
HAL Id: lirmm-00820098
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00820098

Submitted on 28 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Novel Techniques for Smart Adaptive Multiprocessor
SoCs

Luciano Ost, Rafael Garibotti, Gilles Sassatelli, Gabriel Marchesan Almeida,
Remi Busseuil, Anastasiia Butko, Michel Robert, Jürgen Becker

To cite this version:
Luciano Ost, Rafael Garibotti, Gilles Sassatelli, Gabriel Marchesan Almeida, Remi Busseuil, et al..
Novel Techniques for Smart Adaptive Multiprocessor SoCs. IEEE Transactions on Computers, 2013,
62 (8), pp.1557-1569. �10.1109/TC.2013.57�. �lirmm-00820098�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00820098
https://hal.archives-ouvertes.fr

1

Novel Techniques for Smart Adaptive
Multiprocessor SoCs

Luciano Ost, Member, IEEE, Rafael Garibotti, Gilles Sassatelli, Member, IEEE,
Gabriel Marchesan Almeida, Rémi Busseuil, Member, IEEE,

Anastasiia Butko, Michel Robert, Jürgen Becker, Senior Member, IEEE

Abstract—The growing concerns of power efficiency, silicon reliability and performance scalability motivate research in the area of
adaptive embedded systems, i.e. systems endowed with decisional capacity, capable of online decision making so as to meet certain
performance criteria. The scope of possible adaptation strategies is subject to the targeted architecture specifics, and may range
from simple scenario-driven frequency/voltage scaling to rather complex heuristic-driven algorithm selection. This paper advocates
the design of distributed memory homogeneous multiprocessor systems as a suitable template for best exploiting adaptation features,
thereby tackling the aforementioned challenges. The proposed solution lies in the combined use of a typical application processor
for global orchestration along with such an adaptive multiprocessor core for the handling of data-intensive computation. This paper
describes an exploratory homogeneous multiprocessor template designed from the ground up for scalability and adaptation. The
proposed contributions aim at increasing architecture efficiency through smart distributed control of architectural parameters such as
frequency, and enhanced techniques for load balancing such as task migration and dynamic multithreading.

Index Terms—Adaptive systems, Multithreading, Adaptive Hardware and Systems, NoC-based Multiprocessor

F

1 INTRODUCTION

D RIVEN by the rapidly increasing Non-Recurring
Engineering (NRE) and fixed manufacturing costs,

the semiconductor industry shows signs of fragmenta-
tion driven by specialization. This leads to the emer-
gence of platform-based design in which off-the-shelf
SoCs (Systems-on-Chips) are integrated in a multitude a
branded products. Popular platforms such as TI OMAP,
Qualcomm Snapdragon are such prominent examples
in the domain of consumer-market smartphones and
tablets. These SoCs, typically referred to as MPSoCs
(Multi-processor SoCs) are built around an application
processor (AP) running an microkernel, connected to a
number of application specific ISP cores such as DSPs
and ASIPs, each of which is devoted to a given func-
tionality such as baseband processing, video decoding,
etc. Such heterogeneous system architecture is motivated
by concerns of cost and energy efficiency. Because of the
heterogeneous nature of such systems, inter-processor
communications take place by means of exchanged mes-
sages, mostly through an external shared memory, and
often orchestrated by the AP operating system. Such

• L. Ost, R. Garibotti, G. Sassatelli, R. Busseuil, A. Butko and M. Robert
are with Laboratory of Informatics, Robotics and Microelectronic of
Montpellier (LIRMM)
34095, Montpellier, France.
E-mail: {ost, garibotti, sassatelli, busseuil, butko, robert}@lirmm.fr

• G. Marchesan Almeida and Jürgen Becker are with Karlsruhe Institute of
Technology (KIT)
76131 Karlsruhe, Germany.
E-mail: {gabriel.almeida,juergen.becker}@kit.edu

system template poses severe scalability problems that
may be summarized as follows:

1) Reliability and ageing of silicon in below 22nm
nodes motivate research in the area of resilient
architecture design [1]. Most explored solutions
rely on the use of spare/redundant processing re-
sources, for either instant fault detection/correction
(critical systems) or remapping of functionality on
fault detection. Because of being highly heteroge-
neous the typical MPSoC template hardly enables
devising such techniques.

2) As performance and power efficiency scaling can-
not solely rely on technology downscaling, online
optimization is of utmost importance, for better
exploiting available resources thereby avoiding de-
sign oversizing. Though typical embedded MP-
SoCs employ advanced techniques such as semi-
distributed power-gating, voltage and frequency
scaling, the scope of foreseeable techniques remains
limited mostly because of the heterogeneous and
centralized nature of such systems.

3) The resulting system complexity induces a num-
ber of difficulties from a software point of view,
with typically hundreds of IPs for which drivers
are either closed-source, or provide bare minimum
support for the default given purpose of any given
IP. Because of this, the system often remains un-
derexploited: user applications are intended to be
executed on the AP and not the application-specific
ISPs that are not seen as programmable from a end-

2

user/application developer perspective1.

This paper therefore proposes an alternative system
organization that offers online optimization opportu-
nities beyond classical techniques, thereby furthering
potential benefits. We regard the heterogeneous and
centralized nature of MPSoCs as being the main limiting
factors towards achieving better scalability. Though the
use of an application processor is not questionable,
we argue that a subset of domain-specific ISPs can be
advantageously replaced by a fully decentralized ho-
mogeneous multiprocessor core designed for scalability
and adaptation, similar to the major shift observed in
GPU architectures that have become homogeneous for
achieving a better utilization of processing resources.

The multiprocessor core used in this study and previ-
ously proposed by the authors [2], is available under the
GNU General Public License at [3]. This core is based on
an array of loosely coupled independent processors that
communicate through exchanged messages routed in a
2D-mesh NoC. Each processor is equipped with a local
memory that stores both application code and a compact
microkernel that provides a number of services among
which online optimization functionalities, from now on
referred to as adaptation2, which are either executed in a
native distributed fashion or in a semi-centralized mode.

- first, based on the proposed architecture template,
we demonstrate the benefits of local distributed con-
trol through an implementation of feedback control
loops for adjusting frequency at processor level.

- second, we propose a novel approach to load
balancing named remote execution, which makes
for a tradeoff between reactivity and performance
compared to task migration.

- third, though message passing is the default pro-
gramming model for such a distributed memory ar-
chitecture, we describe a distributed shared-memory
(DSM) approach that enables the architecture to
operate in multithreading mode using a thread API
similar to POSIX threads. This approach allows for
exploiting load balancing at intra-task level thereby
giving another degree of freedom in the adaptation
process; and further paves the way for semi general-
purpose application acceleration.

The rest of this paper is organized as follows: Sec-
tion 2 presents and discusses relevant approaches in the
literature, and put these in perspective with the current
work. Section 3 then describes the used multiprocessor
core hardware and software architecture as well as the
programming models. Section 4 is devoted to the first

1. GPUs are a notable exception, with the growing interest in
General-Purpose computing on GPUs (GPGPU) using APIs such as
OpenCL. As these architectures provides significant speedups for very
regular code only, they are not discussed further here

2. The concept of adaptation (sometimes referred to as self-
adaptation in the literature) used throughout this paper is similar
to that used in biology: it refers to the process of adapting to time-
changing situations, driven by the entity that undergoes the process
itself.

2 contributions, use of feedback control-loops for dis-
tributed control and remote execution. Section 5 presents
the proposed multithreading approach, and provides
benchmarking results for scalability assessment. Section
6 is a wrap-up of all proposed techniques that are
compared from an adaptation perspective on a case-
study. Section 7 draws conclusions and proposes future
work directions.

2 STATE OF THE ART

Adaptation refers to online optimization mechanisms
that may take place at several abstraction levels: (i)
architecture (low-level); and (ii) system (high-level). In the
first case, because of being dealt with by the hardware
itself, quasi-instant decisions may be made at the price
of somewhat limited capability of analysis. Typically,
decisions are made on threshold crossing and often relate
to tuning of architecture parameters such as voltage or
frequency. Phenomena that take place at a larger time
scale with therefore slower dynamics are handled at
system-level, often by the software: in this latter case,
finer analysis is foreseeable (i.e. statistical information
gathering), and possible adaptation strategies cover tech-
niques such as task migration, route reconfigurations,
computation/communication rescheduling etc.

2.1 Adaptation at Architecture Level
Dynamic Voltage and Frequency Scaling (DVFS) tech-
niques have long been used in portable embedded sys-
tems in order to reduce the energy consumption and
temperature of such systems. Most existing DVFS are
defined at design time, where they are typically based on
pre-defined profiling analysis (e.g. application data) that
attempts to define an optimal DVFS configuration [4][5].
Puschini et al. [6] propose a scalable multi-objective
approach based on game theory, which adjusts at run-
time the frequency of each processing element (PE)
while reducing tile temperature and maintaining the
synchronization between application tasks. Due to the
dynamic variations in the workload of these systems
and the impact on energy consumption, other adapta-
tion techniques such as Proportional-Integral-Derivative
(PID) based control have been used to dynamically
scale voltage and the frequency of processors [7][8],
and recently, of Network-on-chip (NoC) [9][10]. These
techniques differ in terms of monitored parameters (e.g.
task deadline, temperature) and response times (period
necessary to stabilize a new voltage/frequency).

Ogras et al. [9] propose an adaptive control tech-
nique for a multiple clock domain NoC, which con-
siders the dynamic workload variation aiming at de-
creasing the power consumption. Besides, the proposed
control technique ensures the operation speed and the
frequency limits of each island (clock domain, defined
according to a given temperature). The effectiveness of
the proposed adaptive control technique was evaluated
considering different scenarios (e.g. comparison with a

3

PID controller) for a MPEG-2 encoder. In [10], a PID
controller is used to provide a pre-determined through-
put for multiple voltage-frequency/voltage-clock NoC
architectures. The proposed PID-based controller sets the
voltage and frequency of each NoC island by reserving
virtual channels weights (primary control parameter) in
order to provide the necessary throughput for different
application communications, while saving energy.

In [11] authors show a technique for minimizing
the total power consumption of a chip multiprocessor
while maintaining a target average throughput. The
proposed solution relies on a hierarchical framework,
which employs core consolidation, coarse-grain DVFS.
The problem of optimally assigning dependent tasks
in multiprocessor system has not been addressed in
their paper. Adaptability has been explored under a
number of aspects in embedded systems, ranging from
adaptive modulation used in 3GPP-LTE (3rd Generation
Partnership Project Long Term Evolution) standard SDR
(Software Defined Radio) [12] to adaptive cores instan-
tiation in dynamically reconfigurable FPGAs [13].

2.2 Adaptation at System Level
Adaptation at system level, here understood as a means
for dynamically assigning tasks to nodes so as to op-
timize system performance, can be done in two ways:
(i) by using dynamic task mapping heuristics; and (ii)
task migration (TM) for enabling load balancing. Dy-
namic mapping heuristics are intended to efficiently map
at run-time application tasks from a repository to the
available processors in the architecture. Several dynamic
mapping heuristics have been proposed [14][15][16][17].
Such heuristics aim to satisfy QoS requirements (e.g.
[15]), to optimize resources usage (e.g. network con-
tention [18][16]), and to minimize energy consumption
(e.g. [18][19][17]). Each of those has its own parameters
and cost functions, which can have numerous variations
(defined as new heuristics with different properties and
strengths). Thus, choosing the optimal dynamic heuristic
for a set of applications is not trivial; hence evaluat-
ing different performance metrics is time-consuming.
Alternatively, TM may employ mapping heuristics that
operate on monitoring information (e.g. processor work-
load, communication latency) in order to better fit cur-
rent execution scenario. Streichert et al. [20] employ
TM to ensure computation correctness of an application
by migrating executing tasks from a faulty node to a
healthy one. Authors propose an analytical methodol-
ogy that uses binding to reduce the overhead of the
task migration. However, neither architecture details nor
task mechanisms are presented in this work. A similar
analytical-based approach is presented in [21], which
proposes five task migration heuristics. These heuristics
are employed to remapping tasks onto remaining non-
faulty nodes after the identification and isolation of a
given fault.

Shen et al. [22] discuss the software and hardware
architecture features that are necessary to support TM in

heterogeneous MPSoCs. In [23] authors propose a policy
that exploits run-time temperature as well as workload
information of streaming applications to define suitable
run-time thermal migration patterns. In [24], authors
present a migration case study for MPSoCs that relies
on the µClinux operating system and a check pointing
mechanism, which defines possible migration points in
the application code. This work was extended in [25],
where an OS and middleware infrastructure for task
migration for their MPSoC platform is described.

Barcelos et al. [26] explore the use of TM in a NoC-
based system (high level model) that comprises both
shared and distributed memory organizations, aiming
to decrease the energy consumption when transferring
the task code. The distance between the nodes involved
in the code migration is used to define, at runtime, the
memory organization that will be used. In sum, this
section presented related work on adaptive techniques at
both architecture and system level: (i) adaptation at ar-
chitecture level (dynamic voltage and frequency scaling),
(ii) adaptation at system level (a) dynamic task mapping
heuristics; b) task migration in both shared memory and
distributed memory architectures. Our approach differs
from the existing in the following aspects:

- Several contributions have been presented in these
two levels but none of them propose an adaptive
multiprocessor combining all three features. Our
approach employs task mapping mechanism at two
levels: by means of using dynamic mapping heuris-
tics in order to provide a better initial state to the
system, and once tasks are mapped into the platform
task migration mechanism enables achieving load
balancing among different PEs in the architecture.

- To the best of our knowledge the used embedded
multiprocessor core is the only distributed memory
system, with RTL implementation, that supports
task migration without any help of shared memory;
which makes the template scalable.

This paper puts focus on actuation mechanisms rather
than decision making algorithms and extends from pre-
vious work in three key directions: (1) a novel purely dis-
tributed adaptation technique based on PID controllers
is proposed and benchmarked in term of performance
and power efficiency; (2) novel load-balancing schemes
that feature faster reactivity for load balancing compared
to task migration are proposed and compared with the
previous work; and (3) finally, a distributed shared
memory implementation that allows for finer grain load
balancing is described and benchmarked.

3 PROPOSED ARCHITECTURE TEMPLATE

This section describes the architecture of OpenScale [2],
i.e. an open-source RTL multiprocessor core designed for
scalability and adaptation. In order to enable scaling this
architecture to any arbitrary size, it makes use of dis-
tributed memories so as to avoid usual shared memory
bottlenecks. Advanced adaptation features such as task

4

migration are enabled thanks to a custom microkernel
capable of handling complex procedures such as code
migrations across distributed physical memories, etc.

3.1 Hardware Architecture
The adopted architecture is a homogeneous message-
passing NoC-based multiprocessor core with distributed
memory. Each node comprises a 32 bit pipelined CPU
with configurable instruction and data caches. This core
implements the Microblaze ISA architecture and features
a timer, an interrupt controller, a RAM and optionally
an UART [27]. These components are interconnected via
a Wishbone v4 open-source bus. The communication
between the node and the NoC router is implemented
in the NI (network interface) which performs low-level
packetization/depacketization.

The adopted NoC relies on a mesh of tiny routers
based on HERMES infrastructure [28]. The NoC employs
packet switching of wormhole type: the incoming and
outgoing ports used to route a packet are locked during
the entire packets transfer. The routing algorithm is of
XY type (Hamiltonian routing) that allows deterministic
routing. Each router has one incoming FIFO buffer per
port. The depth of FIFOs can be chosen according to the
desired communication performance. Figure 1 depicts
the platform along with the 2 supported programming
models that are described in 3.3, message passing and
multithreading through run-time vSMP (virtual Sym-
metric Multi Processor) cluster definition.

RAM

RTOS

Network
interface /

remote
memory access

IT
Cntrol

TimersDFS

SBLAZE

I$ D$

CPU

ROUTER

Node

vSMP
Clusters

Thread

Shared
memory

native message passing

- pthreads, semaphores
- preemptive multitasking microkernel
- dynamic loader & memory allocation
- multi-mode communication stack
- message-passing API
- libraries (math, libc, etc.)

Fig. 1. OpenScale Platform

3.2 Software Architecture
The microkernel used in our platform was originally
developed by [29] and extensively modified in order
to implement and provide new services needed for
proposing new adaptive mechanisms for homogeneous
MPSoC architectures. This choice was mostly motivated
by the small memory footprint (around 150KB) of this
microkernel given the provided features.

Applications are modelled as tasks that access hard-
ware resources through an API. A function call then
generates a software exception, handled by the operating
system Exception Manager. Additionally, the Scheduler
communicates with the memory and task management

modules, and exchanges messages with the decision-
making mechanisms. The Routing Table Manager keeps
track of tasks’ location storing the information in a data
structure called routing table. Whenever a task has to
communicate with another, the operating system per-
forms a lookup in the local routing table. Besides, Adap-
tation Mechanisms are implemented in order to provide
load balancing as well as optimize platforms resources
utilization, namely by scaling processor frequency ac-
cording to application requirements.

One of the objectives of this work is to enable dynamic
load balancing which implies the capability to migrate
running tasks from processor to processor. Migrating
tasks usually implies: (1) to dynamically load corre-
sponding code in memory and schedule a new process;
(2) to restore the context of the task that has been
migrated. A possible approach relies on resolving all
references of a given code at load-time; such a feature
is partly supported in the ELF (Executable and Linkable
Format) [30] which lists the dynamic symbols of the
code and enables the operating system loader to link
the code for the newly decided memory location. Such
mechanisms heavily rely on the presence of a hardware
MMU (Memory Management Unit) for address virtual-
ization and are memory consuming which clearly puts
this solution out of the scope of the approach.

Another solution for enabling the loading of processes
without such mechanisms relies on a feature that is
partly supported by the GCC compiler that enables
to emit relocatable code (PIC - Position Independent
Code). This feature generally used for shared libraries
generates only relative jumps and accesses data locations
and functions using a Global Offset Table (GOT) that is
embedded into the generated ELF file. A specific post-
processing tool which operates on this format was used
for reconstructing a completely relocatable executable.
Experiments performed in [31] show that both memory
and performance overheads remain under 5% for this
solution which is clearly acceptable.

3.3 Programming Model

3.3.1 Message Passing Interface
Programming takes place using a message-passing API.
Hence, tasks are hosted on nodes which provide
through their operating system communication primi-
tives that enable data transfers between communicat-
ing tasks. The proposed model uses two P2P commu-
nication primitives, MPI Send() and MPI Receive(),
based on synchronous message passing interface (MPI).
MPI Receive() blocks the task until the data is available
while MPI Send() is non-blocking, unless no buffer
space is available.

Each communicating task may have one or multiple
software FIFOs. In case a FIFO runs full, the operating
system resizes it according to the available memory.
This process is handled by a flow control mechanism

5

implemented as a service in the OS. This strategy al-
lows saving resources once memory is dynamically al-
located/deallocated according to communication needs.

3.3.2 Shared Memory/Multithreading
The work presented above relies on the assumption of
economically viability of numerous on-chip distributed
memories. While this may prove doable in the near
future because of advances in the area of dense non-
volatile emerging technology memories [32] such as
Magnetic RAMs (MRAMs) and Phase-Change Memories
(PCM), devising an approach that makes it possible
to share memory would further provide the distinct
advantage of opening the way for multithreading, which
is by far the most popular parallel programming model
in the area of general purpose computing. We here
present a low-overhead hardware/software distributed
shared memory approach that makes such distributed-
memory architecture multithreading-capable. The pro-
posed solution has been implemented into the multi-
processor core through developing a POSIX-like thread
API. This approach efficiently draws strengths from
the on-chip distributed memory nature of the original
architecture template that therefore retains its intrinsic
power-efficiency, and further opens the way to exposing
the multithreading capabilities of that component as a
general purpose accelerator.

3.4 Benchmarking Application Kernels

Four application kernels were employed for benchmark-
ing both adaptation techniques and multithreading ex-
tensions. These application kernels are: MJPEG (Motion
JPEG) video decoder, Smith Waterman (used to find
similar regions between two DNA sequences [33]), LU
(matrix factorization) and FFT (Fast Fourrier Transform).
For each of these compute kernels, both a message
passing (making use of the above-mentioned primitives)
and a multithreaded version were developed. Contrary
to MPI implementation in which communications are
explicit, Pthread-based implementations rely on threads
concurrently accessing shared variables residing in a
shared memory assumed coherent. For instance, MJPEG
threads process entire images, whereas Smith-Waterman
implementation relies on worker threads that run se-
quence alignment algorithm on different data sets. Simi-
larly, LU factorizes a matrix as the product of a lower and
an upper triangular matrix and each thread processes
different data sets. In turn, FFT is made of a number of
threads, each of which performs a number of butterfly
operations for minimizing data transfers.

Table 1 gives benchmark-specific figures expressed
in terms of single-thread processing time, computa-
tion/data ratio and code size. Due to the different na-
tures of those applications, execution time varies greatly
and ranges from less than 2 million clock cycles (4ms
at 500MHz) to over 13 millions clock cycles (26ms at

TABLE 1

Performance Information of Adopted Applications

Application

Name

Single Thread

Execution Time

(16KB of Cache)

Computation to

Data Ratio

Thread

Size (In-

structions)

MJPEG 5, 3 Mega cycles 5.34 52kB

SmithWaterman 13, 2 Mega cycles 7.08 3.8kB

LU 15, 5 Mega cycles 2.48 2.4kB

FFT 1, 9 Mega cycles 4.18 5kB

500MHz). The second important factor is the compu-
tation to data ratio. This number is the ratio between
the number of actual compute instructions (e.g. add,
mul, jump, etc.) over the number of memory instruction
(load/store) executed by a thread. This figure gives an
overview of the importance of instruction loading with
respects to data loading. Hence, an application having
a high computation to data loading ratio would be
compute-dominated, therefore with proportionally less
data accesses. Note that Smith Waterman has the higher
computation to data ratio, when compared to the others.

The fourth column in Table 1 shows the thread code
size of each application. A thread with large code size
would potentially lead to more instruction cache misses,
since it would likely not fit entirely inside the cache.

4 NOVEL ADAPTIVE TECHNIQUES

Adaptation draws strengths from the ability to han-
dle unpredictable scenarios: given the large variety of
possible use cases that typical MPSoC platforms must
support and the resulting workload variability, offline
approaches are no longer sufficient because they do not
allow coping with time changing workloads. This section
presents three adaptive techniques implemented in the
OpenScale platform, previously introduced in Section 3.
We regard the system as having a number of steady
states (i.e. task mappings), going from one such state
to another occurs whenever a system-level adaptation
technique (such as a task migration) takes place, i.e.
a transient phase between two steady states. The two
levels at which adaptation is implemented are:

- architecture-level: adaptation at this level addresses
optimization when the system operates in a steady
state: we here assume soft real-time applications
therefore a target performance-level has to be met
while minimizing power.

- system-level: adaptation at this level triggers
remappings in the architecture, resulting into
switching from one steady state to another. In that
precise case the system operates in best effort mode,
attempting at reaching another steady state in the
shortest possible time.

6

4.1 Architecture Level Optimization
As previously mentioned, OpenScale runs an microker-
nel that may generate multiple perturbations due to
the complexity of managing all the provided services
such as dynamic task loading, message passing protocol,
task migration, frequency scaling, among others. This
is made further worse by the data dependent nature
of some algorithms for which workload may greatly
vary depending on input data, such as video decoding
applications. The distributed frequency scaling (DFS)
mechanism must be efficient enough for coping with
such scenarios so that soft-real time application require-
ments are satisfied. Next section presents a smart DFS
strategy that makes it possible to meet real-time appli-
cation requirements in the presence of perturbations and
fluctuating workload.

4.1.1 Dynamic and Distributed Frequency Scaling
A PID controller is a generic control loop feedback
mechanism widely used in industrial control systems. It
calculates an error value as the difference between a mea-
sured process variable and a desired setpoint. The con-
troller attempts to minimize the error by adjusting the
process control inputs. However, for best performance,
the PID parameters used must be tuned according to the
nature of the process to be regulated. We here propose
the use of PID controllers at task-level as pictured in
Figure 2: an offline profiling permits extracting reference
performance values (such as throughput, inter-arrival
time, jitter etc) that are then used as setpoints for each
application task PID controller that then continuously
sets the frequency accordingly. This approach aims at
setting the lowest possible frequency that satisfies timing
constraints, so that minimum energy is wasted in idle
cycles in each processor. Once our platform is fully
parameterizable, it is possible, by executing different
experiments, to extract the most appropriate period for
executing the DVFS control. This functionality is imple-
mented as a service in the microkernel and is triggered
accordingly to the chosen period by means of interrupts.

FS PID CTRL

TASKi	

THROUG
MONIT.

CLOCK	

FS PID CTRL

TASKi	

THROUG
MONIT.

CLOCK	

R	 R	
T2 T3

T1	 T2	 T3	 Application:

PID CTRL

-‐	

+
ERROR	 	 	 I	 Ki e(τ)d

0

t

∫ τ

	 	 D	 Kd
de(t)
dt

	 	 P	 	 	 	 	 	 	 	 Kpe(t)

∑∑SETPOINT	 OUTPUT ERROR	 	 	 I	 Ki e(τ)d
0

t

∫ τ

	 	 D	 Kd
de(t)
dt

	 	 P	 	 	 	 	 	 	 	 Kpe(t)

∑∑ PROCESS SETPOINT

R	 R	

Fig. 2. Distributed PID Controllers

The proportional, integral, and derivative terms are
summed to calculate the output of the PID controller.
Defining u(t) as the controller output, the final form of
the PID algorithm is:

u(t) =MV (t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
d

dt
e(t)

1) Proportional gain, Kp: larger values typically mean
faster response since the larger the error, the larger
the proportional term compensation.

2) Integral gain, Ki: larger values imply steady state
errors are eliminated more quickly.

3) Derivative gain, Kd: larger values decrease over-
shoot, but slow down transient response and may
lead to instability due to signal noise amplification
in the differentiation of the error.

Each running application is composed of one or mul-
tiple tasks monitored by a system thread responsible for
calculating applications performance in a non-intrusive
mode. This information is passed on to the PID controller
which scales frequency up or down whenever a devia-
tion is observed from the setpoint value. The strategy
consists in deciding controllers parameters on a task
basis. To this purpose, a simulation of the MPSoC system
is executed in order to obtain the system step response,
here defined as the obtained application throughput
under frequency change. Based on this high-level model,
a number of different configurations of controllers can be
explored, each of which exhibits different features such
as speed, overshoot, static error, etc. In this scenario, the
values of P , I and D have been chosen aiming to increase
the reactivity of the system. The system is modeled in
Matlab and the different values for P , I , and D are set.

4.1.2 Experimental Protocol and Results
The following scenario is based on an audio/video
decoding application which includes ADPCM (Adaptive
Differential Pulse-code Modulation) decoder, MJPEG
and FIR (Finite Impulse Response). MJPEG video de-
coder application is composed of five tasks running
on a processor and a different application (a synthetic
task (P2) implemented in such way that it requires a
considerable amount of processing power) is migrated
to the processor, disturbing the MJPEG application per-
formance. Three different perturbation scenarios (P1, P2
and P3) are created based on different perturbation
factors defined respectively as follows: (i) low, (ii)
medium and (iii) high, represented in Table 2. ATBP
represents the Average Throughput Before Perturbation
while ATAP represents the Average Throughput After
Perturbation.

The following scenario depicts the system response
under perturbation condition (P3). Application perfor-
mance is analyzed for two approaches: (i) no adaptation
is done and processor frequency is constant and (ii)
processor frequency is controlled by a PID. The perturba-
tion is configured as follows: (1) perturbation start time:

7

TABLE 2

Different Perturbation Scenarios

Case
Perturb.

Level

Proc. Freq.

(MHz)

ATBP

(KB/s)

ATAP

(KB/s)

Impact

Factor

P1 low 425 1, 050 610 42%

P2 medium 425 1, 050 540 49%

P3 high 425 1, 050 440 58%

300ms; (2) perturbation period: 700ms; (3) application
performance impact factor: 58%.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2
0

200

400

600

800

1000

1200

1400

1600

1800
PERTURBATION REPRESENTATION (PI vs NO PI)

TIME (s)

#U
N

IT
S

THROUGHPUT − PI (KB/s)
THROUGHPUT − NO PI (KB/s)
FREQUENCY − PI (MHz)
FREQUENCY − NO PI (MHz)
SETPOINT (KB/s)
PERTURBATION START
PERTURBATION END

Fig. 3. Perturbation Representation - PI vs No PI

Figure 3 shows throughput evolution for both fixed-
frequency and PI-driven adaptation. Without PI con-
troller, task throughput is reduced to approximately
440kB/s during the perturbation period. Considering a
soft real-time video decoding application where perfor-
mance constraints must be met so as to ensure constant
frame rate, this scenario could result is freezes/frame
skips. When using a PI controller, it takes only 100ms
to restore initial setpoint, that represents the minimal
performance requirements of a given application. Shortly
after perturbation end a peak in task throughput is
observed due to the fact the processor is running at
high frequency in order to compensate the perturbation
occuring this far. The PI controller gradually lowers the
frequency, throughput goes back down to setpoint which
results in power savings.

Table 3 presents the power and energy consump-
tion for three different perturbation scenarios. It can
be observed that power and energy consumption are
significantly reduced when using PI- and PID-based
controllers. In S1, the energy consumption is reduced by
32% while power consumption is reduced by 42% in S3.
It is important to observe that the energy/power con-
sumption saving can be much higher in scenarios with
longer perturbation periods and where impact factor of
perturbations over applications is higher. It is further
import to note that such an approach that promotes
continous and frequent frequency scaling may not be
optimal depending on the targeted platform, because of

TABLE 3

Node Power and Energy Consumption Representation

for Three Different Scenarios Using 65nm Technology

Case Version
Dynamic

Power (mW)

Total Power

(mW)

Energy

(mJ)

Time

(s)

S1

No PID 295.50 295.64 802.10

2.56PI 206.90 207.04 545.10

PID 207.10 207.24 545.70

S2

No PID 333.00 333.14 903.80

2.56PI 217.70 217.84 573.70

PID 217.90 218.04 574.10

S3

No PID 407.90 408.04 1, 107.10

2.56PI 236.00 236.14 620.70

PID 242.90 243.04 638.70

constraints on selectables voltage / frequency couples
for instance. As being implemented in form of a service
in the microkernel, easy tuning of actuation frequency,
frequency range, number of selectable frequencies or
even use of hysteresis thresholds is possible to best fit
the platform / application / technology specifics.

4.2 System Level Optimizations
As mentioned previously, system-level adaptation tech-
niques are seen as transient phases between steady
states. Because of often incurring penalty on application
performance, the platform runs those technique in best
effort mode so as to resume normal application execution
in the shortest possible time. Benchmarking results for
the two techniques proposed in this Section are pre-
sented and discussed in Section 6.

4.2.1 Task Migration with Redirection (TMR)
Task migration (TM) mechanisms are implemented by
means of tight hardware/software interaction that han-
dle code migration from source node local memory to
destination node local memory. The basic mechanism re-
lies on interrupting data transmission between migrating
task and all of its predecessors that buffer produced data
until completion of migration procedure: handshaking
messages are exchanged between predecessor(s) node(s),
source node and destination node. Once migration of
code across physical memories of source and destination
nodes is complete, data transmission is resumed starting
with buffered packets.

The migration time very much depends on node pro-
cessor workload, NoC traffic; and task size. However
the latency is typically in the order of 10ms to 20ms at
500MHz frequency. This therefore gives an assessment
of the migration cost; overall migrations shall not be
triggered more that 10 times per second at that frequency
otherwise performance penalty may become significant.

Task migration with redirection (TMR) mechanism
aims at speeding up migration and operates local buffer-
ing on the source node rather than the predecessor node,

8

this allows for i) asynchronous update of predecessor
node(s) routing table(s) resulting in data buffered on
both the source node and destination node and ii) im-
mediate redirection of buffered packets right after code
has been tranfered.

4.2.2 Remote Execution (RE)
Different from TM and TMR techniques, in the RE
mechanism the task is remotely executed in the des-
tination node, using a remote memory access protocol
implemented in the NoC. The remote execution protocol
is illustrated in Figure 4. First processor in node A inter-
rupts t1 execution (step 1) and then sends an execution
request with the current task state (step 2). Once the
chosen node B granted its request, t1 is executed in
processor (node B) by fetching its code from the remote
processor in node A (step 3). To improve execution
efficiency, instructions fetched remotely are cached in the
L1 instruction cache of processor (node B).

2

remote
code access

3

execution
request

RAM

SBLAZE

PE A

ROUTER

Node A
t1 1

t1 code

1011111
0010101
1110101

RAM

SBLAZE

PE B

ROUTER

Node B
t1

D$ ID I$

3

NINI

3

2

Request
ROUTER1

Message Module

FIFO

NI

RMA Module

FIFOs

RMA-Reply

RMA-Send

SBLAZE CPU
and RAM

Answer

Local
Memory
Access

PE A

Fig. 4. Remote Task Execution Protocol

It is important to note that the programming philoso-
phy of the platform here remains message passing and
not shared memory. Hence, only few data (static data)
are fetched from remote memory during a remote exe-
cution, with the main data flow coming from messages.
In this configuration, data remain uncached during a re-
mote execution. This strategy was taken considering that
we have on-chip memory, with memory access latency
few orders of magnitude less than standard shared mem-
ory architecture using off-chip memory. Furthermore,
using uncached data avoids the use of complex cache
coherency mechanisms between data cache and remote
memories. Instructions, however, are entirely cached.

In order to support this protocol, a hardware module
called remote memory access (RMA) was implemented.
The RMA is composed of an RMA-Send and an RMA-
Reply, which enable distant memory access through the
NoC. Two asynchronous FIFOs are employed to guaran-
tee the communication between both modules and the
NoC, as shown Figure 4. The purpose of the RMA-Send
is to handle memory requests from the local CPU (step

1 and step 3). In case of write request, the RMA-Send
component sends the data that must be stored in task
node (e.g. in Figure 4 node B transfers the resulting
data of execution of t1 to the node A). In case of a
read request, the RMA-Send component requests the
desired data to the remote node (e.g. in Figure 4 node B
requesting instruction code to the node A). In turn, the
RMA-Reply module answers the request coming from
the RMA-Send (NoC side - step 2). In case the incoming
request is granted the data is stored in the memory.
In a read request, the data is read from the memory,
packetized and sent to the requesting node.

The overall memory access performance depends on
two main factors. First, as our architecture provides only
L1 cache, the cache-miss rate is particularly important,
as it determines the number of remote memory accesses,
hence the traffic. Therefore remote memory access per-
formance depends on: (i) cache size, (ii) cache policy,
and (iii) number of remote memory accesses resulting
from application.

5 SIMULTANEOUS MULTITHREADING

OpenScale being natively a distributed memory system,
message passing is the default programming model,
and task migration the natural means for achieving
load balancing. In order to both offer an alternative
programming model and enhance adaptive load balan-
cing, we developed a distributed shared memory ap-
proach (DSM). In this context, the in-house microkernel
described in Section 3.2 was modified to support a
configurable processor memory mapping that permits
specifying the ratio of local private data versus local
shared data, made visible to all processors in the cluster
as shown in the Figure 5.

0x00000
Host

Shared
data

0x01FFF
0x02000

0x0FFFF

Private
data

0x10000

0x1FFFF

RTOS

Node 1

Private
data

RTOS

Node n

Private
data

RTOS

Fig. 5. Distributed Shared Memory node organization

Contrary to message passing in which communica-
tions are explicit, shared memory / thread-based par-
allelism relies on threads concurrently accessing shared
variables residing in a shared memory assumed coher-
ent. Synchronizations are handled by means of deciding
a specific memory consistency model and an API such as
the POSIX threads standard that offers a range of primi-
tives (mutex, semaphores, fork/join, etc). Implementing
a coherent memory architecture proves challenging in
case several physical memories are used: in such con-
figurations complex cache coherence mechanisms are
required, machines of this type are usually referred

9

to as ccNUMA (cache-coherent Non-Uniform Memory
Architecture).

The proposed approach offers the opportunity to de-
cide shared-memory clusters of arbitrary size and ge-
ometry at run-time: nodes belonging to the clusters go
into bonding mode and share part of the host node
memory (one per cluster). A POSIX-like thread API
implementation along with DSM hardware support is
presented in this section and benchmarked.

5.1 Thread API and memory consistency model
The used thread API is similar to POSIX and has func-
tions belonging to 3 categories: thread creation, mutexes
and barriers. This implementation relies on a relaxed
consistency memory model in which memory is guaran-
teed coherent at synchronization points, i.e. whenever an
API function call is made. In order to further lower per-
formance overhead related to memory consistency, the
API requires shared data be explicitly flagged as such,
which accounts for the only difference in function pro-
totype with POSIX thread API, all other being otherwise
exactly similar. A multithreaded task in our implemen-
tation uses the message passing API for communication
with other tasks, but creates worker threads on remote
processor nodes. During thread creation, data caches are
flushed on the caller side, and invalidated on the exe-
cuter side. During mutex lock, cache lines that possibly
contain shared data that can be accessed between the
locking and unlocking are invalidated. During mutex
unlock, those same lines are flushed. During barrier calls,
the shared memory is also flushed and invalidated. This
memory consistency model limits the cache coherence
mechanism to the bare minimum thereby simplifying
software and hardware support, and features limited
performance overhead: invalidation and flush of a given
cache line occurs only if cache line tag corresponds to
the address specified by the instruction. This condition
avoids unnecessary cache flushes/invalidations of cache
lines containing unrelated data.

5.2 Multithreading Hardware Support
The RMA has been purposely modified compared to that
used in remote execution, so as to better support specific
memory consistency operations. It is composed of an
RMA-Send and an RMA-Reply, which enable distant
memory access through the NoC. Two asynchronous
FIFOs are employed to guarantee the communication
between both modules and the NoC.

The RMA module contains a cache miss handling
protocol that comprises three main steps: (i) whenever
a cache miss occurs, the CPU issues a cache line request
routed through the NoC (ii) the host RMA reads the
desired cache line (i.e. instruction/data), which is sent
back to the remote CPU that resumes the execution of
the thread as soon as the cache line is received (iii). This
protocol has a latency of 182 clock cycles at zero NoC

load, from the cache line request to the remote thread
execution, as illustrated in Figure 6.

The maximum end-to-end bandwidth of 90MB/s at
500MHz in this implementation. Note that the host RMA
is kept busy during a fraction of that time (64 clock
cycles), a maximum theoretical bandwidth of 250MB/s
exists when several requests are aliased.

3

NoC

HOST

2

reads instructions/data

cache line

RR

R R

1

Message Module

FIFO

NI

RMA Module

FIFOs

RMA-Reply

RMA-Send

CPU

D$ I$

REMOTE

cache line
request
RAM

Message Module

FIFO

NI

RMA Module

FIFOs
RMA-Send

RMA-Reply

CPU

DI

instructions
data/

0010101
1110101

RAM

Fig. 6. Cache Miss RMA Protocol

5.3 Experiments and Results
The platform is configured as follows:

• 3 × 3 processor array, NoC with 4 positions input
buffers and 32 bits channel width.

• processor cache size was set to 4, 8 and 16kB, 8
words per lines.

• 500MHz frequency for both processor nodes and
NoC routers.

• CPU: hardware multiplier, divider and barrel shifter.

(a) vSMP with 1 thread (b) vSMP with 2 threads

A
RMA Inst./data

0010101001
111011110
1010110011 A A

Inst./data
0010101001
111011110
1010110011

(c) vSMP with 8 threads

Inst./data
0010101001
111011110
1010110011 A A

A A A

A A A

Fig. 7. Adopted Scenario

Figure 7 shows the thread mapping used for experi-
ments. In those, shared data reside in the top-left proces-
sor node, and are accessed by threads running in other
nodes. This mapping results in less bandwidth available,
as only two NoC ports are available. This scenario was
used on purpose so as to enable identifying possible
limitations/bottlenecks of the proposed system. For the
sake of simplicity, Figure 7 (c) does not illustrate all
remote memory accesses. All results were gathered on a
synthesizable RTL VHDL description of this accelerator.
Note that all features inherent to prototype (e.g. run-time
vSMP cluster definition) were also evaluated in FPGA
(i.e. simplistic scenarios due to the memory limitations).

5.3.1 Reference Platforms
The GEM5 Simulator framework[34] was used to pro-
duce two shared-memory reference platforms: bus- and

10

NoC-based platforms. GEM5 was chosen because of
providing a good tradeoff between simulation speed and
accuracy, while modeling a real Realview Platform Base-
board Explore for Cortex-A9 (ARMv7 A-profile ISA).

To create our first reference platform (Figure 8 (a))
it was necessary to modify the CPU model and Linux
bootloader supported in GEM5 to enable configurations
with more than 4 cores. The bus-based platform, illus-
trated in Figure 8 (a), is configured as follows: (i) up to
8 ARM Cortex-A9 cores, (ii) CPU running at 500MHz,
(iii) Linux Kernel 2.6.38, (iv) 16kB private L1 data and
instruction caches, (v) 32bits channel width and (vi)
DDR physical memory running at 400MHz.

Figure 8 (b) shows the main architecture of our second
reference platform, which comprises: (i) up to 8 ARM
Cortex-A9, (ii) CPU running at 500MHz, (iii) Linux
Kernel 2.6.38, (iv) 16kB private L1 data and instruction
caches, (v) 32bits channel width, (vi) 256MB unified
L2 cache and (vii) an interconnection network. Such
a large L2 cache size was decided for avoinding any
traffic with external DRAM memory during benchmark
execution, so as to perform fair comparisons with the
proposed architecture template that uses on-chip mem-
ories only. The Cache Coherence Protocol that was used
is MOESI Hammer (AMD’s Hammer protocol used
in AMD’s Hammer chip [35]). Three interconnection
network topologies were use as reference NoC-based
models: (i) crossbar - each controller (L1/L2/Directory)
is connected to every other controllers via one router
(modeling the crossbar), (ii) mesh and (iii) torus. In both
Mesh and Torus topologies, each router is connected to
a L1 and a L2.

ARM Cortex A-9

Interconnection Network

L1 Cache
Controller

L2 Cache
Controller

Memory
Controller

ARM Cortex A-9

L1 Cache
Controller

L2 Cache
Controller

ARM Cortex A-9

L1 Cache
Controller

ARM Cortex A-9

Bus

RAM DDRRealView IOs

I
Cache

D
Cache

ARM Cortex A-9 ARM Cortex A-9

(a) (b)

I
Cache

D
Cache

I
Cache

D
Cache

Fig. 8. Reference Platforms

5.3.2 Speedup
The first experiment evaluates the platform scalability
considering MJPEG, Smith Waterman, FFT and LU dur-
ing their execution. In order to maximize speedup, one
thread per node was used in all experiments, thereby
avoiding performance penalties resulting from context
switching. Following results are CPU normalized so
as to assess scalability of the template and abstract
ISA/microarchitecture specifics: hence, single core per-
formance is shown as same for all architectures. Figure
9 (a) shows how MJPEG performance scales versus the
number of cores. Near-linear speedup is observed for
the proposed architecture template when cache sizes

of 8 and 16kB are employed. Reference NoC-based
platforms show better performance when compared to
the reference shared bus-based system, which reaches a
plateau from 5 cores due to the bus saturation. The same
behavior is also observed with the proposed architecture
template when using cache sizes of 4kB.

In turn, Figure 9 (b) shows near-perfect linear speedup
for the Smith-Waterman application, for both proposed
and reference platforms. In turn, a maximum speedup
of 6.3 is achieved in the reference shared-memory mesh
platform. As being very compute oriented, few data
communication occur and thread code fit in the local
caches for all tested configurations, resulting in limited
cache miss rate. Different from the previous benchmarks
the FFT application was employed to explore the shared
data protection when multiple threads trigger concurrent
accesses to the same shared data/variable (e.g. during
a read or write operation). In this situation, synchro-
nization primitives like Mutexes must be used to allow
exclusive thread data access and Barrier to coordinate the
parallel execution of threads, during their synchroniza-
tion. Thus, a Mutex variable is used to allow each thread
to use a single variable in shared memory to identify
them before starting their execution process.

Figure 9 (c) shows the performance scalability of FFT
application, regarding the adopted scenario (Figure 7).
Due to the sequential synchronizations, the paralleliza-
tion capability of FFT is low. Thus, using our platform
with a 16kB cache configuration, the application can
only achieve a speedup of 4.6. However, such results
show the better performance when compared to the
other reference systems, which achieve a plateau from
5 cores. The LU scenario presented the worst scalability
results, as shown in Figure 9 (d). Excluding the proposed
distributed memory architecture with cache size of 16kB
that does not reach the saturation (application speedup
of 4.1), others architectures reached a plateau from 7
cores.

To further platform explorations, we generated an 4x4
scenario, varying the host position. Three scenarios were
explored:

• Host placed at 0x0: which comprises, in cartesian
addressing top-bottom corner positions (00, 03, 30
and 33). In this case, in the worst case 3 threads will
communicate using the east port and the other 12
threads will communicate through the south port,
making this the bottleneck.

• Host placed at 1x1: comprising central mesh posi-
tions (11, 12, 21 and 22), which reduce the south
port communication from 12 to 8 threads, whille
decrising NPU-Host distance to 4 hops.

• Host placed at 1x0: which comprises the remaining
positions. Due to the adopted XY routing algorithm,
12 threads will communicate through the south port,
while one and two threads through west and east
ports, respectively.

As displayed in Figure 9 (e), the total gain using 15
threads is about 3% by changing only the host position,

11

(a) MJPEG (b) Smith Waterman (c) FFT

(d) LU (e) scalability considering host position (f) 3 applications without communication interference

Fig. 9. Architecture scalability, for cache sizes of 4kB, 8kB and 16 kB (a)(b)(c)(d); scalability scenario regarding host

position in a 4 x 4 configuration (e); cluster exploration considering MJPEG (3 threads), FFT (3 threads) and LU (15

threads), executing simultaneously (f), where each bar represents the execution time of one thread

this can be explained by the fact that the MJPEG appli-
cation is scalable and the NoC was not saturated when
a 16kB cache size is employed, as will be detailed in Sec-
tion 5.3.3. The next experiment (Figure 9 (f)) explores the
use of multiple vSMP clusters. This scenarios comprises
a 6x4 platform organized in 3 virtual clusters, where: two
2x2 clusters are used to execute FFT and MJPEG while a
4x4 cluster executes the LU application. Jitter in thread
execution time remains below 5

5.3.3 RMA and NoC Throughput
Figure 10 shows the average bandwidth usage during
MJPEG execution for the two used NoC links at the
host level (south and east) as well as the RMA, which
is the aggregated bandwidth of those. Thread mapping
plays a role in the NoC usage, as explained in Section
2.2. It can be observed that south link is unused for 1
and 2 threads, because of the decided mapping. Most
data flows through the east host NoC link, due to the
used mapping. For 8 and 16kB cache sizes the bandwidth
grows almost linearly versus the number of threads.
Using 4kB cache sizes results in a significant bump in
bandwidth usage, mostly because of much increased
instruction cache miss rate. A plateau is observed from
4 threads at around 200MB/s, which is about 80% of
the maximum theoretical bandwidth of the RMA mod-
ule (250MB/s). This explains the plateau observed in
speedup in Figure 9 (a) because of the RMA saturation.

 0

 50

 100

 150

 200

 250

 1 2 3 4 5 6 7 8

M
B/

s

east 4kB
south 4kB
RMA 4kB

 0

 10

 20

 30

 40

 1 2 3 4 5 6 7 8

M
B/

s

of Threads

east 16kB
south 16kB
RMA 16kB

Fig. 10. Average bandwidth usage for MJPEG

6 COMPARISON OF PROPOSED TECHNIQUES

6.1 Performance Comparison

Multithreading as presented in Section 5 allows for
thread-level parallelism, hence at a finer grain compared
to task-level parallelism. Beyond the obvious gains in
programmability, this permits lifting some performance
bottlenecks should a given task be critical in an appli-
cation processing pipeline. In order to fairly assess the
performance and drawbacks of all proposed techniques,
a case study 3x3 processor system capable of running

12

any of the proposed techniques has been built . This
setup was experimented on a MJPEG processing pipeline
comprising 4 tasks, with a defavorable initial mapping in
which IVLC and IQuant, the 2 most compute intensive
task are executed on a single processor node in a time-
sliced mode. Six simulation runs, depicted in Figure
11, are presented accounting for TM, TMR, RE and
multithreaded execution from 1 to 3 worker threads,
alongside a main thread which handles synchronizations
and acts as a wrapper.

(a) Before IVLC migration

IQUANT

IVLC

SenderIDCT

(b) After IVLC migration

SenderIDCT

IQUANT IVLC

(c) IVLC is remotely executed

IVLC
0010101
1110101

SenderIDCT

IQUANT IVLC

(d) IVLC code with 3 pthreads

SenderIDCT

IVLC

IVLC

IVLC
IQUANT

IVLC
main

Fig. 11. Adopted Scenarios

Figure 12 (a) shows the throughput obtained for each
technique triggered at the same time in all 6 runs. The
throughput in all scenarios is maintained up until the mi-
gration trigger point. TM incurs a significant penalty due
to the required time to transfer task code, interrupting
and later restoring data transfers. During this 10ms pe-
riod TM throughput drops to about half of initial value;
while TMR shows a greater performance penalty last-
ing much less, therefore completing migration in about
4ms thanks to the data redirection strategy. RE negates
observed performance penalty and instantly triggers ex-
ecution on the remote node. Post-migration performance
is however less than TM due to the latency incurred by
remote instruction fetching. Concerning multithreaded
implementations, single thread performance is similar to
RE while 2 and 3 thread implementations outperform
all other techniques, at the expense of respectively one
and two more processor nodes used. Figure 12 (b) plots
the buffer usage when the MJPEG pipeline is connected
to a video DAC that consumes packets at regular time
intervals. Buffer occupation drops during migration as a
function of the used technique. While TM requires over
20 buffered packets for avoiding starvation, much less
is required for all other techniques. Buffer occupation
then increases after migration as higher throughput is
achieved, plot crossing give an assessment of the break-
even point and therefore the payback time.

Multithreading is here regarded as a complementary
technique to TM, TMR and RE: in the example above
should a higher level of performance be required for the
video decoding, multithreading proposes an alternative
to repartitionning of the entire application into tasks
which would otherwise be needed. As multithreaded
execution performance is sensitive to available band-
width on the NoC as presented in Figure 10, several
measures may be taken to limit performance penalty,
such as controlling the amount of through-traffic in the
vSMP cluster.

(a) MJPEG Throughput

(b) buffer occupation

Fig. 12. Performance Comparison for the 4 techniques

6.2 Proposed Architecture Area Overhead

Area results were obtained for both FPGA and ASIC tar-
gets targeting 40nm CMOS process, with the following
memory sizes: (i) 64kB, (ii) 128kB and (iii) 256kB. Target
processor architecture has FPU, optional IO (e.g. debug,
UART) were removed from synthesis.

TABLE 4

PE area evaluated at 40nm CMOS Technology

Memory Size
Low-Power core

with FP

Low-Power core

with FP + RMA

Area

Overhead

64kB 0, 2803mm2 0, 3240mm2 15, 59%

128kB 0, 4392mm2 0, 4829mm2 9, 94%

256kB 0, 7650mm2 0, 8088mm2 5, 72%

Table 4 shows area overhead related to multithreading
range from 5, 72% to 15, 59%, using respectively 256kB
and 64kB of RAM. An additional analysis was performed
using a Xilinx Spartan-3 FPGA, RMA implementation
incurs an resource overhead ranging from 7% to 15%
depending on the size of shared memory.

13

7 CONCLUSION

While most platform SoCs are today heterogeneous, our
approach follows a different route and advocates the
design of adaptive and scalable multiprocessor cores, sit-
ting next to a traditional application processor, that could
compete performance and power-wise with ISPs to their
ability to adapt to time-changing scenarios. With the
underlying motivation of architecture scalability, this pa-
per demonstrated on the basis of a scalable and synthe-
sizable HW/SW multiprocessor template, several novel
purely distributed adaptation techniques that leverage
the existing techniques for such architectures:

i) distributed PID-based control, experimented on fre-
quency scaling has proven effective both in the
handling of transient perturbations and power-wise.
This approach could be extended both in term of
algorithm (use of Kalman filters) or control scheme,
that could be designed hierarchical such as those
used in most complex control automation processes.

ii) as an alternative to task migration in distributed
memory systems, two techniques are presented: task
migration with redirection and remote execution,
the latter can be regarded as a technique that makes
load balancing in distributed memory systems vi-
able, because of incurring negligible latencies, sim-
ilar to those in shared-memory multicore systems.

iii) in order to widen the scope of load-balancing op-
portunities a low area overhead technique for mul-
tithreading supports based on distributed shared
memory is proposed: it efficiently draws strengths
from the scalable, distributed memory and onchip
features of our architecture: the low memory access
latencies make it possible to literally dynamically
grow a large number or threads for achieving max-
imum performance.

Summarizing the above discussions, we believe that
all these techniques combined together make for a flex-
ible template with a panel of techniques that permits
exploiting different application profiles and use cases.
Our current work lies in exploring the opportunities
offered by this technique for harnessing the processing
power of such dense multiprocessor cores from the ap-
plication processor for quasi-general purpose application
acceleration contrary to typical heterogeneous platform
SoCs. APIs such as OpenMP and OpenCL are promising
alternatives that will certainly render such solutions
more attractive in the future.

REFERENCES

[1] S. Borkar, “Designing reliable systems from unreliable compo-

nents: the challenges of transistor variability and degradation,”

Micro, IEEE, vol. 25, no. 6, pp. 10 – 16, nov.-dec. 2005.

[2] R. Busseuil and et al., “Open-scale: A scalable, open-source noc-

based mpsoc for design space exploration,” Reconfigurable Com-

puting and FPGAs, International Conference on, pp. 357–362, 2011.

[3] LIRMM, “Computing, adaptation & related hardware/software,”

2012. [Online]. Available: http://www.lirmm.fr/ADAC

[4] G. Magklis and et al., “Profile-based dynamic voltage and fre-

quency scaling for a multiple clock domain microprocessor,”

SIGARCH Comput. Archit. News, vol. 31, pp. 14–27, May 2003.

[5] F. Xie and et al., “Compile-time dynamic voltage scaling settings:

opportunities and limits,” SIGPLAN, vol. 38, pp. 49–62, May 2003.

[6] D. Puschini and et al., “A game-theoretic approach for run-

time distributed optimization on mp-soc,” International Journal of

Reconfigurable Computing, 2008.

[7] Q. Wu and et al., “Formal online methods for voltage/frequency

control in multiple clock domain microprocessors,” SIGARCH

Comput. Archit. News, vol. 32, pp. 248–259, October 2004.

[8] Y. Zhu and F. Mueller, “Feedback edf scheduling exploiting

hardware-assisted asynchronous dynamic voltage scaling,” SIG-

PLAN Not., vol. 40, pp. 203–212, June 2005.

[9] U. Y. Ogras and et al., “Variation-adaptive feedback control for

networks-on-chip with multiple clock domains,” Proceedings of the

45th Annual Design Automation Conference, pp. 614–619, 2008.

[10] A. Sharifi and et al., “Feedback control for providing qos in

noc based multicores,” Proceedings of the Conference on Design,

Automation and Test in Europe (DATE), pp. 1384–1389, March 2010.

[11] M. Ghasemazar and et al., “Minimizing the power consumption

of a chip multiprocessor under an average throughput con-

straint,” in International Symposium on Quality Electronic Design

(ISQED). IEEE, 2010.

[12] F. Clermidy and et al., “An open and reconfigurable platform

for 4g telecommunication: Concepts and application,” in DSD’09:

Proceedings of the 2009 12th Euromicro Conference on Digital System

Design, Architectures, Methods and Tools. Washington, DC, USA:

IEEE Computer Society, 2009, pp. 449–456.

[13] D. Puschini and et al., “Dynamic and Distributed Frequency

Assignment for Energy and Latency Constrained MP-SoC,” in

DATE’09: Design Automation and Test in Europe, Nice, France, 04

2009, pp. 1564–1567.

[14] M. A. Al Faruque and et al., “Adam: run-time agent-based

distributed application mapping for on-chip communication,” in

Proceedings of the 45th annual Design Automation Conference, ser.

DAC ’08. New York, NY, USA: ACM, 2008, pp. 760–765.

[15] L. T. Smit and et al., “Run-time mapping of applications to a

heterogeneous soc,” in Proceedings of the International Symposium

on System-on-Chip, SoC 2005. IEEE, 2005, pp. 78–81.

[16] E. L. de Souza Carvalho and et al., “Dynamic task mapping for

mpsocs,” IEEE Design & Test of Computers, vol. 27, pp. 26–35, 2010.

[17] M. Mandelli and et al., “Energy-aware dynamic task mapping for

NoC-based MPSoCs,” in IEEE International Symposium on Circuits

and Systems, 2011, pp. 1676–1679.

[18] A. K. Singh and et al., “Communication-aware heuristics for run-

time task mapping on noc-based mpsoc platforms,” J. Syst. Archit.,

vol. 56, pp. 242–255, July 2010.

[19] S. Wildermann and et al., “Run time mapping of adaptive applica-

tions onto homogeneous noc-based reconfigurable architectures,”

in Field-Programmable Technology, 2009. FPT 2009. International

Conference on, dec. 2009, pp. 514 –517.

[20] T. Streichert and et al., “Dynamic task binding for hard-

14

ware/software reconfigurable networks,” in SBCCI ’06: Proceed-

ings of the 19th annual symposium on Integrated circuits and systems

design. New York, NY, USA: Acm, 2006, pp. 38–43.

[21] O. Derin and et al., “Online task remapping strategies for fault-

tolerant network-on-chip multiprocessors,” in Proceedings of the

Fifth ACM/IEEE International Symposium on Networks-on-Chip, ser.

NOCS ’11. New York, NY, USA: ACM, 2011, pp. 129–136.

[22] H. Shen and F. Petrot, “Novel task migration framework on con-

figurable heterogeneous mpsoc platforms,” in Design Automation

Conference ASP-DAC. Asia and South Pacific, 2009, pp. 733–738.

[23] F. Mulas and et al., “Thermal balancing policy for multiprocessor

stream computing platforms,” Trans. Comp.-Aided Des. Integ. Cir.

Sys., vol. 28, no. 12, pp. 1870–1882, 2009.

[24] S. Bertozzi and et al., “Supporting task migration in multi-

processor systems-on-chip: A feasibility study,” in Design, Au-

tomation and Test in Europe, 2006. DATE ’06. Proceedings, vol. 1,

2006, pp. 1–6.

[25] M. Pittau and et al., “Impact of task migration on streaming multi-

media for embedded multiprocessors: A quantitative evaluation.”

in ESTImedia. IEEE, 2007, pp. 59–64.

[26] D. Barcelos and et al., “A hybrid memory organization to enhance

task migration and dynamic task allocation in noc-based mpsocs,”

in SBCCI’07:. New York, NY, USA: ACM, 2007, pp. 282–287.

[27] L. Barthe and et al., “The secretblaze: A configurable and cost-

effective open-source soft-core processor,” in Parallel and Dis-

tributed Processing Workshops and Phd Forum (IPDPSW), 2011 IEEE

International Symposium on, may 2011, pp. 310 –313.

[28] F. Moraes and et al., “Hermes: an infrastructure for low area

overhead packet-switching networks on chip,” Integration, the

VLSI Journal, vol. 38, no. 1, pp. 69–93, 2004.

[29] S. Rhoads, “Plasma - most mips i(tm).” [Online]. Available:

(http://www.opencores.org/project,plasma)

[30] J. R. Levine, Linkers and Loaders. San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc., 1999.

[31] N. Saint-Jean, “Study and design of self-adaptive multiprocessor

systems for embedded systems,” PhD. Thesis, University of Mont-

pellier 2, France, 2008.

[32] C. Muller and et al., “Design challenges for prototypical and

emerging memory concepts relying on resistance switching,” in

Custom Integrated Circuits Conference (CICC), sept. 2011, pp. 1 –7.

[33] T. F. Smith and M. S. Waterman, “Identification of common

molecular subsequences.” Journal of molecular biology, vol. 147,

no. 1, pp. 195–197, Mar. 1981.

[34] N. Binkert and et al., “The gem5 simulator,” SIGARCH Comput.

Archit. News, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[35] AMD Opteron Shared Memory MP Systems, Aug. 2002.

Dr. Luciano Ost is Associate Professor at the Uni-

versity of Montpellier II and member of microelectronic

group at LIRMM, which is a cross-faculty research

entity of the UM2 and the National Center for Scientific

Research (CNRS). Ost got his PhD degree in Com-

puter Science from PUCRS, Brazil in 2010. From 2004

to 2006 he worked as Research Assistant in this same

University.

PhDc. Rafael Garibotti is currently a PhD candi-

date at LIRMM, France. He received his MSc. Degree

in Microelectronics from EMSE, France and his BSc.

Degree in Computer Engineer from PUCRS, Brazil.

Moreover, he did a MBA in Project Management at

FGV, Brazil. He worked two years and a half as Digital

ASIC Designer at CEITEC S.A, besides having done

an internship at NXP Semiconductors, France.

Dr. Gilles Sassatelli occupies a senior scientist

position at LIRMM. He is currently the leader of the

Adaptive Computing Group composed of 12 permanent

staff researchers and over 20 Ph.D. students. He has

published more than 150 publications in a number of

renowned international conferences and journals, and

regularly serves as track or topic chair in the major

conferences in the area of reconfigurable computing.

Dr. Gabriel Marchesan Almeida is currently a

senior research scientist at Karlsruhe Institute of Tech-

nology (KIT), in Germany. He received his BSc. Degree

in Computer Science from URI, Brazil in 2004 and his

MSc. Degree in Computer Science in 2007. In 2008 he

moved to Montpellier, France where he got, in 2011, his

PhD. in Microelectronics from University of Montpellier

II.

Dr. Rémi Busseuil got in 2012 his PhD in mi-

croelectronics from LIRMM, Laboratory of Informatics,

Robotics and Microelectronics of Montpellier, France.

He received his Masters degree in microelectronics in

2009 from the ENS Cachan school, Paris, France and

he currently holds a teaching position in France.

PhDc. Anastasiia Butko is currently a PhD can-

didate at LIRMM, France. Butko works in the area

of adaptive multiprocessor architectures for embedded

systems in the Adaptive computing group. She received

her MSc. Degree in Microelectronics from UM2, France

and MSc and BSc Degrees in Design of Electronic

Digital Equipment from NTUU ”KPI”, Ukraine.

Prof.Dr. Michel Robert obtained respectively his

MSc and PhD degree in 1980 and 1987 from the

University of Montpellier. From 1980 to 1984 he was

in the semiconductor division of Texas Instruments as

R&D engineer. From 1985 to 1990, he was assistant

professor at the University of Montpellier 2, and LIRMM

laboratory. Since 2012 he is the president of the Univer-

sity of Sciences of Montpellier (France).

Prof. Dr.-Ing. Jürgen Becker received the

Diploma degree in 1992, and his Ph.D. in 1997, both at

Kaiserslautern University, Germany. His research work

focused on application development environments for

reconfigurable accelerators, including hw/sw codesign,

parallelizing compilers and high-level synthesis. He is

author of more than 250 scientific papers, published in

peer-reviewed international journals and conferences.

View publication statsView publication stats

https://www.researchgate.net/publication/262162035

