

Tutoriel intitulé "Power-Aware Testing and Test Strategies for Low Power Devices"

Patrick Girard

▶ To cite this version:

Patrick Girard. Tutoriel intitulé "Power-Aware Testing and Test Strategies for Low Power Devices". DATE: Design, Automation and Test in Europe, Mar 2008, Munich, Germany. limm-00820638

HAL Id: lirmm-00820638 https://hal-lirmm.ccsd.cnrs.fr/lirmm-00820638

Submitted on 6 May 2013 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

G1

POWER-AWARE TESTING AND TEST STRATEGIES FOR LOW POWER DEVICES

DATE 08 TUTORIAL NOTES

Half-day tutorial on

Power-Aware Testing and Test Strategies for Low Power Devices

Patrick GIRARD LIRMM / CNRS

France

Nicola NICOLICI McMaster University Canada

Xiaoqing WEN Kyushu Institute of Technology Japan

Motivation and Objectives

Power Impact on Test

- Power constraints have severe impact on test
- Implications to test and DfT engineers / test tool developers :
 - Reduce power consumption also in test mode
 - Test strategies for power management structures
- Objectives of this tutorial:
 - Learning more about the impact of power during test
 - How to alleviate test power issues
 - How low power devices can be tested safely

Outline
1. Introduction
2. Test Power Metrics
3. Test Power Issues
4. Test Application Environments
5. Low Power Test Pattern Based Approaches
6. Low Power Design-for-Test
7. Low Power Test Data Compression
8. System-Level Low Power Testing
9. Overview of Low Power Design Techniques
10. Test Strategies for Low Power Devices
11. EDA Tools for Power-Aware Design-for-Test $\stackrel{>}{\sim}$ Part 3
12. Summary and Conclusions

1.	Intr	odu	ctio	n
		044		

Part 1

Chapter 1

Introduction

2. Test Power Metrics

2.2 Test Power Metrics

- Instantaneous Power:
 - Power consumed at any given instant during test
- Peak Power:
 - Highest value of instantaneous power measured during test
 - $P_{Peak} = max_k P_{inst}(V_k) = max_k (E_{Vk} / t_{small})$
 - Determines the thermal and electrical limits of components and the system packaging requirements
- Weighted Switching Activity (WSA):
 - WSA_i = F_i . S_i where F_i is the fanout at node i and S_i is the switching activity factor (ave. # of transitions during a time interval)
 - Often used as a metric for test power evaluation

Chapter 3

Test Power Issues

4. Test Application Environments

Chapter 4

Test Application Environments

4. Test Application Environments

Overview

~ From Where ~

External or Stored Pattern Test (Applied from ATE which stores the test patterns generated by ATPG)

Built-In Self-Test (BIST) (Applied from on-chip circuitry that generates test patterns on-the-fly)

~ How Frequently ~

Test-Per-Clock (Test patterns are applied consecutively in every clock cycle)

Test-Per-Scan (Test Patterns are applied consecutively in <u>every scan cycle</u>)

w.r.t. a series of clock cycles

5. Low Power Test Pattern Based Approaches

Part 2

Chapter 5

Low Power Test Pattern Based Approaches

	Overvie	w
Scan Testing	Shift Power Reduction	Capture Power Reduction
ATPG	Blocking Test Generation Low Power Compaction	<u>Test Generation</u> - power constraint checking - target fault restriction
X-Filling	• <u>X-Filling</u> - 0-fill - 1-fill - adjacent-fill	 FF-Oriented X-Filling justification-based probability-based hybrid Node-Oriented X-Filling internal-switching-activity-aware critical-path-aware
LFSR-Base Low Powe	ed Low Power Test Generatio r Memory Test Generation	n

mpact	of Sł	nift Po	ower R	educt	ion Te	echnic	ques o	on Cap	oture	Pow
Circuit	Test	Fault	Initial Max	x	N	/lax. W0	CT Redu	uction R	atio (%	5)
Onoun	#	(%)	WCT	(%)	Ran.	0-Fill	1-Fill	MT	Jus.	Est.
s13207	236	98.5	5238	91.4	10.2	19.8	0.4	12.4	21.7	33.7
s15850	94	96.7	4438	77.3	1.6	20.6	-15.4	4.8	20.7	36.3
s35932	13	89.8	17804	41.2	8.1	9.2	-0.8	-0.8	9.2	12.2
s38417	87	99.5	14183	76.8	2.8	12.4	4.4	12.9	15.7	24.7
s38584	118	95.9	14324	82.0	3.9	25.8	21.9	3.2	35.0	34.1
Ave.				73.7	5.3	17.6	2.1	6.5	20.1	28.2
	1			1		\subset				γ
						5	Shift Powe Reduction	er 1	Captur Redi	e Powe uction

(based on R. Sankaralingam et. al., Proc. VTS, pp. 35-42, 2000)

. Low Powe	er Test Pattern Based	d Approaches	
5.4 Lo	ow Power Memory	/ Test Algorithm	າຣ
 Motivated memories 	by the need to concur in a system to reduce test	rrently test several b time	anks of
 Reorder n address lin 	nemory tests to reduce t ne while retaining the fault	he switching activity of coverage and the test t	on each time
	Original Test	Low-power Test	Single bit
Zero-One	(W0);	↓ _s (W0, R0, W1, R1);	change (SBC)
Checker Board	$ \begin{array}{c} \label{eq:constraint} (W(1_{odd}'0_{even})); \mbox{$(R(1_{odd}'0_{even}));$} \\ \mbox{$(W(0_{odd}'1_{even})); \mbox{$(R(0_{odd}'1_{even}));$} \\ \end{array}); } \end{array} $	$ \begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	counting
● Pov ● Spe	wer dissipation reduced by a t ecial design of the BIST circu	factor of two to sixteen. itry is needed.	_
	(based on H. Cheung et. al., Proc. I	TC, pp. 22-32, 1996)	

6. Low Power Design-for-Test

Chapter 6

Low Power Design-for-Test

8. System-Level Low Power Testing

Chapter 8

System-Level Low Power Testing

8. System-Level Low Power Testing Deverview A Motivation for System Level Solutions A TPG/DFT/compression test approaches to low power can be combined with system-level solutions to improve test concurrency under power constraints. System-level solutions create a test infrastructure and a test plan that schedules tests for different blocks at mutually exclusive times to avoid excessive power. Main additional advantages of system-level solutions: Improve test throughput and power delivery during wafer probing. Simplify the design of power/ground distribution networks.

9. Overview of Low Power Design Techniques

Part 3

Chapter 9

Overview of Low Power Design Techniques

System & Architecture	Voltage / Frequency Scaling
	Architecture (multithreaded design, well managed pipeline, etc.)
	Others (H/S partitioning, instruction set algorithms, etc.)
IC Design &	Clock Gating
Implementation	 Multiple Supply Voltage
	 Multiple Threshold Voltage
	Substrate-Bias
	Power Gating
	Others

Low Power Design Techniques				
Circuit (Logic) Design	Low Power Cell Library			
	 Gate sizing (to equalize paths) 			
	 Buffer insertion to reduce slew 			
	 Logic restructuring to avoid hazards 			
	 Memory Bit Cell and Compiler 			
	Others			
Process Technology	Reduce Vdd			
	 Threshold Voltage Option 			
	Low Capacitance Dielectric			
	New Gate Oxide Material			
	Transistor Sizing			
	Others			

Efficiency of LPD Techniques *			
 Micro architecture (pipelining, parallelism) 	50%		
Clock gating and power gating	40%		
Logic design	20%		
Technology mapping	30%		
Cell sizing and wire sizing	30%		
 Voltage scaling, multi-Vth, multi-Vdd 	75%		
 Floor planning and placement 	25%		
•			

9. Overview of Low Power Design Techniques

9.2 Multiple Supply Voltage

- Vdd scaling results in quadratic power reduction (P=kCV²f)
- Adopted techniques are:
 - Static voltage scaling
 - Dynamic voltage scaling (change Vdd level during operation)
 - Dynamic voltage and frequency scaling
- Creation of "power islands"
- Reduces dynamic power dissipation
- Requirement / implications:
 - Level shifters to let signals cross power domain boundaries
 - Lower margin for IR drops / increased noise susceptibility

9. Overview of Low Power Design Techniques

• DfT and ATPG tools need to understand the power related constraints and the power management structures

• Each step in the DfT insertion has to be made low-power aware

> Example: scan insertion has to take into account the various power domains so that when a domain is powered down, the scan chains can bypass this domain

- The ATPG tool has to be guided by a power budget (# toggles)
 - > Example: techniques described in Chapter 5

Overview

• This chapter is about testing designs that incorporate power management circuitry

- Very few solutions proposed so far (a prospective topic !!)
 - Test generation for multi-voltage designs
 - Test architecture (scan) for multi-voltage designs
 - Test of power management structures (isolation cells, state retention registers, power switches)
- Once again, the goal is:

Make test power dissipation comparable to functional power

11. EDA Tools for Power-Aware Design-for-Test

Chapter 11

EDA Tools for Power-Aware Design-for-Test

<section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item>

11. EDA Tools for Power-Aware Design-for-Test

Providers of Power-Aware DFT Tools (2/2)

• Cadence:

• Encounter® Test, a key technology in the Cadence® Encounter digital IC design platform

To support manufacturing test of low-power devices, Encounter Test uses power intent information to create distinct test modes automatically for power domains and shut-off requirements. It also inserts design-for-test (DFT) structures to enable control of power shut-off during test. The power-aware ATPG engine targets low-power structures, such as level shifters and isolation cells, and generates low-power scan vectors that significantly reduce power consumption during test. Cumulatively, these capabilities minimize power consumption during test while still delivering the highest quality of test for lowpower devices

Details at http://www.cadence.com/products/digital_ic/encountertest/

12. Summary and Conclusions

Chapter 12

Summary and Conclusions

12. Summary and Conclusions

• Reliability, test throughput and manufacturing yield may be affected by excessive test power

• Therefore, lowering test power has been and is still a focus of intense research and development

• Following points have been surveyed:

- Test power parameters and contributors
- Problems induced by an increased test power

• Structural and algorithmic solutions for low power test along with their impacts on parameters such as fault coverage, test time, area overhead, circuit performance penalty, and design flow modification

• Test implications of low power design and emerging test strategies for low-power devices

12. Summary and Conclusions

• Past work explored primarily four directions:

• ATPG-based low power test approaches are not intrusive; they are pattern dependent and may incur additional computational cost in the design flow.

• DFT-based low power test approaches change the scan infrastructure; can be pattern independent and hence can guarantee power reduction in a certain range.

• Low power test data compression techniques combines reduction of test data volume and test application time with power consumption during test

• System-level low power test considerations can be combined with any of the above and improve test concurrency.

- Future work will be mainly on:
 - Test strategies for low power designs

THANK YOU! And let us make testing "*cool*".