

In most SRAM FPGAs, there are no non-volatile elements and so the bitstream
protection key memory is powered by an external battery. The corollary is that an
attacker with physical access to the system can remove the battery and erase the key.
Moreover, even when the key is initialized and the battery present, the FPGA chip
will accept unencrypted bitstream that an attacker can easily generate. The effect
on security is that attacker can load a malicious bitstream. One solution is to add
a design authentication key in the bitstream used by an external trusted party to
authenticate the design. The other solution, which is more convenient since it does
not require an external party, is to lock the FPGA device to only accept encrypted
bitstream. Another extreme solution is to prevent any further configuration.

Actel has provided this locking feature for a long time, obviously in anti-fuse
based FPGAs since these are programmable only once, but also in the ProASIC 3
and Fusion families [4]. This mechanism, called Flash Lock, acts like a password,
the system designer sets the key (password) in the FPGA chip then the SD can
choose among different security parameters. The designer can prevent the FPGA



6 Embedded Systems Security for FPGA 161

bitstream being read or written without the proper password, and once unlocked,
the bitstream can be sent in plaintext or only encrypted depending on SD policy. If
the SD wants to allow further remote updating without revealing the password key,
he can configure the FPGA device to accept only encrypted bitstream, in which case
the bitstream can be sent over an untrusted network; in this case FPGA chip is not
locked (i.e. it accepts encrypted bitstreams without the password).

A more drastic solution provided by Actel in their ProASIC and Fusion families
is to disable any further reprogramming even with a password key. Obviously any
further remote update is then impossible. However this solution can be interesting
for very sensitive applications that need to avoid cryptography usage when possible,
mainly because secret keys can be retrieved in many different ways (such as physical
attacks or even social engineering).

Finally, the latest Xilinx and Altera FPGAs include a new feature that enables
system designers to lock the reprogramming of the device. To avoid the cost of Flash
technology, Xilinx uses eFuse technology to implement this feature. The solution
is flexible since a battery powered key can still be used depending on application
requirements, if fast key erasure is needed, battery solutions are best. In order to use
eFuse memory, the system designer has first to program a key in this memory. At
this point he can still read and write the bitstream key in order to check the value,
and if the value is valid, can lock the FPGA device by programming another eFuse
register that disables any further read and write access to the key register; moreover
one bit in this control register allows the SD to constrain the FPGA chip to only load
bitstreams that are encrypted with the eFuse key. In this way, attackers who do not
know the bitstream key cannot load a malicious design in the FPGA.

6.4.3 Remote Reconfiguration

Remote updating of hardware systems is a convenient service enabled by FPGA-
based systems. This service is essential in applications like space-based FPGA sys-
tems or set top boxes. However, remote update schemes have to consider replay
attacks, as described in Fig. 6.15. This attack consists in simply recording a bit-
stream corresponding to a version of the FPGA design, and then replaying it later
to reintroduce security breaches that have been corrected by the system designer in
the latest bitstream version. According to current bitstream encryption mechanisms,
the attack is possible even if the bitstream is encrypted.

6.4.3.1 Related Work

Few academic or industrial studies have addressed this attack. In [35] and [12]
the keyed hash is computed only over the received bitstream. As previously men-
tioned, most current FPGA vendors do not provide strong bitstream integrity check-
ing mechanisms, and none have addressed the replay attack issue. In all cases, the
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Fig. 6.15 Replay attack of an FPGA bitstream

FPGA configuration logic is unable to distinguish between different (keyed hash,
bitstream) pairs legitimately generated by the SD in the past. As a result, an adver-
sary who replays a bitstream and its keyed hash will succeed in his attacks. A replay
is particularly dangerous for system security because even if bitstream encryption is
enabled by the FPGA’s static logic, it allows for system downgrading. The purpose
of a bitstream update triggered by the SD may be to remove system vulnerabilities,
so by replaying the previous FPGA configuration, an attacker can effectively pre-
clude security-critical updates. In the following sections, we provide solutions to
counter such an attack.

Existing bitstream integrity solutions prevent spoofing of the bitstream but are
unable to prevent a replay attack and the bitstream is consequently exposed to sys-
tem downgrade threats. In [6, 12, 35] the keyed hash is computed only over the
received bitstream. For that reason, the FPGA configuration logic is unable to distin-
guish between different (keyed hash, bitstream) pairs legitimately generated by the
SD in the past. As a result, an adversary who replays a bitstream and its keyed hash
will succeed in his attack. Recent work on reconfigurable trusted computing pro-
poses FPGA-based implementations of the Trusted Platform Module (TPM) [14].
This work leverages TPM functionalities to provide a secure update of the FPGA
bitstream. In addition, [36] proposes an implementation of TPM on current FPGA
technologies that does not require bitstream encryption. [36] assumes that reverse
engineering of the bitstream is too difficult to achieve and relies on a trusted external
non-volatile memory.

[13] introduces the issue of bitstream replay attacks. The author suggests two
different avenues of research to solve the problem. The first requires the SD to im-
plement additional security features in the user logic to send authenticated messages
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to a trusted authority, who then attests to the version of the running FPGA configu-
ration. This suggestion is explored in this section (see 6.4.3.2). While this approach
fits the general reasoning of FPGA vendors, i.e., that an SD who wants a specific
functionality should pay for it himself by developing it in the user logic rather than
it being hardwired and supplied to everyone who buys FPGAs, we do not believe it
is the best solution. Firstly, it requires the implementation of a cryptographic engine
in the user logic to set up an authentication channel and a challenge-response pro-
tocol with the SD. This is not an efficient solution, since the one already provided
in secure FPGAs for bitstream encryption could also be used for that purpose if the
scheme was implemented in the static logic (i.e. as part of the bitstream loading
logic). Secondly, the SD in need of the replay-resistant feature for his design is not
necessarily a security expert; hence, custom implementation of a replay-resistant
system can result in unreliable solutions. Consequently, we suggest mechanisms
that require less security expertise and allow the SD to lock the FPGA based system
to a particular bitstream version.

[13] also suggests a second approach that use nonces in the authentication pro-
cess to ensure the freshness of the bitstream. [13] does not, however, define the
architecture and protocols that would be necessary to build a replay-resistant bit-
stream authentication mechanism. As this solution is developed and evaluated in
[9], we do not present it here and interested readers should refer to this paper for
further information.

Based on these studies, it is clear that system designers lack efficient solutions
to prevent bitstream downgrade and more generally to ensure bitstream security.
Therefore, in the following sections we propose two possible solutions along with
their advantages, drawbacks and limitations.

6.4.3.2 Contribution to Remote Configuration Security (1): FPGA Polling

Principle The first solution can be applied to any FPGA device that supports
bitstream encryption and integrity checking. Bitstream encryption is used to hide a
value related to the bitstream version; each new release of the bitstream will contain
a new value, called TAG. In addition to this TAG, the encrypted bitstream contains
a unique value that aims at identifying a particular device, each device contains its
own identifier, called KID. Figure 6.16 describes this layout.

For security reasons, inner FPGA logic (user logic) cannot access the bitstream
encryption key. Thus designers cannot use this key directly to perform cryptographic
operations. However, designers can hide secrets in the encrypted configuration bit-
stream. These values may be secret or private keys stored in user logic such as look
up tables or embedded RAM blocks.

As suggested by Saar Drimer in [12] these secrets can be used to authenticate
the bitstream. If one bitstream decryption key is kept secret by the system designer
for each FPGA chip, only the FPGA chip containing the relevant key can decrypt
the authentication secret. This allows authentication of the design running on the
FPGA. The key can also be used to check if the version of the secret corresponds to
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Fig. 6.16 Key equipment needed for Solution 1

the current genuine version of the design. These two values are used in the proposed
protocol to ensure authentication of both the transaction and the current bitstream
version. Since this solution can be applied in any FPGA chip that includes a bit-
stream encryption feature, we assume that like in most SRAM-based FPGAs, there
is no internal non-volatile memory and that the FPGA design cannot store the cur-
rent version number because it does not have an embedded trusted reference. In
this solution, the SD needs to implement a cryptographic engine and glue logic able
to perform authentication with an external trusted party (TP) to authenticate the
bitstream version. The proposed solution consists in regular polling of the FPGA
bitstream version by the external trusted party who also knows the TAG and the KID

values. The trusted party could be the system designer himself but it could also be an
external processor or system. The trusted party regularly sends a nonce to the FPGA
chip that replies with an encrypted value. This encrypted value is the concatenation
of the nonce with the TAG ciphered with KID. The trusted party can check that the
bitstream version is valid by checking the TAG value, but also that the response is
not a replay using the nonce. These two checks are made using KID to decipher the
response; they are thus authenticated according to the FPGA device concerned.

In the following, we consider that the FPGA device and the trusted party are
located on the same board, that all the considerations of this solution can be applied
to a remote trusted party (access through Internet for instance) and since all the
communications are tagged, authenticated and encrypted, that they are not subject
to attacks. How the SD securely updates the trusted party is beyond the scope of
this book, although he could a secure microprocessor able to securely store key
materials, for instance, but in this case, would need to include a mechanism in the
device to avoid replay attacks on trusted party updates.

Platform Initialization First, the SD initializes the platform by setting a secret
key to decrypt the bitstream. To do so, he uses the appropriate tools and mecha-
nisms provided by FPGA vendors. This key must remain secret. Next, he initializes
the trusted party that is located on the FPGA based device, loads a TAG that does not
need to be secret (0 for instance) and a key KID that will be used to ensure platform
authentication. He can optionally load the initial bitstream in the FPGA configu-
ration memory (which could be inside the FPGA chip in the case of non-volatile
FPGAs).
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Remote Update Process Detail Once the platform is initialized and the bitstream
is loaded in the FPGA user logic, polling of the trusted party (TP) can begin. The
goal of polling is to check that the bitstream version is genuine.

The process described here requires that an encryption engine is embedded in the
FPGA device that will be used to authenticate the current version of the bitstream
used. The encryption algorithm can be of any kind (i.e. stream cipher, block cipher,
asymmetric) but a symmetric block cipher may be best because these algorithms are
compact and easy to implement in FPGAs. A standard AES engine can be used for
this purpose.

When the SD wants to provide a new version of his FPGA design, he has to re-
motely modify the FPGA bitstream and also the trusted party TAG value. However,
he can send the bitstream securely since its integrity and confidentiality are ensured
by the FPGA device. Alternatively, he can send the new TAG version to the TP using
a secure network connection (for instance SSL). Once the bitstream is loaded into
the FPGA chip and the TAG is changed in the TP, the polling process can (re)start.

Assuming that the AES algorithm is used, the proposed polling mechanism can
be described as follows:

1. The trusted party sends a nonce to the FPGA device. This nonce will be used
later to check that the FPGA response is genuine, i.e. not a replay of an old
FPGA response. The method used to send the nonce is platform-dependent. For
instance it could be a serial link between the TP and the FPGA, or if the TP is a
remote server, it could be over Internet.

2. The FPGA chip receives the nonce and computes its response. To do so, first
it concatenates the nonce and its current TAG value. Then it authenticates this
concatenation using its embedded signature engine and its identity key. Since the
KID value is only known by the SD, the FPGA device and the TP, this response
cannot be generated by an attacker.

3. Once the answer is computed, the FPGA chip sends the value to the TP, and since
the response is encrypted, an attacker has almost no chance of generating a valid
response. If an attacker tries to modify this answer, the TP will reject it, which
can only result in a denial of service.

4. On reception, the TP decrypts the FPGA response using KID. The decrypted
value is then compared to the concatenation of its own copy of the nonce and its
TAG value.
a. If these values are correct, TP can continue its polling process as the current

bitstream version is genuine.
b. If only the TAG value is different, this means that the FPGA device is running

a different bitstream version than the genuine one. TP then applies the system
designer policy, which could be to turn off the whole system, or to reload a
genuine version in the FPGA configuration memory.

c. If only the nonce is different, this means an attacker is probably trying to
replay an old answer given by the FPGA chip as the genuine version. To do
this, he lets the FPGA device be upgraded to the genuine version, then records
a set of FPGA response. After this stage, the attacker performs a downgrade
of the FPGA bitstream (recorded from a previous remote update), and then
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Fig. 6.17 Graphical representation of the protocol

tries to replay the old FPGA answers. The nonce ensures that this attack is not
applicable. Once again the TP applies the system designer policy.

d. If both the TAG and the nonce are invalid, the cause of the error is harder to
determine, maybe it is simply a transmission error due to the channel between
the FPGA chip and the TP. So depending on the SD policy, the trusted party
may try to poll the FPGA device one more time discarding this failure.

Figure 6.17 is a simplified graphic representation of the polling procedure.

Security Analysis The main security drawback of this solution is that the KID
value has to be shared between three different entities: the SD, the FPGA chip and
the trusted party. This means that attacks are more likely and that more entities have
to be trustworthy. Next, the system designer has to implement a decryption engine in
the user logic that is subject to physical attacks like any cryptographic algorithm im-
plementation. However, the SD may not be a security expert and could consequently
introduce weaknesses in the protocol or in the implementation. The update of the
trusted entity must also be realized by the SD and can result in threats in his proto-
col. The polling frequency has also an impact on system security. Security does not
need to be very high to counter an attack between two polls. The attacker first needs
to replay an old version. This operation can take a relatively long time (a few mil-
liseconds) depending on the FPGA bitstream loading speed. Next the attacker has
to perform the attack. Finally he has to reload the genuine bitstream before the next
polling of the TP. Therefore the SD should choose the pulling frequency according
to requirements of his particular threat model.

Cost Evaluation The authentication engine that generates responses inside the
FPGA may be symmetric or asymmetric. Both allow secure implementation of the
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solution, but the symmetric solution is less convenient than the asymmetric one.
With a symmetric cipher, if anyone needs to check the key, they need to have this
key. The solution can be made with an AES block used as a MAC. Whereas an
asymmetric cipher can be checked without compromising its secrecy. In counter-
part, asymmetric ciphers are more compute intensive operations. So the choice will
depend on the application.

It should be noted that an existing cryptographic engine in the user logic can be
reused by the SD to perform authentication responses. The mean performance of
this engine will be reduced since some operations will be reserved for the version
checking protocol, meaning the application cannot use it at this time. The overhead
is directly related to the polling frequency specified by the trusted party.

Assuming that the SD decides to use a dedicated cryptographic engine to imple-
ment this solution, the cost could be relatively high; especially if the FPGA device of
the application has limited resources. Obviously the asymmetric approach requires
much more logic and time to compute the response. But the cost of the symmet-
ric approach is also non-negligible if the AES engine is not reused by the SD. The
cost of the additional logic gates needed to implement the protocol is negligible
compared to the cost of a hardware cryptographic engine.

Conclusion The proposed solution allows the TP to securely monitor the FPGA
bitstream version using existing SRAM based devices. However this is not the ideal,
perfectly convenient solution. First it entails a non-negligible cost for the SD. Sec-
ond, the entity that wants to check the design version has to question the device.
The SD must also find a polling frequency that is not too high in order to main-
tain reasonable performance, and not too low to avoid replay attacks between two
polling sequences. Moreover, this process forces the SD to include secure key man-
agement in his design. He must manage the bitstream key, embed an identity key
and an update TAG inside the encrypted bitstream. All these drawbacks are due to
the fact that the FPGA device itself does not check if a bitstream replay attack is
underway. Unfortunately, this is the only way to ensure update security for most
current FPGAs. The ideal solution would be to lock the FPGA chip to only one
bitstream version, and provide a secure solution to the SD to remotely change the
current genuine bitstream version. The following section addresses this need.

6.4.3.3 Contribution to Remote Configuration Security (2): Using Embedded
Non-volatile Memory

Finding a solution to lock current FPGAs to a bitstream version is not easy, mainly
because it requires that the FPGA is able to store a reference of the current bitstream
version TAG. It is possible to implement an AES engine and the comparator, as men-
tioned in our first proposal above. But dealing with non-volatile storage of the TAG
is more problematic. User logic is by nature volatile (even on Flash based FPGAs),
and the TAG value cannot be stored inside the bitstream since, in the threat model,
the attacker could replay an old bitstream. It cannot be stored in an external memory
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Fig. 6.18 Overview of the equipment needed for the second proposal

either since the attacker could replay the memory content. So the TAG value must be
stored in an embedded non-volatile memory. This memory must be protected from
external dumping and tampering, and must also be usable by user logic to enable the
secure TAG update that will be performed by the FPGA design. Some Actel FPGAs
[6] include a feature called Flash ROM. This non-volatile memory can be read from
inner logic and can be programmed via JTAG with an encrypted bitstream. How-
ever the FROM is not writable from inner logic, so a secure TAG update mechanism
cannot be used. In fact, the ideal solution would be to enable the FPGA device to
perform the TAG update by itself, although such a mechanism could not use exter-
nal JTAG since an attacker would be able to replay any communication performed
using JTAG. For that reason, a FROM could not be used to enhance solution 1. How-
ever, FUSION FPGAs from Actel [5] include a more interesting feature: a user flash
memory. This non-volatile memory is accessible from user logic for both read and
write operations. In addition, using a secret enables it to be protected against dump-
ing and tampering from external inputs and outputs such as the JTAG port. Thanks
to this feature, solutions can be found to lock such an FPGA chip to a particular
bitstream version and to remotely modify the version number.

Next we present a minimum but nevertheless secure solution, whose goal is to
minimize hardware overhead and key management for the system designer. This is
why the solution does not include complex cryptographic algorithms.

Principle The goal of this secure update mechanism is to lock the FPGA to a
specific version in order to prevent replay attacks.

Generic Design Overview Figure 6.18 shows the FPGA design that enables a
secure remote update of bitstream mechanism to be implemented. The FPGA is
composed of three parts. The first part, static logic, is hard-wired and cannot be
configured. It contains a deciphering module that protects the confidentiality and
integrity of the bitstream, and its key. This key, named K, is only known by the
FPGA and the SD. The second part, user logic, can be configured by the SD and
contains a bitstream version verification mechanism. It is composed of a finite state
machine (FSM) able to manage:
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Fig. 6.19 Graphical representation of the protocol

• A network controller to enable the update to be performed remotely.
• A non-volatile memory controller to store a first power up flag, the current bit-

stream version number and keys shared with the SD.
• A block cipher to ensure mutual authentication of the FPGA and the SD.

The third part, user NVM, contains three keys shared with the SD. They must be
unique for each FPGA and are used to encrypt the tag:

• Kreq: for the Update command.
• Kack1: for the Update command acknowledgment.
• Kack2: for the new bitstream version and acknowledgment of start up on the cor-

rect device.

Since the goal is to lock the FPGA to a particular version, the NVM also contains
the value indicating the current genuine version. This value, named TAG, can be
only incremented by the SD. It will be compared to the tag contained in the user
logic, also named TAGUL (refer to Fig. 6.18). Each bitstream version contains its
own TAGUL. In practice, it is a constant in the design source code: version zero is
tagged with a zero, version one with a one, and so on. The NVM is written the first
time from outside FPGA chip in a trusted zone before being locked using the FPGA
vendor mechanism [3]. After locking, the NVM can be read and written only from
the user logic.

Update Process Figure 6.19 focuses on communications between the SD and the
FPGA. It explains the process used to check that the current bitstream version is
genuine and to securely implement this non-volatile value for a future update. The
update process is described in more detail below.

Update command: This command increments TAGF to prepare the FPGA to an
update. The SD sends the update command containing the tag encrypted with the
Kreq as cipher key to the FPGA. After decryption, the FPGA compares the tag
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contained in his own bitstream (TAGUL) and the tag sent by the presumed SD. If
they are different, the FPGA continues to work and waits for a new update com-
mand. Otherwise it implements the TAGF and starts to encrypt the new tag with
the cipher key Kack1. To inform the SD that the tag increment command has been
received, the FPGA sends the result of the encryption. The design is stopped.

Download a new bitstream version: The SD sends the new ciphered bitstream,
with its MAC, to the FPGA. When the new design starts up, the FPGA performs
the new tag encryption using Kack2 as cipher key and sends the result to the SD.
This acknowledgment informs the SD that the new bitstream has been correctly
downloaded to the right FPGA and that the design has started.

Bitstream version verification: Each time the design starts up, it checks itself that
TAGUL and TAGF are the same. If they are different, a replay attack has been
detected and an alarm (a signal in the design) is triggered that can be used by the
SD to apply his policy. He can for instance stop or destroy the system, or enter a
degraded mode.

Security Analysis This analysis focuses on bitstream replay and remote DoS
attacks. Our scheme assumes that the FPGA vendors encryption and integrity veri-
fication mechanisms are secure. For instance, the Actel mechanism implemented in
the static logic checks the bitstream integrity using a MAC while the device is still
operating. If the MAC validates the bitstream, the device will be erased and pro-
grammed. Otherwise, the device will continue to operate uninterrupted and will not
take the new bitstream into account. The tag is encrypted with three different keys
to prevent replay attacks. Indeed, to avoid the attacker responding by pretending to
be the device or the SD, only one-time messages (key-tag pairs) are transmitted over
the untrusted network. Since, for a bitstream version, the tag is the same for all the
FPGAs, Kreq, Kack1 and Kack2 must be unique for each device.

In the step, which is to download a new bitstream version, the new TAG cannot
be spoofed because its integrity has been checked thanks to a MAC. For the same
reason, an attacker cannot replace this bitstream with his own. The bitstream boot
up acknowledgment enables update failures to be detected.

Implementation Considerations The only requirement of this protocol is the
presence of an embedded NVM in the FPGA chip and a mechanism that provides
bitstream confidentiality and integrity. For instance Spartan3-AN FPGA from Xil-
inx has an embedded Flash memory. Xilinx also provides a DNA mechanism, but
it does not protect bitstream confidentiality. Lattice also provides such services in
their XP2 FPGA family. Bitstream confidentiality and integrity are provided, but
NVM is used to save a RAM copy and it is less easy to store data.

Demonstration Platform Our demonstration platform is based on an Actel Fusion
starter kit (FPGA: Fusion AFS600). It is a non-volatile FPGA with an embedded
user flash memory and a confidentiality and integrity mechanism. Figure 6.20 de-
scribes this demonstrator. The network is emulated by the RS232 link, the bitstream
is downloaded through the JTAG port, and the block cipher is a 3-DES. The fact that
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Fig. 6.20 Overview of FPGA design

Kreq, Kack1 and Kack2 are stored in the flash memory with TAGF allows the same
bitstream file to be produced for the whole set of FPGAs: i.e. only the three keys
that differentiate the device. During the initialization procedure, these three keys
and TAGF are downloaded through the JTAG port before locking.

Figure 6.21 describes the FPGA Master FSM algorithm. In order to reduce the
latency, we decided to cipher TAGUL with Kreq while waiting for the update com-
mand. The two ciphered tags are then compared as soon as the SD tag is received.
With this improvement, steps 1, 2 and 3 (respectively power up, first power up and
authentication) are performed before receiving the SD update command.

Results Table 6.2 summarizes the overhead in terms of clock cycles and time re-
quired for each step. The design clocks at 60 MHz. Steps 2 and 3 (respectively first
power-up and authentication) are performed during user design execution and do
not increase the mechanism performance overhead. Step 4 is not considered here
because the performance overhead is not significant compared to FPGA program-
ming (several seconds). Considering all these elements, the performance overhead
is estimated at only 54 cycles: step 1 (Power up).

Table 6.3 summarizes the overhead in terms of area. It shows the proportion of
FPGA occupied by each component of this secure remote update mechanism im-
plementation. This area overhead can be relativized considering that 3-DES, RS232
and flash memory controller can be reused by the SD. Only the master FSM cannot
be reused.

The cost of flash memory is not shown because it is insignificant: 672 bits (in-
cluding 32 bits for the first power up flag) on the 4 Mbits (0.016%). The SD can use
the rest of this physical flash memory for his own purposes.

Conclusion Solution 2 is a communication protocol between the SD and an
FPGA platform to update the FPGA configuration while preserving its confiden-
tiality and integrity. This protocol also provides protection against replay attacks
and detects update failures. In addition, we show that the corresponding area and
performance overheads are negligible, thanks to the reusability of the core.
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TAGF : F l a s h memory t a g
TAGUL : User l o g i c t a g
Ek (M) : E n c r y p t i o n o f M w i t h K as c i p h e r key \ i n d e x {Key}
CTAGKx: Tag c i p h e r e d by Kx

Step 1: Power-up

1 Read (TAGF)
2 if (TAGF �= TAGUL) then
3 goto 22
4 end if;

Step 2: First power-up

5 Read (flag)
6 if (flag = true) then
7 Read (Kack2)
8 CTAGKack2 := EKack2 (TAGUL)
9 Send(CTAGKack2)

10 end if;

Step 3: Authentication

11 Read (Kreq)
12 CTAGKreq := EKreq(TAGUL)

13 Read (Kack1)
14 CTAGKack1 := EKack1(TAGUL)
15 Wait for CMD
16 If (CMD = CTAGKreq) then

Step 4: TAGF incrementation

17 Write (TAGF+1)
18 Send(CTAGKack1)
19 Else
20 goto 15
21 end if;
22 SYSTEM SHUTDOWN

Fig. 6.21 Security protocol implementation on FPGA

6.4.3.4 Contribution to Remote Configuration Security (3): Security
Architecture for Remote FPGA Update and Monitoring

When no non-volatile embedded memory is available, it is not possible to lock the
FPGA to a particular bitstream version without an external trust party. However, one
possible solution is that FPGA vendors modify their configuration logic to include
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Table 6.2 Performance overhead for the AFS600 device

Step # Cycles Duration (µs) F = 60 MHz

1. Power-up 54 0.9

2. First power-up 187 3.1

3. Authentication 175 2.9

4. TAGF increm. 108 1.8

Total 524 8.7

Table 6.3 Area overhead for the AFS600 device

Entity # Tiles % of Actel AFS600

3-DES 1305 9%

RS232 418 3%

Flash Controller 1005 7%

Master FSM 777 6%

Total 3505 25%

a version checking mechanism. A low-cost solution for FPGA vendors [9] has been
proposed. The version TAG of the FPGA is kept in the configuration logic using a
few flash or battery powered SRAM cells. The configuration logic uses the authen-
ticated encryption algorithm CCM to ensure confidentiality, integrity and bitstream
freshness. The logical gate cost and configuration time overhead is low regarding
current implementation of bitstream encryption and integrity mechanisms. Inter-
ested readers should refer to this paper for further information.

6.4.4 FPGA Remote Update: Conclusion

From a security standpoint, remote updating of FPGA based systems is a challenge.
We have shown that existing mechanisms aimed at providing bitstream confiden-
tiality and integrity via encryption and authentication fail to prevent bitstream re-
play and thus system downgrade. Three different solutions were proposed to solve
this problem. The first one is applicable to all encrypted FPGAs (volatile and non-
volatile). The second requires a secure non-volatile memory that is currently only
available in Actel Fusion FPGAs, however we hope that next generation FPGAs
will be aware of this threat and will have embedded non-volatile user storage. Fi-
nally we proposed a complete solution for FPGA vendors who wish to provide a
comprehensive solution to their customers at low cost.

According to Table 6.4, the proposed solutions are unique in the academic and
industrial literature, since other solutions fail to take replay attack into account. Our
solutions apply to both volatile and non-volatile FPGA devices, by accounting for
their particularities. In addition, we propose a new complete solution [9] that pro-
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Table 6.4 Secure update solution comparison

Solution Suitable
devices

Cost for FPGA
vendors

Development
time for system
designer

Logic gates cost
for system
designer

Additional cost

1 All
encrypted
FPGAs

None High High Regular polling

2 ACTEL
Fusion

Low for Flash
based FPGAs

Medium Low None

3 Currently
none

Medium Low None None

vides confidentiality, cryptographic integrity verification, replay attack counter mea-
sure and also provides convenient way for the system designer to remotely manage
the bitstream update process. All the contributions concerning bitstream security
and the study cited in this chapter about FPGA security, are used in the follow-
ing section to develop a Reconfigurable Cryptographic Platform that benefits from
these results. The platform can be considered as a concrete application of the con-
cepts developed throughout this book and, thanks to its context, is close to industrial
concerns.

6.5 Example of Board Integration: Toward a Secure Platform

To apply the knowledge described in this book, we use a concrete application. This
approach allows us to evaluate the solutions we propose from an industrial point of
view. This study was done with the help of a French company called Netheos [31]
which develops applications for information security. The company aims to create
products dedicated to security, based on FPGAs, to occupy low and middle volume
markets. Their main targets are corporate and bank sectors, or even government in-
frastructures. The platform aims to be configurable to respond to many different
needs, and it might be reconfigurable in order to evolve, for instance when a crypto-
graphic algorithm or protocol is broken. The code name of the platform is RCP for
Reconfigurable Cryptographic Platform. Objectives with this platform is twofold:

• To increase the security of key management compared with a software only solu-
tion. This is done by keeping cryptographic keys inside a piece of hardware where
keys are only accessible to perform cryptographic computation, not for reading or
writing. These keys are generated by the hardware itself with an embedded true
random number generator.

• To achieve high performances for cryptographic algorithms such as RSA or AES
schemes. This can be done by having a high bandwidth communication chan-
nel with the FPGA chip and by using high-speed hardware accelerators (such as
RSA or AES IP cores). Depending on the application, these accelerators can be
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instantiated multiple times to achieve even better performances by parallelizing
computations.

We intend to use its platform for applications such as giga-bit network en-
cryption, SSL accelerator or off-load engines, VPN accelerators, high-performance
Hardware Security Modules, but also for customer specific applications.

6.5.1 Requirements

In the following section we present the features we would like to include in the
secure platform.

Scalability The platform needs to be as generic as possible regarding cost, per-
formance and security level. It should be able to support relatively low and high
security levels. In the first case, the platform needs to keep costs low and provide
reasonable security. In the other cases, performance and security concerns are more
important than cost. The more resources included in the FPGA, the more perfor-
mances can be obtained, for instance by implementing many types of cryptographic
algorithm accelerators. The selection of the FPGA model will thus determine the
performances that can be achieved with the platform.

To obtain security level scalability of the platform, two types of attacks need to
be distinguished:

• Logical attacks: that have to be countered by implementing a logically secured
hardware and software design.

• Physical attacks: that can be prevented by implementing cryptographic algo-
rithms with side channel and fault injection countermeasures, but also by adding
a secure surface enclosure such as those proposed by [23]. This type of tam-
per respondent enclosure, which is widely used for Hardware Security Modules
(HSM), will erase the cryptographic key when attacks are detected, thus guar-
anteeing protection against invasive attacks that are quasi impossible to prevent
only using logical mechanisms. With such protection, this platform can hope to
achieve FIPS 140-2 certification at level 3, at which key destruction is mandatory
under attack.

Target Applications The board targets two applications:

• Cryptographic accelerators: the platform needs at least one high-speed interface
to communicate directly over the network or through the host.

• Secure key containers (HSM): One of the most important points for a crypto-
graphic device is secure key management in a logical and physical way. A key
must never leave the device without being encrypted, or for some applications,
should not leave the device even if it is encrypted.

Regarding the second application, even if confining the key to the secure device
makes sense with respect to security, it reduces the usability of the solution. If the



176 B. Badrignans et al.

Table 6.5 LX and SX family characteristics

FPGA Family LXT SXT

FPGA Model XC5VLX30T XC5VLX50T XC5VSX35T XC5VSX50T

Slices 4800 7200 5440 8160

Logic Cells 30720 46080 34816 52224

Block RAM 36 60 84 132

DSP48E slices 32 48 192 288

secure device stops working because an irreversible failure occurs in the hardware,
or maybe because an attack is detected, all the cryptographic keys become irre-
versibly unusable. Therefore most hardware security modules use a master intended
to cypher the user keys. Encrypted user keys are stored outside the HSM. A mech-
anism allows master key backup on a secure medium such as a smart card. For
both applications, software and hardware updating should be possible throughout
the life cycle of the device, maybe to correct security vulnerabilities or to increase
performances. However this feature opens the door to many threats and must be
implemented carefully.

6.5.2 Platform Design

FPGA Choice The FPGA device is the most important component and deter-
mines the price and the performances of the platform. But it plays also a role in
the security of the system. Based on the results of a comparison of current FPGAs,
we decided to use a Virtex5 FPGA (in 2008). It provides mechanisms and features
that enable the implementation of useful security countermeasures. For instance, it
allows for continuous monitoring of the integrity of the loaded bitstream, an embed-
ded thermal sensor can detect dangerous variations in the environment. Bitstream
encryption allows cryptographic keys to be hidden in RAM blocks or look up ta-
bles. Internal read back of the loaded bitstream can increase the robustness of the
integrity check of the configuration. Finally, the partial reconfiguration feature is at-
tractive to implement adaptive and evolutionary design. Since the price of the FPGA
chip price represents most of the cost of the board, we designed the platform to sup-
port any Virtex5 FPGA that fits an FFG-665 package, so Virtex5 LX30T, LX50T,
SX30T and SX50T can be used without PCB modifications. The cheapest FPGA
that can be used is Virtex5 LX30T, which has limited DSP and storage capacities.
The most attractive FPGA for cryptographic applications is Virtex5 SX50T, because
it includes many storage (RAM blocks) and arithmetic elements (DSP blocks) that
can be used to implement high performance cryptographic cores (such as RSA, ECC
or AES). LX and SX family characteristics are listed in Table 6.5.

Cryptographic Engines One of the main advantages of FPGAs over CPUs is that
developers can implement specialized pieces of hardware that allow very efficient
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Algorithm Implementation Slices Blocks RAM Multipliers Throughput

AES 128 (Encryptor
and decryptor.
w/HWkey
expansion)

Helion Tech 864 0 0 3781 Mb/s
our 803 5 0 1024 Mb/s

SHA-256 Helion Tech 325 0 0 1722 Mb/s
our 792 1 0 1144 Mb/s

RSA-1024 (full
exponent wo/CRT)

Helion Tech 1800 1 0 20 signature/s
our 378 2 5 24 signature/s

Fig. 6.22 Comparison of results of the implementation of cryptographic IP cores

cryptographic algorithm implementations. AES hardware implementation is a good
example; it is quite easy to implement a dedicated engine that executes an AES
round in one clock cycle while keeping a reasonable silicon area. However AES
engines are not available on most CPU or SoC platforms.

That is why a set of cryptographic engines was developed. This work focuses
on the most widely used cryptographic algorithms such as AES, RSA and SHA-2.
Most optimizations were found in academic publications describing algorithmic
or architectural enhancement to straightforward algorithm implementations. This
work takes advantage of these optimizations and produced efficient and compact
implementations. Our main contribution is the comparison of different implementa-
tion styles and the development of configurable cryptographic cores that offer large
area/throughput/functionalities/security trade offs.

The details of the development of these blocks are not given in this book, but Ta-
ble (Fig. 6.22) gives a brief comparison of our results using commercially available
cores.

Comparing cryptographic engines is not easy [21] mainly because many imple-
mentations are available and they do not use the same FPGA family, or do not use
the same core functionalities. For this reason, we used the same FPGA family for
our comparison (Virtex5) and the IP cores cited have the same functionalities (for in-
stance the AES IP core is able to perform encryption and decryption with hardware
key expansion). Finding results in academic publications that allow a fair compar-
ison was not possible, mainly because most of these publications are old and use
obsolete FPGA devices (such as Virtex or Virtex2 FPGAs). The results achieved
with the IP cores developed during this study are no better than the results achieved
by Helion Technology (a private company). However, the goal of the present study
was not to design highly efficient IP cores but to develop state of the art crypto-
graphic engines and to use them to build a complete security platform.

Secure Microprocessor Based on the results of the FPGA bitstream security
study described in previous sections, we decided to provide the board with a secure
microprocessor in addition to the Virtex5 chip. The following arguments justify this
choice:
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• Since Virtex5 are volatile FPGAs that do not include a non-volatile storage ele-
ment, it is impossible to store a value inside the chip after power down. Although
it is possible to store securely values outside the chip in an encrypted flash mem-
ory, a master key has to be used to decrypt this memory, thus, to remain non-
volatile, the key must be stored in the FPGA bitstream. However this solution is
not applicable when the application requires volume, because each FPGA needs
a different bitstream to provide each board with a unique key.

• There is no trusted hardwired TRNG in FPGA devices. Even if it is possible
to implement secure TRNG in user logic [19], we decided that this represents
a serious risk when high security level certification is required. For that reason,
random numbers can be generated in three places on the platform: inside the user
logic of the FPGA, in the secure microprocessor, or in the smart card of the board.

• The secure microprocessor we selected provides many security features such as
internal and external sensor management. A battery powered key memory is au-
tomatically erased when an attack on the clock, the package of the chip, the tem-
perature, or the power supply is detected. The package integrity sensor is very
important since FPGA vendors do not provide such packages. Thanks to this fea-
ture it is possible to produce a low-cost hardware security module without sur-
face enclosure, where the heart of the security level (the secure microprocessor)
is physically protected by its package.

• The cost of such a microprocessor is very low compared to the FPGA. PCB com-
plexity increases with this BGA device, but this cost should be compared with the
non-negligible security add on.

Based on this choice, the secure microprocessor will be the heart of the system
since it generates cryptographic keys and stores the master key.

FPGA Architecture The goal is not to develop a fixed architecture but a flexi-
ble one that allows the design to be scaled according to application requirements.
For instance, an application that requires many RSA operations in parallel will have
several embedded RSA hardware accelerators in order to achieve higher through-
put. The configuration of the platform is currently performed off line, before phys-
ical synthesis of the FPGA architecture. Ultimately the goal is to provide run-time
reconfiguration according to application requirements, by using dynamic reconfigu-
ration. This goal was not addressed in this study but will the subject of future works
in order to provide such functionality while keeping the same level of security. Since
cryptographic operational keys are stored in the secure microprocessor of the board,
the communication between the FPGA and this component must be secured. This
constraint leads to the architecture described in Fig. 6.23.

Figure 6.23 shows the architecture we developed. The “core Wrapper” square
refers to a slot where the platform user can instantiate any IP cores compatible with
the open source wishbone bus [33], these may be cryptographic IP cores or even
application specific IPs. To make the platform usable from the outside world, it is
equipped with PCI Express connectivity.

A direct connection exists from the secure processor and key memories. These
memories can only be written from the microprocessor, so with this FPGA architec-
ture, the key cannot travel to the host. An AES decryption engine is placed between
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Fig. 6.23 General target
architecture of the
reconfigurable cryptographic
processor

the external processor and the key memory to prevent board level attacks (for in-
stance using bus probing).

High Speed Communication Interfaces To be as flexible as possible according
to Virtex5 functionalities, we decided to connect the FPGA to a PCI Express bus
with eight lines with a maximum throughput of 16 giga bits per second on each of
the two ways (reception and transmission). We also connected the FPGA to two RJ-
45 interfaces that can support giga bit Ethernet, we deliberately chose two interfaces
to allow red/black architecture [41] that are commonly used for governmental or
military applications.

Trusted Area A secure microprocessor allows tamper respondent mechanisms to
fulfill FIPS140-2 level 3 requirements; however Virtex5 FPGA cannot comply with
this standard since its package does not respond to tampering and so physical inva-
sive attacks are feasible. To allow our secure platform to reach level 3, we designed
the board’s PCB to facilitate the use of a tamper resistant enclosure such as [23].
This was achieved simply by reducing the area to be protected to the minimum in
order to decrease cost of enclosure. The secure area boundary is shown in Fig. 6.24,
it includes:

• The FPGA where user keys are used;
• The secure microprocessor where master key is stored and user keys are gener-

ated;
• The FPGA configuration flash memory, since we have shown that bitstream se-

curity is not totally guaranteed by FPGA vendors (bitstream replay, bitstream
integrity);



180 B. Badrignans et al.

Fig. 6.24 General scheme of
the NETHEOS platform

• The core voltage regulator of the FPGA, this increases the robustness of the plat-
form regarding power analysis because an attacker can only measure current fil-
tered by the regulator;

• A smart card used to diversify true random sources (from the smart card, the
secure processor and the FPGA);

• And finally the sensors used to monitor enclosure integrity, allowing the secure
microprocessor to erase the master key.

Security Scalability To achieve security level scalability of the board, two types
of attacks have to be distinguished:

• Logical attacks that must be countered by implementing a logically secured hard-
ware and software design.

• Physical attacks that can be prevented by implementing cryptographic algorithms
with side channel and fault injection countermeasures, and also by adding a se-
cure surface enclosure.

Tamper respondent enclosure is widely used for hardware security modules
(HSM) that erase cryptographic keys when an attack is detected, thus ensuring pro-
tection against invasive attacks that are quasi impossible to counter only with logical
mechanisms. With such protection, this platform should achieve FIPS 140-2 certifi-
cation at level 3 where key destruction is required to counter attacks. Secure surface
enclosure is an industrial process that consists in enclosing a security system inside
a tamper respondent envelope. It is an active seal that generates an alarm when the
system is tampered with; this alarm can be used by the system to erase sensitive
data. These surface enclosures thus have to be powered to enable the system (which
requires energy) to erase the keys. That is why most HSMs include a battery, which
can be located inside or outside the secure enclosure, since if the attacker simply
removes the battery, the keys will be erased as they are stored in a volatile mem-
ory. Development of a secure enclosure is a hard task, particularly if a high level
of security is required. The classical approach is to enclose the system in a mesh of
conductive wires. This mesh is connected to sensors that detect variations in wire
conductivity and trigger alarms. Therefore, if attackers try to remove the protec-
tion, they are very likely to cut a wire. However an attacker with a high degree of
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Fig. 6.25 Secure PCB surface enclosure designed by Gore

competency and sophisticated equipment may localize the mesh by using X-ray and
succeed in passing between the wires without cutting them. A company called Gore
proposes surface enclosures that have already been tested and validated, hence re-
ducing the cost for a company that wants to create a physically protected device.
The conductive mesh used by Gore is non-metallic to avoid X-ray attacks. The prin-
ciple of the architecture of a Gore secure surface enclosure is shown in Fig. 6.25
[23]. This figure shows the PCB of the system enclosed by the Gore active sensor
and an opaque cover. The cover is connected to the PCB by a destructive interface
that triggers an alarm when tampered with.

The Gore tamper respondent sensor (in gray in the figure) can enclose the whole
system or a part of the PCB. In the latter case, contacts between the enclosure and
PCB require particular attention since the assailant may try to attack this weak part.
That is why additional security mechanisms can be added inside the PCB itself.
An opaque cover, generally made of metal, is added to protect the system from
the environment. The board developed during the present study enables the use of
such tamper respondent enclosures. It includes a battery and circuitry to allow key
erasure. Moreover, since data remanence of sensitive information is obviously a
concern for the final device, a mechanism that connects power to ground is also
included.

Secure Key Management The secure microprocessor stores the value of a master
key in its secure battery powered key memory, and operational keys are encrypted
using this master value. Since the FPGA is the device that performs high-speed
cryptography using dedicated hardwired engines, the secure microprocessor must
decrypt operational key and send the plaintext value to the FPGA. The communi-
cation channel between FPGA and microprocessor can be secured using encryption
according to security objectives of the application.

Secure Backup/Restore Operational key backup and restoration operations are
performed using a safepad and a smart card. The safepad ensures there is a trusted
path to enter a PIN code (without passing through the host computer), the smart card
ensures the physical security of the backup.
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Communication Between FPGA and Secure Processor The secure micropro-
cessor is the device that generates and securely stores user objects. The FPGA de-
vice is used to accelerate cryptographic computations, consequently it has to use
these cryptographic keys in plaintext form. However unencrypted communications
between the FPGA and the processor are not acceptable when local attacks are pos-
sible, an attacker can spy on the communication bus to retrieve cryptographic keys.
Even with a tamper respondent enclosure, it is preferable to encrypt the commu-
nication channel between the two chips so that all security does not rely on the
enclosure. In order to communicate safely, the two chips have to share a symmet-
ric key; this cannot be the master key because that key must never leave the secure
microprocessor, otherwise the confidentiality of this key is harder to ensure. Thus a
mechanism of key sharing must be implemented. At least two methods can be used
to reach this goal:

• During the bitstream and processor code generation process the system designer
hard codes a symmetric key in the FPGA logic and in the flash memory of the
processor. There is no need for a key sharing protocol. However this method has
certain drawbacks, first, the system designer knows the symmetric key value and
the customer does not necessarily trust the SD. And, in order to simplify key
management, bitstream and processor code generation process, the SD should
provide the same symmetric key to all his designs, therefore breaking one product
enables all the products to be broken. Finally the shared key remains the same
throughout the life of the product, whereas side channel attacks such as DPA can
lead to key discovery; however, if the key is changed regularly, power analysis
attacks become more difficult.

• The system designer hard codes a private key pair in the processor code and an-
other key pair in the FPGA bitstream, both signed by a trusted authority to avoid
man in the middle attacks. These key pairs will be used to regularly exchange
symmetric keys to avoid differential side channel attacks (DPA, DEMA). How-
ever this method has the same drawbacks as the previous one, and the cost of
implementation is higher since asymmetric and symmetric algorithms have to be
used.

6.5.3 Performance Results

In order to measure real performance and to show the advantage of having many
IPs that can operate in parallel, an openSSL engine [34] was developed. The term
engine here refers to a library that is dynamically linked to openSSL and allows
this application to perform cryptographic operations using hardware devices. The
engine developed is quite simple, it is based on the GMP (GNU Multi Precision)
engine, i.e. the software implementation of the cryptographic algorithm that uses
GMP, whereas openSSL uses a library called Big Numbers. This option was pre-
ferred since the GMP engine code is quite simple to modify. The code that per-
forms the modular exponent in software has been replaced by a call to the RSA IP
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Key size RCP (-multi 4) AMD Sempron
3000+ (-multi 1)

Intel Core2 CPU
2.13 GHz (-multi 2)

512 1282 sign/s 1579 sign/s 3334 sign/s
1024 421 sign/s 360 sign/s 731 sign/s
2048 85 sign/s 66 sign/s 134 sign/s
4096 13 sign/s 10 sign/s 22 sign/s

Fig. 6.26 Practical results of openSSL engine with CRT using six RSA IP cores

cores connected to the platform. GMP uses by default the Chinese remainder theo-
rem (CRT), which allows the RSA exponent to be split into two smaller exponents,
thereby dramatically reducing modular exponent computation time. For instance
a 1024-bit modular exponent is reduced to two 512-bit modular exponents. This
engine measures performance and checks the results of RSA computation using a
simple call to the command line:

openssl speed -multi X -engine gmp rsa

The multi argument of the command line allows X RSA computation to be run in
parallel, for instance a call with -multi 2 gives better results when the test runs on a
dual core processor. For the platform, the best results are achieved when the multiple
parallel operation number is equal to the number of RSA IP cores instantiated. For
instance, results of a test on a platform that includes six RSA IP cores are given in
Table 6.26.

The results of openSSL engines were compared to two different types of general
purpose CPUs. A single core processor: AMD Sempron, whose best performance
is obviously achieved using the argument -multi 1 while the Intel Core 2 processor
allows parallel RSA computation giving better results with -multi 2. The best results
were achieved with the platform using -multi 4 because the CRT algorithm is used,
and consequently two RSA engines are needed to perform one complete exponent.
In terms of efficiency, a good way to compare is to sum the costs of the solutions.
An Intel Core 2 processor running at 2 GHz cost about US$ 70 at the time of writ-
ing, while a Virtex5 LX30T cost about US$ 350, i.e. a ratio of five to one, while
performance was twice lower on our implementation than on Virtex5 LX30T. So
with our RSA engine, FPGAs are not competitive in terms of the cost: performance
ratio using a general purpose CPU. However when the platform is used for massive
RSA computation, the host CPU usage remains low. The most important argument
for our FPGA-based implementation, is that by using the platform, it is possible to
enhance the physical security of RSA private keys since they can be generated on
board, used inside the platform, and never travel through host memory.

6.5.4 Conclusions

According to the results of the present study, there is no perfect FPGA device cur-
rently available for security-sensitive or cryptographic applications. Even the choice
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Fig. 6.27 An imaginary highly secured FPGA

between non-volatile and volatile FPGAs is not trivial and also often depends on the
application. For instance, we were forced to use an external processor, which com-
plicates the PCB design, increases vulnerabilities of the communication with the
FPGA and represents an additional cost. Therefore, in this conclusion we ‘imagine’
a perfect FPGA device for such applications (see also Fig. 6.27):

• First it must have some embedded secure battery powered memories for highly
sensitive data that can be very rapidly erased from user logic or by an external
alarm.

• It must also include non-volatile memories that are useful in security, for instance
to implement PIN code mechanisms or to store bitstream version TAGs to prevent
bitstream replay attacks.

• FPGA vendors must provide strong mechanisms that ensure bitstream confiden-
tiality and integrity, and that prevent bitstream replay attacks.

• The device must have an embedded mechanism allowing the system designer to
force the FPGA device to accept only encrypted and authenticated bitstream, like
the Actel Flash Lock mechanism or the Xilinx e-Fuse.

• Ideally it should have an embedded certified random number generator, such as a
smart card. An even better solution would be to embed a smart card in the same
package as the FPGA matrix.

• The FPGA device should be embedded inside a tamper proof or even better a
tamper respondent package that triggers alarms when attacks are detected. For
instance by using a metal mesh able to detect package opening and to trigger
built in mechanisms to erase a battery powered memory. This package should
also provide basic protection against electromagnetic analyses such as a Faraday
cage.



Future works will focus on improving the platform by adding run time reconfigu-
ration based on application requirements and by adding new cryptographic IP cores
or by improving the performance of existing ones as well as improving communi-
cation architecture.
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