
HAL Id: lirmm-00820100
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00820100v1

Submitted on 25 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Mobile Computing Framework for Pervasive Adaptive
Platforms

Gilles Sassatelli, Olivier Brousse, Jérémie Guillot, François Grize, Thierry Gil,
Michel Robert

To cite this version:
Gilles Sassatelli, Olivier Brousse, Jérémie Guillot, François Grize, Thierry Gil, et al.. A Mobile
Computing Framework for Pervasive Adaptive Platforms. International Journal of Distributed Sensor
Networks, 2012, 2012, pp.#193864. �10.1155/2012/193864�. �lirmm-00820100�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00820100v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2012, Article ID 193864, 15 pages
doi:10.1155/2012/193864

Research Article

A Mobile Computing Framework for
Pervasive Adaptive Platforms

Olivier Brousse,1, 2, 3 Jérémie Guillot,1 Gilles Sassatelli,1 Thierry Gil,1

François Grize,2 and Michel Robert1

1 LIRMM UMR 5506, Université Montpellier 2, CNRS, 161 Rue ADA, 34095 Montpellier Cedex 5, France
2 Département des Systèmes d’Information, Faculté des Hautes Études Commerciales, Université de Lausanne,
1015 Lausanne, Switzerland

3 LEAD-UMR 5022, Université de Bourgogne, CNRS, Pôle AAFE, Esplanade ERASME, BP 26513,
21065 Dijon Cedex, France

Correspondence should be addressed to Olivier Brousse, olivier.brousse@u-bourgogne.fr

Received 15 June 2011; Accepted 16 September 2011

Academic Editor: Yuhang Yang

Copyright © 2012 Olivier Brousse et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Ubiquitous computing is now the new computing trend, such systems that interact with their environment require self-
adaptability. Bioinspiration is a natural candidate to provide the capability to handle complex and changing scenarios. This
paper presents a programming framework dedicated to pervasive platforms programming. This bioinspired and agentoriented
framework has been developed within the frame of the PERPLEXUS European project that is intended to provide support for
bioinspiration-driven system adaptability. This framework enables the platform to adapt itself to application requirements at
high-level while using hardware acceleration at node level. The resulting programming solution has been used to program three
collaborative robotic applications in which robots learn tasks and evolve for achieving a better adaptation to their environment.

1. Introduction

Pervasive computing has been gaining attention due to the
emergence of a number of ubiquitous applications where
context awareness is of importance. Examples of such appli-
cations range from ad-hoc networks of mobile terminals
such as mobile phones to sensor networks systems aimed
at monitoring geographical or seismic activity. All these
systems involve (i) monitoring and processing collectively
environmental and platform information, (ii) adapting to
time-changing scenarios.

Considering the similarity between living organisms and
the adaptability needs of such platforms, drawing inspiration
from biology appears a natural solution. Although a number
of techniques such as genetic algorithms or artificial neural
networks exist, pervasive computing opens a new dimension
of opportunities for further extending bioinspiration.

There exist several theories that relate to life, its origins,
and all its associated characteristics. It is, however, usually
considered that life relies on three essential mechanisms that

are phylogenesis, ontogenesis, and epigenesis (referred to as
respectively P, O, and E throughout this paper):

(i) Phylogenesis is the origin and evolution of a set of
species. Evolution gears species toward a better adap-
tation of individuals to their environment; genetic
algorithms are inspired from this very principle of
life.

(ii) Ontogenesis describes the origin and the develop-
ment of an organism from the fertilized egg to its
mature form. Biological processes like healing and
fault tolerance are ontogenetic processes.

(iii) Epigenesis refers to features that are not related to the
underlying DNA sequence of an organism. Learning
as of performed by artificial neural networks (ANN)
is a process which scope remains limited to an
individual lifetime and, therefore, is epigenetic.

The Perplexus European project [1] (that last from
september 2006 to march 2010) aimed at developing a plat-
form of ubiquitous computing elements that communicate

mailto:olivier.brousse@u-bourgogne.fr
http://crossmark.crossref.org/dialog/?doi=10.1155%2F2012%2F193864&domain=pdf&date_stamp=2011-12-25

2 International Journal of Distributed Sensor Networks

Dynamically
reconfigurab

b
le

chip (iochip)

Artificial neural
network

HW SW

JavaTM VM

Linux

Mobile nodes

Node radio
ranges

Agent 1 Agent 2 Agent N

JADE

Java agent development framework

· · ·

Figure 1: A pervasive sensor network example.

wirelessly and rely on these three principles of life. Intended
objectives range from the simulation of complex phenomena
such as culture dissemination [2] or biologically plausible
neural networks [3] to the exploration of bioinspiration-
driven system adaptation in ubiquitous platforms. As a con-
sequence, this research dedicated platform has been devel-
oped keeping to explore the impact of bioinspired features in
this context of omnipresent and present throughout comput-
ing. As a consequence, no particular efforts have been made
to secure the platform as it is held in a research laboratory.
In case a future evolution of the platform would aim to be
disseminated on a larger scale, several solutions maybe envis-
aged to secure it. As we use standardize technologies, Wifi
may be ciphered, additional network and communications
ciphering may be used such as VPN, SSL authentication,
and JADE-S services. Another consequence of this restricted
deployment stands at the power consumption level. Once
again no specific effort has been made to limit the power con-
sumption of the modules. As a matter of fact at the exception
of the collaborative robotic applications presented in this
paper, all platform modules are used plugged to power grid.

Each ubiquitous computing module (called Ubidule) is
made of a XScale [4] microprocessor that runs an embedded
Linux operating system and a bioinspired reconfigurable de-
vice that essentially serves the purpose of running artificial
neural networks (ANNs). This device is referred to as Ubi-
chip [5] (Ubidule Chip) throughout this paper. The Ubichip
supports two main operating modes:

(i) a native mode in which the chip behaves similarly
to a FPGA [6], however, endowed with bioinspired
features like automatic partial reconfiguration and
self routing,

(ii) a single instruction on multiple data (SIMD) process-
or mode [7] that allows parallel computation of algo-

rithms like neural network. This mode is presented in
more details in the following.

Finally, ubidules are equipped with a wireless network
adapter for internode communications, as well as sensors
and actuators on an application-specific basis as illustrated
in Figure 1.

This paper presents two contributions

(i) First, a generic agent-based infrastructure that pro-
vides native support for bioinspiration dedicated to
pervasive distributed platforms is described. This
bioinspired programming framework based on agent
oriented programming allows synchronizing popu-
lation-level mechanisms (evolution through distrib-
uted genetic algorithms) and node-level mechanisms
(learning processes using the reconfigurable device).

(ii) Secondly, a means for transparently taking advantage
of the Ubichip in SIMD mode is presented. This chip
mode being dedicated to neural network simulations,
it proves well suited to run learning mechanisms at
the node level. The presented technique relies on
a specific compiler that translates entire agent code
sections into hardware executable binaries that speed
up the execution.

The adaptability that results from these two contribu-
tions is demonstrated on three applications that use a fleet
of autonomous vehicles; a lap race that uses Phylogenesis
(evolution), an obstacle avoidance application that relies on
collaborative learning as our first generation of applications
and finally a robotic society evolution application that re-
groups phylogenetic and epigenetic aspects of the previous
applications.

International Journal of Distributed Sensor Networks 3

This paper is organized as follows:

(i) Section 2 describes the bioinspired agent program-
ming framework used to the specification of perva-
sive and adaptive applications,

(ii) Section 3 details the techniques used for enabling the
use of the reconfigurable bioinspired device which is
at the heart of the Ubidule,

(iii) Section 4 presents the 3 applications in which Ubid-
ules are embedded into small autonomous vehicles
that learn and evolve,

(iv) Section 5 concludes on this work and draws some
perspectives for future work.

2. Adaptive Mobile Computing Environment

The modular structure of the Perplexus platform offers scal-
ability thanks to the decentralized network structure which
avoids central bottlenecks. Modules are then connected to
each other using point-to-point and infrastructureless con-
nections. In the case of the Perplexus project applications, the
network reactivity and reliability are important criterions.
We estimate that in most Perplexus applications this latency
should not exceed 10 seconds for communication reliability
and performance as well as for buffer memory reasons.
Networking in ad-hoc platforms constitutes a challenge
because of the topology of the network that does not rely on
a fixed structure with routers, DHCP, or DNS servers. This
challenge becomes critical when nodes are mobile. Indeed,
it induces the need of distributed adaptive features at the
platform/network level.

2.1. Network Support. The emergence of smart mobile de-
vices able to manage network-based applications and the
associated ad-hoc network support shares the same chal-
lenge with the Perplexus platform. In the literature such a
paradigm is known as MANET for Mobile Ad-Hoc NETwork
[8]. This internet engineering task force (IETF) working
group is in charge of proposing software solutions and stand-
ardizing IP routing protocols in the scope of wireless ad-hoc
routing with either static or dynamic topologies.

MANET routing algorithms can be classified into two
families.

(i) Reactive MANET Protocols (RMPs) that search for a
route between nodes A and B when a communication
is requested. AODV (for ad-hoc on-demand distance
vector) [9] and DSR (for dynamic source routing)
[10] are reactive protocols. Once a route has been
found, communications are directly established until
the topology of the network changes which results in
the computation of a new route.

(ii) Proactive MANET Protocols (PMPs) in which nodes
regularly exchange messages in order to maintain
routes up to date and elect relay nodes. Optimized
link state routing (OLSR) [11] is a proactive proto-
col complying with this principle. These protocols
exhibit better performance and also prove more

power consuming because of the constant route up-
dating process.

Critical points for the routing scheme in the Perplexus
applications are communication reliability and latency. Pro-
active protocols that offer a better latency/power consump-
tion tradeoff when nodes are moving are well suited for our
platforms.

The OLSR routing protocol is among the most popular
and effective MANET solutions [12, 13]. This proactive
routing protocol regularly sends 3 different types of messages
to create and maintain automatically network routes (i.e., in
a proactive way). This mechanism is well suited for most
mobile applications as it provides reduced communication
latency due to mostly up-to-date routes. This is all the more
true in comparison to reactive protocols that are slower to
establish a route before actually communicating meaningful
data.

The chosen OLSR implementation offers the possibility
to set the number of desired relay nodes or to use plugins to
provide additional services such as name/address translation
or link quality routing [14]. Additionally three references
present studies about the OLSR power consumption and/or
propose energy-efficient versions of this algorithm [15–
17]. Using one of these versions in conjunction with the
nameservice plugin of OLSRd, the communication power
consumption may be reduced significantly. This has not been
done but it will be investigated for the next generation of the
Perplexus platform.

2.1.1. OLSR Validation on Perplexus Platform. For validating
this solution, we conducted several experiments which con-
firmed that proactive protocols such as OLSR perform better
with respect to latency. Figure 2 shows the experimental
protocol we used for OLSR. The map of the premises shows
four nodes, three being static and the last one (Ubidule 3) in
motion along the path (illustrated by the plain arrow).

As suggested in Figures 2 and 3, different network topolo-
gies are observed as node3 moves along the path. The changes
from one to another occur whenever a node drops out or
comes in the radio range of another. Results presented in
Figure 4 correspond to a representative experiment. In this
experiment, we set the number of relays to 1 and disabled
the link-quality routing to observe OLSR with the lightest
solution in real conditions without any optimization.

Figure 4 shows the evolution of the communications bit-
rates received by the mobile node from the three other
units; it can be clearly seen that a change in the network
topology results in a break in one or more communication
flows that lasts up to 5 seconds (dark arrows). In the case
where packets are transiting through a relay node, they are
not lost but temporarily stored in the relay and sent when
communication is restored (light arrows). These results show
that the OLSR protocol is compliant with the Perplexus
platform. Results presented in Figure 4 also fulfill the latency
constraint we estimated for Perplexus applications.

We consider these results satisfactory for the targeted ap-
plications; furthermore, the flexibility of the chosen OLSR
implementation allows using a nameservice (DNS-like)

4 International Journal of Distributed Sensor Networks

U3
1

Workstations
room

PC

U2
Box

2

Copy
room

U1

U1

Ubidule 1

U2 Ubidule 2

PC PC (host)

U3 Ubidule 3

3

Reception

5 m

Figure 2: Mobile test protocol.

U3

PC

U2

U1

U3

PC

U2

U1

U3

U1

U2

PC

1 2 3 Time

Figure 3: Time changing topology.

plug-in that proves mandatory in the following. The name-
service plug-in acts in two successive steps:

(1) the plug-in uses OLSR to broadcast messages con-
taining IP and hostname information,

(2) It collects other nameservice message and stores re-
ceived data in the hostsIP file (i.e., /etc./hosts for Lin-
ux OS).

Consequently, OLSR with nameservice allows each mod-
ule to get a local routing table working with IP addresses and
hostnames and make the ad-hoc network act as a standard
structured network. OLSR and a slightly modified name-
service plug-in prove to be sufficient in term of network
reactivity and efficient solution, in the case of our MANET
application, as this solution perfectly fits our latency and per-
formance needs and does not incur significant processing
workload.

2.2. The FIPA Multiagent System. Programming distributed/
pervasive applications are often regarded as a challenging
task that requires a proper programming model capable of
adequately capturing the specifications. Agent-oriented pro-
gramming (AOP) derives from the initial theory of agent
orientation which was first proposed by Shoham [18].
Agent-orientation was initially defined for promoting a
social view of computing and finds natural applications in
areas such as artificial intelligence or modeling of social

behaviors. AOP consists in making agents interact with each
other through typed messages of different natures: agents
may be informing, requesting, offering, accepting, and
rejecting requests, services, or any other type of information.
AOP furthermore sets constraints on the parameters defining
the state of the agent (beliefs, commitments, and choices).

These constraints essentially define the agent oriented
computational system which is then viewed as a set of
communicating software modules that exhibit a certain
degree of independence making the whole system more
adaptive than an object oriented (OOP) computational
system. These characteristics naturally geared the Perplexus
modeling framework toward AOP as a solution for adapt-
ability in our pervasive architecture.

2.2.1. FIPA-Based Agents. The IEEE group named Founda-
tion for Intelligent and Physical Agents (IEEE-FIPA) defines
standards allowing for interoperability among various multi-
agent platforms. Figure 5 shows the FIPA standard structure
of an agent platform (AP). Three main services ensure FIPA
platforms reliability and functionality.

The agent management system (AMS) is in charge of the
life cycle of platform agents; it can create, suspend, resume,
or kill agents. The AMS also provides a white page service
listing all agents “living” on the platform.

The directory facilitator (DF) is in charge of providing
a yellow pages service. This service associates an agent to its
offered services and a service to agents that provide it.

The message transport system (MTS) provides all com-
munication functionalities at low-level. Therefore, agents can
communicate with each other regardless their location (same
or different APs).

Figure 5 shows that FIPA mandatory agents (i.e., AMS
and DF) reside at the agent level next to user agents; they
therefore behave as such and provide the above-mentioned
functionalities. On the contrary, the message transport
system lies at a lower level dedicated to communication
protocols that provide a framework for interagent message
communications. The FIPA standard does not include an AP
search service that allows to discover FIPA peer APs as of

International Journal of Distributed Sensor Networks 5

120

100

80

60

40

20

0
0 10 20 30 40 50 60 70 80 90

PC flow

(s)

B
it

ra
te

(k
b/

s)

(a)

0 10 20 30 40 50 60 70 80 90

90
80
70
60
50
40
30
20
10

0

Ubidule 1 flow

(s)

B
it

ra
te

(k
b/

s)

100

(b)

0 10 20 30 40 50 60 70 80 90

Ubidule flow

140
120
100

80
60
40

2

20
0

B
it

ra
te

(k
b/

s)

(s)

160

(c)

Figure 4: Mobile test: mobile node received message flows.

Se
rv

ic
e

la
ye

r

A
ge

n
t

la
ye

r

FIPA agent platform #1

AMS DF
User

agents

Message transport system

Communication network with TCP/IP

Message transport system

FIPA agent platform #2

Figure 5: FIPA standard overview.

today. This feature exists in several protocols such as JXTA
[19] or Kademlia [20] peer-to-peer protocols. This drawback
of the standard does not ease the use of multiple platforms
which is targeted in this work. In this paper, we propose
a solution to tackle this problem, detailed in Section 2.3
and finally allow an FIPA compliant AP to search for peer
platforms.

Ubidule

Ubidule I/Os

E
pi

ge
n

et
ic

ag
en

t
O

n
to

ge
n

et
ic

ag
en

t
P

hy
lo

ge
n

et
ic

ag
en

t

Xscale I

E

O

P

S

U

N

E

Ubichip

Ubicom
agent

Network
agent

Interface
agent

Host agent

H

N

Figure 6: Ubidule programmed using BAF agents.

2.2.2. JADE: Java Agent Development Framework. There
exists various multiagent platforms that allow developing
agent-based applications, such as JADE [21], JXTA [19],
FIPA OS [22], JAX [23], or MADKIT [24].

As the Ubidule XScale is a resource-limited embedded
processor [25], many of the listed solution cannot be effi-
ciently implemented. JADE was chosen for its portability
(Java), FIPA compliance, and also because of the availability
of a lightweight version called lightweight extended agent
platform (LEAP) already used on embedded devices [26].

Agents in a JADE Framework “live” in containers. These
containers exist either inside or outside of the original hard-
ware hosting the JADE platform but are registered in the
AMS and DF platform agents in an “original hosted main
container.”

Communications take place using a message transport
protocol (MTP) which in turn uses TCP/IP protocols. In
our case, we decided to use HTTP MTP in order to ease
AP communications and unify AP name and address with
hardware hostname. This point is discussed with more
details in the following section.

2.3. Contribution 1: Bio-Mimetic Agent Framework. Previ-
ously described solutions at network level (OLSR) and pro-
gramming level (LEAP) are used as basis for a bio-inspired
agent framework (BAF) suitable for distributed, decentral-
ized, and mobile platforms where adaptability is mandatory.
This section focuses on two fundamental aspects of the
proposed BAF: on one hand the description of the BAF
and overview of the provided functionality, on the other the
description of the POE specific agents.

Bioinspiration and the three fundamentals of life being
at the heart of the project, the proposed framework extends
JADE default platform, that is, mandatory agents (AMS
and DF) by defining agents whose purpose relate to both
interfacing and bio-inspired mechanisms support as well as
pervasive computing platform management agents. Figure 6
schematically depicts the ubidule programming which is
regarded as a mixed hardware/software entity: the Ubichip
for hardware support and the XScale microprocessor for soft-
ware side.

The BAF specifies 7 agents belonging to 2 families:

(i) application agents: phylogenetic, ontogenetic, and
epigenetic agent(s),

6 International Journal of Distributed Sensor Networks

(ii) infrastructure agents: UbiCom, interface, network,
and spy agent(s).

All these 7 agents have been developed using LEAP classes
to support a dedicated function. Therefore, they add the
BAF mandatory features to the legacy JADE. Figure 6 shows
both the infrastructure and application agents and their
interactions (for the sake of clarity AMS and DF agents are
not represented).

(i) P agent: the Phylogenetic agent is responsible of the
execution of the distributed genetic algorithms: it
calculates the local fitness of the individual (the local
ubidule) and synchronizes this information with all
other ubidules. It is responsible for triggering the
death (end of a generation) and birth of the embod-
ied individual hosted on the Ubidule.

(ii) O agent: the ontogenetic agent is tightly coupled to
the P agent: it takes orders from him and has the ca-
pability of creating other software agents.

(iii) E agent: the Epigenetic agent embodies the individual
and its behavior: it is either a software or hardware
neural network.

Next to the three POE agents, four additional agents have
been defined for interfacing and networking purposes.

(i) I agent: the interface agent provides a set of methods
for issuing commands to the actuators or retrieving
data from the sensors of the ubidule.

(ii) U agent: the UbiCom agent provides software API-
like access to the Ubichip and manages hardware
communications with the chip.

(iii) S agent: the spy agent provides information on the
platform state (agent status/results, activity traces,
bug notification).

(iv) N agent: the network agent provides a collection of
methods for network-related aspects: time-synchro-
nizing of data among ubidules, setting/getting clus-
ters of ubidules, obtaining the list of neighbors, and
so forth. For it requires access to low-level net-
work-topology information, it also implements the
MANET functionalities.

Finally, a host agent (H agent) instantiated on a work-
station allows controlling remotely the Perplexus platform
(Start/Stop/Schedule actions) through a graphical user inter-
face.

Figure 7 shows the modifications applied to the FIPA
platform for integrating the platform agents listed above.
For the sake of clarity, only the P, O, E, and N agents are
represented; all other agents reside on the agent layer with
AMS and DF agents.

The additional features of the BAF (shaded areas) com-
prise the network agent and a low level service layer that
handles the ad-hoc networking features. This layer includes
OLSR and the nameservice plug-in. The hostname/IP table
(periodically updated by the nameservice) can easily be ac-
cessed by other software entities such as JADE agents. Any

Lo
w

le
ve

l
pr

ot
oc

ol
s

Se
rv

ic
e

la
ye

r
A

ge
n

t
la

ye
r

POE dedicated MAF

AMS DF

User
agents

p

O

E

Network agent

using

Message transport system Name service

OLSRD with nameservice

Ad-hoc TCP/IP network

Message transport system

Another FIPA agent platform

Figure 7: POE-dedicated BAF overview: white areas represent
the classical JADE framework. BAF additional features to this
framework appear in shaded areas.

agent can access these services through a specific Network
agent.

The network agent is mandatory in a BAF platform. It
allows FIPA platforms to communicate with each other and
ensures the overall platform reliability. As this particular
agent provides AP level services and low-level functionality
(such as message broadcasting), it spans both highest level
layers of the diagram. The use of the HTTP message trans-
port protocol allows resolving the AP name and address in
an ad-hoc network environment. Figure 8 describes this peer
discovery mechanism.

Once the nameservice has edited the operating system
Hostname/IP file (step 1), the network agent is able to create
the peer platform list (step 2). Similarly, other agent lists can
be created.

The host agent has been designed to provide a single
interface for the platform management. This agent is able
to remotely schedule applications from a host station thanks
to the network agent services. A broadcast protocol is used
for issuing global commands to the platform such as glo-
bal Service Search, Start Application, Stop Application, or
Switch Mode (switching from software mode to hardware
accelerated mode, detailed later in Section 3.7). In this case,
network agents sink command messages.

The main advantage of this method is that the host agent,
and the user it represents, does not need to know addresses of
all final receivers at design time allowing users to take advan-
tage of the flexibility and scalability of the environment.

3. Hardware Acceleration

Bio-inspired features are heavy computational tasks that
hardly fit with embedded devices such as the XScale pro-
cessor used within the PERPLEXUS platform. The Ubichip
has been designed to provide hardware support for such
features. Figure 9 puts focus on the SIMD operating mode of
the Ubichip used to accelerate parallel parts of PERPLEXUS
applications.

In this specific mode, the ubicells are grouped by four
to obtain an array of 16 bits processing elements (PEs)

International Journal of Distributed Sensor Networks 7

Host system

Host system

Host system

Host system

Hostname2

Hostname3

Hostname4

BAF AP
with http MTS

with http MTS

Name: ams@hostname4:1099/jade

Address: http://hostname4:7778/acc

Hostname1

BAF AP

Name: ams@hostname1:1099/jade

Address: http://hostname1:7778/acc

Host/IP translation file

IP1

1

Hostname1

IP2

2

Hostname2

IP3 Hostname3

IP4 Hostname4

#myself

Peer platform list

Name: ams@hostname2:1099/jade
Address: http://hostname2:7778/acc

ams@hostname3:1099/jade

Address: http://hostname3:7778/acc

· · ·

Figure 8: BAF AP address resolution.

Ubidule

Ubidule I/Os

U

U

bichip

PE 0

PE

E

1

PE 2

PE 3

PE 4

a[0]

a[1]

b[0]

b[1]

c[0]

c[1]

SRAM

a[]

b[]

c[]

Figure 9: Ubichip SIMD mode architecture.

controlled by a sequencer. Program and data are stored in an
external memory accessible by the sequencer and the XScale.
The XScale is in charge of enabling or disabling the Ubichip
allowing it to access the memory in a secured way. When the
program ends, the Ubichip is able to interrupt the XScale
allowing a proper result retrieval.

In this section, we present a solution to program this
accelerator with the same programming language for both
purely software and hardware accelerated agents.

3.1. Related Works. As agents in the BAF are captured in Java,
we investigated the literature to find parallel oriented Java
implementations. However, a classical Java virtual Machine
(JVM) is by construction, executed on a single processor.
Some Java hardware machines have been under study over
the last decade, [27, 28] or [29], but none of them provide
support for hardware parallelism as the original language was
not intended to this.

Another approach is proposed by Manta [30] and relies
on compiling Java threads to native x86 assembly code
and run them on an x86 cluster through remote method
Invocation (RMI). This solution removes the Java portability
and does not target platforms such as the SIMD processor of
the Ubichip.

Some software parallel classes like JPCL [31] add software
parallelism to Java but JVMs are running on a single pro-
cessor. Therefore, using this kind of libraries requires a
framework that links several JVM running on several
hardware targets and sharing the same global object space.
The previously presented BAF ensures a similar software
parallelism level but based on message passing scheme rather
than shared memory.

The proposal is to provide a solution for easing the ac-
celerator programming and consequently use a real- and
fine-grain hardware acceleration in the PERPLEXUS frame-
work.

3.2. Contribution 2: The Jubi Extensions. The fundamental
concept behind the proposed approach relies on the use of
directives for flagging parallel sections in a hardware-inde-
pendent description based on Java: Java for ubiquitous or
Jubi in short. Agent coded in Jubi can then be executed in

8 International Journal of Distributed Sensor Networks

SW mode (in such case directives are ignored) or in hybrid
SW/HW where flagged sections are compiled for parallel
SIMD execution.

A flagged section of code presented as a component can
be described with its inputs, outputs, and internal behavior.
Adding this approach to Java requires setting firstly in and
out keywords. An NPE keyword allows the user to specify the
number of processing elements (PEs) that will be used for
this application.

The following code where c = f (a, b) gives an example
of the applied transformations:

final int NPE = 4;

int a[NPE], b[NPE];

int c[NPE]

becomes

final int NPE = 4;

in int a[NPE], b[NPE];

out int c[NPE]

Then, to describe the behavior of the hardware block,
we define the #jubi keyword that flags the code to be
accelerated using the SIMD hardware. Finally, to enable the
parallelization of software sequential loops in the hardware
accelerated mode while keeping the sequential software
execution possible, we introduce the parallelfor keyword.
This keyword allows both software and hardware generating
implementations from the same unified description.

The following code performs an addition on input vec-
tors and illustrates the memory layout presented in Figure 9:

#jubi

parallelfor(int i=0; i<NPE; i++)

{
c [i] = a[i] + b[i];

}.

3.3. Specific Tools. Figure 10 presents the compilation flow
we propose in order to allow fast applications development
in software or in hybrid HW/SW modes. In this figure, the
software compilation flow appears on the left side whereas
the hardware flow is on the right side.

Software applications execution only use software flow
whereas hardware-accelerated applications require both sides
to compile accelerated agents software part (named enve-
lope) and hardware parts (named kernels). The agent
envelope is a part of the Java file that triggers the hardware
execution and feeds hardware kernels with appropriate data.
This is done through the UbiCom agent that acts as a
wrapper between sequential and parallel sections of the
application code (i.e., software and hardware parts).

As presented in Figure 10, the processing of the Jubi
file results in the creation of two distinct file types. One
Java file that offers the possibility to start the application
either in software mode or in hardware accelerated mode.
For each #jubi block described in the Jubi file, one “Ubi”

file is created. Every Ubi file encapsulates the code to be
accelerated. Figure 11 details the splitting process that pro-
duces both the Ubi files and Java files with the required
hardware calls through the UbiCom agent.

The Java file is compiled thanks to the standard Java
compiler (javac), whereas Ubi files are compiled into asso-
ciated hardware kernels, “.hw” files by the JubiCompiler and
UbiAssembler. The last step of the compilation flow is the
loading of the HW-accelerated code from a “.hw” file into the
program memory of the Ubichip with up-to-date data. This
is done at runtime by the UbiCom agent behavior.

3.4. JubiSplitter. The entry point of the JubiTool compiling
environment is the JubiSplitter that splits the Jubi description
into a Java description for the software part and several Ubi
descriptions for the hardware-accelerated parts. The JubiS-
plitter tool generates “softwareBehaviour” and “hardware-
Behaviour” classes. These JADE Behavior classes represent
respectively the entire agent functionality in SW mode and
the envelope of hardware accelerated kernels, which contains
non-parallelizable (non #jubi flagged) code sections in the
HW mode. The execution mode is then chosen when the
platform is configured. Figure 11 gives an example of this
code splitting stage which is the first stage of the application.

3.5. JubiCompiler. Once a Jubi code has been split into
Java and Ubi kernels the JubiCompiler tool compiles every
Ubi code into Ubichip assembly. As a result, the following
example, where uninitialized values are set to 0:

int a [NPE] = { 4,3,1,2 } ;
int b [NPE] = { 1,2,3,4 } ;
int c [NPE];

c = a + b

is then compiled into
.data

V01 = ‘‘00030004’’, ‘‘00020001’’

V02 = ‘‘00020001’’, ‘‘00040003’’

V03 = ‘‘00000000’’, ‘‘00000000’’

.code

load r1,V01

load r2,V02

mova r1

add r2

movr r3

store r3,V03.

Where the r1, r2, and r3 represent the register of the
Ubichip, V01 corresponds to a, V02 corresponds to b and V03
corresponds to c.

The JubiCompiler is based on a flex and bison [32]
description of the Jubi grammar. An array dimension set
to NPE indicates that every processing element of the SIMD

International Journal of Distributed Sensor Networks 9

.jubi

HW
JubiSplitter

.java

software behaviour
and

SW omaind omaind

hardware envelope

A

JAVAC

SX cale

myAgent

myAgent

myAgent.class

Mode SW A

SW agent

Mode HW/SW A U

JubiCompiler
+

SpiNDek
UbiAssembler

Ubichip

Memory
kernel

Envelope

myAgent 001.ubi
hardware kernel 001

myAgent 001.hw

Figure 10: Unified compilation flow.

Jubi file

final int NPE = 4;

out int c [NPE] ;

#jubi parallelfor (int i = ; i < NPE; i++)

()

()

c[i] = a[i] + b[i];

public boolean done return finished;

UBI file

int a, b, c;

if (a>b)

else

return c;

JAVA file

Class SoftwareBehaviour extends
SimpleBehaviour

int c [];

c[i] = a[i] + b[i];

SimpleBehaviour

int c [];
sendToUbicom(a,b);
blockingReceivefromUbicom(c);

// end class Example

lass Example extends Agent {

Class JubiBehaviour extends SimpleBehaviour {

{

public void action

{
in int a [NPE] = {4, 3, 1, 2} ;

in int b [NPE] = {1, 2, 3, 4} ;

{4, 3, 1, 2} ;

{1, 2, 3, 4} ;

{4, 3, 1, 2} ;

{1, 2, 3, 4} ;

{

}

}

}

}

}

()public boolean done return finished;{ }

()public boolean done return finished;{ }

protected void setup }}

public void action

int a [] =
int b [] =

{

{

{

}
}

}

}

// end c

c
lass Example extendsAgent {c

lass SoftwareBehaviour

}

int a [] =
int b [] =

}

()
()

public void action {

{

()

0

for (int i = ; i < NPE; i++)0

· · ·

()protected void setup }}· · ·

class HardwareBehaviour extends

// end class HardwareBehaviour
c = a – b ;

c = b – a ;

Figure 11: JubiSplitter: Code splitting and file creation.

10 International Journal of Distributed Sensor Networks

processor will receive a different dataset. 1D arrays therefore
become PE-local scalar variables. Hence, a 1D NPE-relative
variable (in SW) is spanned over NPE PEs of the Ubichip
architecture as NPE scalar variables (in HW).

3.6. UbiAssembler. The UbiAssembler is the final tool used
in the flow. It is in charge of translating the assembly code
generated by the JubiCompiler into Ubichip SIMD hardware
binary executables. This tool is part of the SpiNDeK environ-
ment [33] and was developed to program the Ubichip using
assembly. Two main features are provided in this tool in addi-
tion to the code translation: the memory layout setup that
involves variable to physical address translation, and regular
linking provided by label to physical address translation.

3.7. Toward an Adaptive Acceleration. The opportunity of
running agents in software or hybrid hardware/software
mode opens interesting perspectives in term of adaptability.
Beyond enabling to assess the speedup resulting from hard-
ware execution, this allows for online mapping of agents Ubi
sections to the Ubichip. This may prove useful for adapting
to changing performance requirements by migrating agents
from hardware to software and the other way around.

The UbiCom agent has been designed for this purpose;
it embeds Ubichip management functions and an interface
that allows an agent to request a migration of a functionality
(#jubi flagged sections) to the Ubichip. The U agent
is able to start and stop the Ubichip and to load a binary file
in the chip code memory. Then, after the loading phase the
UbiCom waits until an interrupt is raised by the Ubichip to
get data back and communicate them to the agent envelope.

The features presented in this section have been validated
in VHDL simulations of the Ubichip model as the prototype
was not available at writing time. Test programs that
validate PERPLEXUS applications needed features have been
compiled and fed into the Ubichip model as memory content
files. The result assertion of these test programs proves the
functionality of the proposed framework.

4. BAF Applications Validations

4.1. Introduction. Three case studies are presented in this
section for, respectively, illustrating evolution and learning
features of the proposed framework. These applications are
not taking advantage of the hardware acceleration due to
delays in the fabrication of the Ubichip accelerator.

Figure 12 schematically depicts the used robots, their
sensors and actuators, as well as the framework agents pre-
sented previously.

The E agent is the main robot controller that reads
data from the sensors and, depending on given or learned
rules, issues commands to the wheel motors. The P agent is
responsible of the robot controller evolution and therefore
computes the robot fitness and runs the genetic algorithms
together with the P agents of other robots. Ontogenetic agent
instantiates the E agent based on the genome provided by
the P agent. The N and I agents serve the purpose explained
previously. The U agent is unused here as the chip is still

under fabrication; therefore, presented applications only
make use of software mode.

The use of either all these agents or only a subset of them
is a design decision.

4.2. Test Application 1. In order to prove the reliability of
the platform, a simple proof-of-concept application based
on a race has been developed. This application relies on
all framework agents; the robot controller (E agent) being
here a simple feed-forward artificial neural network (ANN)
that reads binary information from three proximity sensors
installed on the front, front-left, and front-right sides of
the robots, and issues speed commands to the two motors.
For this application, robots are moving into a closed arena
containing obstacles and a start/finish line. The goal of robots
is to run one lap.

Figure 13 shows the principle of this genetic race the lap
time gives the fitness of a given robot controller and hence its
genome wich is the array of ANN weights. Therefore, there is
no learning in this application, changes in the robot behavior
being driven by evolution only.

These agents are crossed and/or mutated by the P agent
to create the next generation replacing inadequate behaviors.
Once a new individual genome is ready, the P agent forwards
it to the O agent that instantiates the corresponding E agent.
Generation after generation, robots exhibit better behaviors
proving the reliability of the software and the possibility to
handle POE problems via the platform.

A demonstration video that illustrates this application is
available online at: http://www.lirmm.fr/ADAC/?page id=9.

4.3. Test Application 2. Robots which participate use online
learning (Epigenesis) for improving their performance.
Figure 14 shows the robots that are enclosed in an arena
scattered with obstacles (cylinders in Figure 14); collision
avoidance is here the main objective. As this application only
targets learning, the P and O agents are not used here.

The collaborative learning approach has been imple-
mented in such a way that two networks are trained online
in parallel (i.e., two individuals are running). Every-time a
robot gets into an obstacle, its own network is trained to
avoid this error in the future. The faulty robot also advices
the other individual that the action it has just made, in
the context it was, leads to an error. The other robot is
then learning its proper network including this information.
This scheme is repeated until robots are able to avoid
obstacles exchanging their experience in live as represented
in Figure 14.

Besides the previously described sensors, a bumper
switch is added to inform the robot whenever a collision
with an object occurs; it is located on the front side of the
robot. The sensors here do not provide binary information
but rather the distance with the nearest obstacle.

These robots move by issuing speed commands to each
of the two motors. As depicted on Figure 14, an ANN is
in charge of controlling the robot. Figure 15 depicts the
principle of this application: the E agent is a multilayer per-
ceptron ANN that uses a standard back-propagation learning
algorithm.

http://www.lirmm.fr/ADAC/?page_id=9

International Journal of Distributed Sensor Networks 11

Robotic host

AP1

Ubi
chip

Ubi
chip

Ubi
chip

U
I

E

O

P

N
S

U
I

E
O

P

N

U

O
P

N

S

Genomic
information

Sensor data

Actuator
commands

Epigenetic based orders
and sensor feedback

ANN creation

Generation related communications

Robotic host

Robotic host

AP2

AP3

-

-

Figure 12: Application environment.

Figure 13: Evolution-driven application overview.

Table 1: Ultrasonic sensors areas.

Area Distance range

0 0–200 mm

1 200–400 mm

2 400–600 mm

3 600–800 mm

4 >800 mm

Inputs of the ANN are the three values measured by the
infrared and the ultrasonic sensors, we have defined five areas
for each ultrasonic sensor as depicted in Table 1.

The outputs of the ANN are speed values sent to the
motors, each value is set as an integer value from −7 (i.e.,
fast backward motion) to +7 (i.e., fast forward motion).
The robot can turn by applying two different speeds on the
motors.

During a given period, each robot performs the following
tasks.

Robots are moving in an unknown environment. Each
time they collide into an obstacle, a random modification of
the relevant learning pattern is applied and an ANN learning
phase is triggered online. The robot then notifies all its peers

Figure 14: Collaborative learning application overview.

that this pattern shall be modified; and the modification is
registered by all robots therefore collectively speeding up the
convergence toward a satisfying solution.

In this application, a host system that runs the H agent
(host agent) is used for launching the application and to col-
lect information throughout the execution of the algorithm.

As depicted in Figure 16, the host workstation and all the
ubidules are running the BAF environment.

Our experiments show that this technique exhibits a
speedup (versus a single robot) that is almost linear with the
number of used robots. Furthermore, it has been observed
that a convergence threshold is reached after a number of
iterations which is a function of the complexity of the en-
vironment. Once this threshold is reached, adding some

12 International Journal of Distributed Sensor Networks

Ultrasonic sensor

Area 0

Area 1

Area 2

Area 3

SE

N

Figure 15: Collaborative learning application overview.

more obstacles in the arena retriggers learning until a new
threshold is reached, demonstrating the adaptability poten-
tial of the proposed solution.

A video showing the runs of the above-presented indi-
viduals is available online at: ifundefinedselectfont http://
www.lirmm.fr/ADAC/?page id=9.

4.4. Evolving a Population of Learning Individuals. Based on
the same idea to prove that bioinspired features are useful
for distributed and pervasive systems adaptability, the third
application relies on the association of P and E features.
We designed it as a mixed evolution and learning robotic
demonstrator. In this application, the robot behavior is
set using a dynamically changing quality function created
following the individual genome. This function is based on
couples state/action and is modified using reinforcement
learning [34]. As a consequence, robots are following move
rules that depend on the present sensors state and actions are
rewarded if the action is a success or punished if a collision
occurred. The application runtime is described in Figure 17
and can be explained with the following steps.

(i) Robots move in the obstacle-scattered arena of
Figure 14 learning form their errors during 2 min-
utes. When they collide with an obstacle, learning is
triggered inducing a change in the quality function.
To avoid wall stucking, we also make the robot to
move backward on collision. Due to the limited time
and various uncertainties induced by their genome,
some individuals are not able to learn properly to
avoid obstacle whereas good individuals are learning
rapidly.

(ii) The individual fitness is then calculated using the
number of collisions balanced with the global-re-
corded speed of the robot during the 2 minutes run.

(iii) The new generation is then created merging and
mutating the genomes of individuals with the best
fitness.

(iv) The simulation ends when an individual achieves
to spend an entire run without colliding with any
obstacles.

In this application, robots inherit their characteristics
such as right/left and front sensors zones from their respec-
tive parents. Robots are also improving themselves using
a collision-triggered process that allows online learning.
In Figure 17 blue part represents step of the application
where individuals interact with each others using the BAF
communications features.

One additional aspect we introduced in this application
is the PE cooperation effect called the parental education.
We define the Parental Education as a merging of the
following two aspects: innate for newborn inherited behavior
characteristics and acquired for the transmitted knowledge.

(i) The first is the innate aspect that can be encountered
in some species. This process similar to instinct
allows newborn individual to walk within minutes,
this is only possible because their parents and the
whole species acquired this innate ability.

(ii) The second is the parent influence on children
representing the childhood learning in the nature,
parents of evolved species like humans are teaching
their children.

To mimic these PE aspects, we chose to transmit a given
percentage (between 20 and 50%) of the parent quality
function to the child genome.

One of the characteristics of the reinforcement algorithm
is the reflex latency value. It corresponds to the delay between
a given move and its associated reward or punishment. This
characteristic can easily be used as a genome parameter and
then evolve with the species.

The individual genome is represented in Figure 18 with
the three main transmitted characteristics namely ultrasonic
sensor zone definition, parental education patterns and reflex
latency value.

Using parental knowledge rapidly brings robots to an
average species-level behavior that online learning further
improves. Subsequent offspring will, therefore, benefit from
species capabilities evolution through inheritance.

In this application, the quality function is stored in
an array where every value of quality is associated with
the corresponding state/action couple. Following quality
function examples, are extracted from application results
with three possible move forward (MF), turn Left (TL),
and turn Right (TR) actions per sensor state. Three sensing
zones are used leading to 33 = 27 possible sensors states,
for the sake of simplicity only some of the short-length and
wide-range zones quality functions are exposed in Table 2.
Presented values are obtained after the first generation run.

The quality function used in this application is based
on the action score. The action with the highest quality is
used depending on the current sensor state. These actions are
represented for the two first sensor states with shaded cells.
If this action provokes an error (i.e., the robot get into an
obstacle), the action score is lowered. On the contrary, if the
action is successful its score is raised. Table 2 shows two final

http://www.lirmm.fr/ADAC/?page_id=9
http://www.lirmm.fr/ADAC/?page_id=9

International Journal of Distributed Sensor Networks 13

Ubidule

Ubidule I/Os

Xscale UbichipI

S
E

U

E

N

Ubidule

Ubidule I/Os

Xscale UbichipI

S
E

U

E

N

N

Ubidule

Ubidule I/Os

Xscale UbichipI

S
E

U

E

N

H

Figure 16: Application involved agents.

Application parameters

Initialize population

Generation (2 minutes run):

Each individual:
moves in the arena

Each individual:
computes fitness and broadcasts it

Individual
success?

No
Yes

Recorded population profile

Figure 17: Second-generation application steps.

quality functions for different generation individuals. This
demonstrates the generation after generation evolution that
occurs even if 20% to 50% of the individual self-experience
is transferred to children.

The fitness of an individual is defined in (1) where α is the
reflex coefficient normalizer, Smean the mean value of motion
speed, and Bi the collision penalty of the ith move:

Fitness = α×
⎛
⎝

n∑

i=1

Smean × (1− Bi)

⎞
⎠. (1)

With this fitness computation rule, we promote forward,
moving individuals that avoid collision taking into account

Table 2: Quality function example.

L/F/R sensor zones Action gen 1 QF gen 4 QF

0 0 0
MF −4.0 −4.5

TL −5.625 −4.5

TR −5.0 −2.0

0 0 1
MF −1.0 −2.0

TL −0.0 0.0

TR 0.0 0.0

0 0 2
MF −4.0625 −4.0625

TL −4.0625 −4.0625

TR 0.25 1.9921875
...

...
...

...

2 2 1
MF 9 9

TL 0.0 0.0

TR 0.0 0.0

2 2 2
MF 1.9960938 2.0

TL 0.0 0.0

TR 0.0 0.0

the number of moves during the 2 minutes run as well as
their speed.

Table 2 shows resulting quality functions of individuals
whose genomes main difference is their respective reflex
latency value. The combining of this reflex value with the
closest sensor zone reveals to be critical in various cases and
had a great influence on the genome fitness. In the above-
cited examples the reflex latencies were respectively, 185 ms
and 195 ms resulting in respective fitness of 744 pts and 674
pts. One generation later, the recorded fitness of two of their
children are 776 pts and 744 pts using the same reflex latency
differentiator.

This demonstration shows the efficiency of a PE-based
application in the robotic field, and the faculty of the
proposed framework to run advanced bioinspired applica-
tions. Our experiments show that even if every generation is

14 International Journal of Distributed Sensor Networks

Figure 18: Robot genome example.

running only 2 minutes, the ability to provide information
on the desired behavior to the next generation (PE effect)
brings an interesting improvement compared with the clas-
sical P based application presented in Section 4.2.

A video showing the runs of the above presented indi-
viduals is available online at: http://www.lirmm.fr/ADAC/?
page id=9.

5. Conclusion

This paper presents a bioinspired agent-oriented framework
dedicated to the prototyping of adaptive pervasive applica-
tions. Furthermore, this solution provides a means for taking
advantage of hardware acceleration thanks to the use of
language extensions associated with a specific compiler that
generates code for the chip developed within the confines of
the Perplexus European project.

The proposed proof-of-concept applications suggest that
bioinspiration brings advantages for achieving adaptability
in pervasive applications. To this end, dedicated robots with
improved sensory capabilities are currently under fabrica-
tion. These robots will furthermore have the capability of
hot swapping their depleted batteries autonomously thanks
to a dedicated docking station, therefore, enabling to setup
experiments lasting days or weeks.

Within the frame of the project, ongoing work focuses
on demonstrating the combined advantages of the developed
framework along with the bio-inspired device on a fleet com-
posed of several tenths of robots running over long periods.

Although the adaptability features have been demon-
strated on robotic applications, we believe that other applica-
tion areas may benefit from the proposed solution. May it be
for scheduling of communications for optimizing power in a
sensor network, or devising techniques for transmitting data
collected by distributed nodes to a gateway, the dependence
to the environment makes such adaptive solutions attractive
for coping with non deterministic scenarios.

Acknowledgments

This project is funded by the Future and Emerging Tech-
nologies Program IST-STREP of the European Community,
under Grant IST-034632 (PERPLEXUS). The information
provided is the sole responsibility of the authors and does
not reflect the Community’s opinion. The Community is not

responsible for any use that might be made of data appearing
in this publication.

References

[1] Perplexus, Pervasive computing platform for modeling com-
plex virtually-unbounded systems, 2009, http://www.perplex-
us.org/.

[2] J. Peňa, O. Jorand, H. Volken, and A. Pèrez-Uribe, “A connec-
tionist, embodied and situated agent-based approach for stud-
ying the dissemination of culture,” CESABM, UNIL.

[3] O. Chibirova, J. Iglesias, V. Shaposhnyk, and A. E. P. Villa,
“Dynamics of firing patterns in evolvable hierarchically orga-
nized neural networks,” Lecture Notes in Computer Science ,
vol. 5216, pp. 296–307, 2008.

[4] Intel corp., “Intel xscale microarchitecture,” Tech. Rep., 2000.
[5] Y. Thoma and A. Upegui, “Specification of bio-inspired fea-

tures to be supported by the device,” hEIG-VD, Yverdon,
Switzerland, Internal Report, 2006.

[6] A. Upegui, Y. Thoma, E. Sanchez, A. Perez-Uribe, J. M.
Moreno, and J. Madrenas, “The perplexus bio-inspired chip,”
in Proceedings of the 2nd NASA/ESA Conference on Adaptive
Hardware and Systems(AHS ’07), IEEE Computer Society,
2007.

[7] J. M. Moreno, “Specification of the ubicell,” Tech. Rep., Barce-
lona, Spain, UPC, Internal Report, 2006.

[8] IETFMANET work group, “Mobile Ad-Hoc networks (MA-
NET),” April 2009, http://www.ietf.org/html.charters/manet-
charter.html.

[9] C. E. Perkins and E. M. Royer, “Ad-Hoc on-demande distance
vector,” December 1998.

[10] D. Johnson and D. Maltz, “The dynamic source routing proto-
col (dsr) for mobile ad hoc networks for ipv4,” February 2007.

[11] P. Jacquet, P. Mühlethaler, T. Clausen, A. Laouiti, A. Qayyum,
and L. Viennot, Optimized Link State Routing Protocol for
Ad-Hoc Networks, INRIA Roquencourt, HiPERCOM project,
2001.

[12] T. Clausen, P. Jacquet, and L. Viennot, Comparative study of
CBR and TCP performance of MANET routing protocols, Work-
shop MESAINRIA Roquencourt, HiPERCOM project.

[13] A. Huhtonen, “Comparing AODV and OLSR routing proto-
cols,” Seminar on Internetworking.

[14] A. TØnnesen, Impementing and extending the optimized link
state routing protocol, Tech. Rep., M.S. thesis, UniK University
Graduate Center University of Oslo, 2004.

[15] F. de Rango, M. Fotino, and S. Marano, “Ee-olsr: energy
efficient olsr routing protocol for mobile ad-hoc networks,” in
Proceedings of the Military Communications Conference (MIL-
COM ’08), San Diego, Calif, USA, November 2008.

[16] F. D. Rango, J. C. Cano, M. Fotino, C. Calafate, P. Manzoni,
and S. Marano, “OLSR vs DSR: a comparative analysis of pro-
active and reactive mechanisms from an energetic point of
view in wireless ad hoc networks,” Computer Communications,
vol. 31, no. 16, pp. 3843–3854, 2008.

[17] C. Taddia, A. Giovanardi, and G. Mazzini, “Energy efficiency
in OLSR protocol,” in Proceedings of the 3rd Annual IEEE Com-
munications Society on Sensor and Ad Hoc Communications
and Networks (SECON ’06), pp. 792–796, Reston, Va, USA,
September 2006.

[18] Y. Shoham, “Agent-oriented programming,” Journal of Artifi-
cial Intelligence, vol. 60, no. 1, pp. 123–129, 1996.

[19] L. Gong, “Jxta: a network programming environment,” Inter-
net Computing Online, vol. 5, pp. 88–95, 2002.

http://www.lirmm.fr/ADAC/?page_id=9
http://www.lirmm.fr/ADAC/?page_id=9
http://www.perplexus.org/
http://www.perplexus.org/
http://www.ietf.org/html.charters/manet-charter.html
http://www.ietf.org/html.charters/manet-charter.html

International Journal of Distributed Sensor Networks 15

[20] The XLattice Project, “Kademlia: a design specification,” Tech.
Rep., The XLattice Project, 2003, http://xlattice.sourceforge
.net/components/protocol/kademlia/specs.html.

[21] F. L. Bellifemine, G. Caire, and D. Greenwood, Developing
Multi-Agent Systems with JADE, Wiley Series in Agent Tech-
nology, Wiley, 2007.

[22] FIPA-OS project, FIPA-OS Agent Toolkit, FIPA-OS project ,
2007, http://sourceforge.net/projects/fipa-os.

[23] F. Strauss, J. Schönwälder, and S. Mertens, Jax—a java agent x
subagent toolkit, July 2000.

[24] G. Nguyen, T. Dang, L. Hluchy, M. Laclavik, Z. Balogh, and I.
Budinska, “Agent platform evaluation and comparison,” Slo-
vak Academy of Sciences, Institute of Informatics, Pellucid 5FP
IST-2001-34519, 2002.

[25] Wikipedia, Xscale, http://en.wikipedia.org/wiki/XScale#PXA-
27x.

[26] J. Lawrence, LEAP into Ad-Hoc Networks, ACM Workshop on
Agents in Ubiquitous and Wearable Computing, AAMAS.

[27] M. Schoeberl, Evaluation of a Java Processor, Vienna University
of Technology.

[28] D. Hardin, “aj-100: a low-power java processor,” Embedded
Processor Forum.

[29] ARM, “Jazelle—arm architecture extention for java applica-
tions,” white paper, 2002.

[30] J. Maassen, T. Kielmann, and H. E. Bal, “Parallel application
experience with replicated method invocation,” Concurrency
Computation Practice and Experience, vol. 13, no. 8-9, pp. 681–
712, 2001.

[31] T. Brecht, H. S., M. Shan, and J. Talbot, “Paraweb: towards
world-wide supercomputing,” in Proceedings of the European
Symposium on Operating System Principles, pp. 181–186, 1996.

[32] GNU.org, “The gnu operating system,” June 2009, http://www
.gnu.org/software/bison/.

[33] M. Hauptvogel, J. Madrenas, and J. M. Moreno, “Spindek: an
integrated design tool for the multiprocessor emulation of
complex bioinspired spiking neural networks, submitted to
congress on evolutionary computation,” IEEE CEC, 2009.

[34] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforce-
ment learning: a survey,” Journal of Artificial Intelligence Re-
search, vol. 4, pp. 237–285, 1996.

http://xlattice.sourceforge.net/components/protocol/kademlia/specs.html
http://xlattice.sourceforge.net/components/protocol/kademlia/specs.html
http://sourceforge.net/projects/fipa-os
http://en.wikipedia.org/wiki/XScale#PXA27x
http://en.wikipedia.org/wiki/XScale#PXA27x
http://www.gnu.org/software/bison/
http://www.gnu.org/software/bison/

	Introduction
	Adaptive Mobile Computing Environment
	Network Support
	OLSR Validation on Perplexus Platform

	The FIPA Multiagent System
	FIPA-Based Agents
	JADE: Java Agent Development Framework

	Contribution 1: Bio-Mimetic Agent Framework

	Hardware Acceleration
	Related Works
	Contribution 2: The Jubi Extensions
	Specific Tools
	JubiSplitter
	JubiCompiler
	UbiAssembler
	Toward an Adaptive Acceleration

	BAF Applications Validations
	Introduction
	Test Application 1
	Test Application 2
	Evolving a Population of Learning Individuals

	Conclusion
	Acknowledgments
	References

