
HAL Id: lirmm-00821929
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00821929v1

Submitted on 13 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

As-Soon-As-Possible Top-k Query Processing in P2P
Systems

William Kokou Dedzoe, Philippe Lamarre, Reza Akbarinia, Patrick Valduriez

To cite this version:
William Kokou Dedzoe, Philippe Lamarre, Reza Akbarinia, Patrick Valduriez. As-Soon-As-Possible
Top-k Query Processing in P2P Systems. Transactions on Large-Scale Data- and Knowledge-Centered
Systems, 2013, Part IX, LNCS (7980), pp.1-27. �10.1007/978-3-642-40069-8_1�. �lirmm-00821929�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00821929v1
https://hal.archives-ouvertes.fr

As-Soon-As-Possible Top-k Query Processing

in P2P Systems

William Kokou Dedzoe1, Philippe Lamarre2, Reza Akbarinia3, and Patrick
Valduriez3

1 INRIA Rennes, France
William.Dedzoe@inria.fr
2 INSA de Lyon, France

Philippe.Lamarre@insa-lyon.fr
3 INRIA and LIRMM, Montpellier, France

{Reza.Akbarinia, Patrick.Valduriez}@inria.fr

Abstract. Top-k query processing techniques provide two main ad-
vantages for unstructured peer-to-peer (P2P) systems. First they avoid
overwhelming users with too many results. Second they reduce signifi-
cantly network resources consumption. However, existing approaches suf-
fer from long waiting times. This is because top-k results are returned
only when all queried peers have finished processing the query. As a re-
sult, query response time is dominated by the slowest queried peer. In
this paper, we address this users’ waiting time problem. For this, we
revisit top-k query processing in P2P systems by introducing two novel
notions in addition to response time: the stabilization time and the cu-
mulative quality gap. Using these notions, we formally define the as-soon-
as-possible (ASAP) top-k processing problem. Then, we propose a family
of algorithms called ASAP to deal with this problem. We validate our
solution through implementation and extensive experimentation. The re-
sults show that ASAP significantly outperforms baseline algorithms by
returning final top-k result to users in much better times.

1 Introduction

Unstructured Peer-to-Peer (P2P) systems have gained great popularity in recent
years and have been used by millions of users for sharing resources and content
over the Internet [4, 30, 25]. In these systems, there is neither a centralized direc-
tory nor any control over the network topology or resource placement. Because
of few topological constraints, they require little maintenance in highly dynamic
environnements [26]. However, executing queries over unstructured P2P systems
typically by flooding may incur high network traffic and produce lots of query
results.

To reduce network traffic and avoid overwhelming users with high numbers
of query results, complex query processing techniques based on top-k answers
have been proposed e.g. in [2]. With a top-k query, the user specifies a number
k of the most relevant answers to be returned by the system. The quality (i.e.
score of relevance) of the answers to the query is determined by user-specified

scoring functions [9, 18]. Despite the fact that these top-k query processing so-
lutions e.g. [2] reduce network traffic, they may significantly delay the answers
to users. This is because top-k results are returned to the user only when all
queried peers have finished processing the query. Thus, query response time is
dominated by the slowest queried peer, which makes users suffer from long wait-
ing times. Therefore, these solutions are not suitable for emerging applications
such as P2P data sharing for online communities, which may have high numbers
of autonomous data sources with various access performance. Most of the previ-
ous work on top-k processing has focused on efficiently computing the exact or
approximate result sets and reducing network traffic [6, 17, 34, 32, 2].

A naive solution to reduce users’ waiting time is to have each peer return its
top-k results directly to the query originator as soon as it has done executing the
query. However, this significantly increases network traffic and may cause a bot-
tleneck at the query originator when returning high numbers of results. In this
paper, we aim at reducing users’ waiting time by returning high quality interme-
diate results, while avoiding high network traffic. The intermediate results are
the results of peers which have already processed locally their query. Providing
intermediate results to users is quite challenging because a naive solution may
saturate users with results of low quality, and incur significant network traffic
which in turn may increase query response time.

In this paper, our objective is to return high quality results to users as soon as
possible. For this, we revisit top-k query processing in P2P systems by introduc-
ing two notions to complement response time: stabilization time and cumulative
quality gap. The stabilization time is the time needed to obtain the final top-k
result set, which may be much lower than the response time (when it is sure
that there is no other top-k result). The quality gap of the top-k intermedi-
ate result set is the quality that remains to be the final top-k result set. The
cumulative quality gap is the sum of the quality gaps of all top-k intermedi-
ate result sets during query execution. Using these notions, we formally define
the as-soon-as-possible (ASAP) top-k processing problem. Then, we propose a
family of algorithms called ASAP to deal with this problem.

This paper is an extended version of [12] with the following added value.
First, in Section 6 we propose a solution to deal with node failures (or depar-
tures) which may decrease the quality and accuracy of top-k results. In Sec-
tion 7, we propose two techniques to compute ”probabilistic guarantees” for
the users showing for example the probability that current intermediate top-k
results are the true top-k results (i.e. confidence of current top-k result). Sec-
tion 8.2 shows experimentally the effectiveness of our solution for computing
“probabilistic guarantees”. Finally, we study experimentally the impact of data
distribution on our algorithms (Section 8.2).

2 System Model

In this section, we first present a general model of unstructured P2P systems
which is needed for describing our solution. Then, we provide a model and defi-
nitions for top-k queries.

2.1 Unstructured P2P Model

We model an unstructured P2P network of n peers as an undirected graph
G = (P,E), where P = {p0, p1, · · · , pn−1} is the set of peers and E the set of
connections between the peers. For pi, pj ∈ P, (pi, pj) ∈ E denotes that pi and pj
are neighbours. We also denote by N(pi), the set of peers to which pi is directly
connected, so N(pi) = {pj|(pi, pj) ∈ E}. The value ‖N(pi)‖ is called the degree
of pi. The average degree of peers in G is called the average degree of G and is
denoted by ϕ. The r-neighborhood N r(p) (r ∈ N) of a peer p ∈ P is defined as
the set of peers which are at most r hops away from peer p, so

N r(p) =

∣∣∣∣∣∣

{p} if r = 0

{p}
⋃

p′∈N(p)

N
r−1(p′) if r ≥ 1

Each peer p ∈ P holds and maintains a set D(p) of data items such as images,
documents or relational data (i.e. tuples). We denote by Dr(p)(r ∈ N), the set
of all data items which are in N r(p), so

Dr(p) =
⋃

p′∈Nr(p)

D(p′)

In our model, the query is forwarded from the query originator to its neigh-
bours until the Time-To-Live value of the query decreases to 0 or the current
peer has no peer to forward the query. So the query processing flow can be
represented as a tree, which is called the query forwarding tree. When a peer
p0 ∈ P issues query q to peers in its r-neighborhood, the results of these peers
are bubbled up using query q’s forwarding tree with root p0 including all the
peers belonging to N r(p0). The set of children of a peer p ∈ N r(p0) in query q’s
forwarding tree is denoted by ψ(p, q).

2.2 Top-k Queries

We characterize each top-k query q by a tuple < qid, c, ttl, k, f, p0 > such that
qid is the query identifier, c is the query itself (e.g. SQL query), ttl ∈ N (Time-
To-Live) is the maximum hop distance set by the user, k ∈ N

∗ is the number of
results requested by the user f : D×Q → [0,1] is a scoring function that denotes
the score of relevance (i.e. the quality) of a given data item with respect to a
given query and p0 ∈ P the originator of query q, where D is the set of data
items and Q the set of queries.

A top-k result set of a given query q is the k top results among data items
owned by all peers that receive q. Formally we define this as follows.

Definition 1 Top-k Result Set. Given a top-k query q, let D′ = Dq.ttl(q.p0).
The top-k result set of q, denoted by Topk(D′, q), is a sorted set on the score (in
decreasing order) such that:

1. Topk(D′, q) ⊆ D′;

2. If ‖D′‖ < q.k, Topk(D′, q) = D′, otherwise ‖Topk(D′, q)‖ = q.k;

3. ∀d ∈ Topk(D′, q), ∀d′ ∈ D′ \ Topk(D′, q), q.f(d, q.c) ≥ q.f(d′, q.c)

Definition 2 Result’s Rank. Given a top-k Result set I, we define the rank
of result d ∈ I, denoted by rank(d, I), as the position of d in the set I.

Note that the rank of a given top-k item is in the interval
[
1; k].

In large unstructured P2P systems, peers have different processing capabil-
ities and store different volumes of data. In addition, peers are autonomous in
allocating the resources to process a given query. Thus, some peers may process
more quickly a given query than others. Intuitively, the top-k intermediate result
set for a given peer is the k best results of both the results the peer received
so far from its children and its local results (if any). Formally, we define this as
follows.

Definition 3 Top-k Intermediate Result Set. Given a top-k query q, and
p ∈ N q.ttl(q.p0). Let D1 be the result set of q received so far by p from peers in
ψ(p, q) and D2 = D1 ∪ D(p). The top-k intermediate result set of q at peer p,
denoted by Iq(p), is such that:

Iq(p) =

∣∣∣∣∣∣

Topk(D2, q) if p has already processed q

T opk(D1, q) otherwise

3 Problem Definition

Let us first give our assumptions regarding schema management and the un-
structured P2P architecture. We assume that peers are able to express queries
over their own schema without relying on a centralized global schema as in data
integration systems [28]. Several solutions have been proposed to support decen-
tralized schema mapping. However, this issue is out of scope of this paper and we
assume it is provided using one of the existing techniques, e.g. [23], [28] and [1].
We also assume that all peers in the system are trusted and cooperative. In the
following, we first give some definitions which are useful to define the problem
we focus and formally state the problem.

Fig. 1. Quality of top-k results at the query originator wrt. Execution time

3.1 Foundations

To process a top-k query in P2P systems, an ASAP top-k algorithm provides in-
termediate results to users as soon as peers process the query locally. This allows
users to progressively see the evolution of their query execution by receiving in-
termediate results for their queries. Note that at some point of query execution,
the top-k intermediate results received by a peer may not change any more, until
the end of the query execution. We denote this point as the stabilization time

(see Figure 1).
Recall that the main goal of ASAP top-k query processing is to return high-

quality results to user as soon as possible. To reflect this, we introduce the
quality evolution concept. Given a top-k query q, we define the quality evolution
Y (t) of q at time t as the sum of scores of q’s intermediate top-k results at t
and at q’s originator. Figure 1 shows the quality evolution of intermediate top-k
results obtained at the query originator during a given query execution. To be
independent of the scoring values —which can be different from one query to
another—, we normalize the quality evolution of a query. With this in mind, we
divide the quality evolution of a given query by the sum of scores of the final
top-k results of that query. Thus, the quality evolution values are in the interval
[0, 1] and the quality of the top-k final results is equal to 1. Note that we do
not use the proportion of the final top-k results in intermediate top-k results (i.e
precision) to characterize ASAP algorithm because this metric does not express
the fact of returning the high quality results as soon as possible to users.

The quality evolution of intermediate top-k results at the query originator
increases as peers answer the query. To reflect this, we introduce the cumulative
quality gap, which is defined as the sum of the quality difference between inter-
mediate top-k result sets received until the stabilization time and the final top-k
result set. We formalize this in Definition 4.

Definition 4 Cumulative quality gap. Given a top-k query q, let Y (t) be the
quality evolution of q at time t at q originator, and S be the stabilization time

of q. The cumulative quality gap of the query q, denoted by Cqg is:

Cqg =

S∫

0

(1− Y (t)) dt = S −

S∫

0

Y (t) dt (1)

3.2 Problem Statement

Formally, we define the ASAP top-k query processing problem as follows. Given
a top-k query q, let S be the stabilization time of q and Cqg be the cumulative
quality gap of q. The problem is to minimize Cqg and S while avoiding high
communication cost.

4 ASAP Top-k Query Processing Overview

ASAP query processing proceeds in two main phases. The first phase is the query
forwarding and local execution of the query. The second phase is the bubbling
up of the peers’ results for the query along the query forwarding tree.

4.1 Query Forwarding and Local Execution

Query processing starts at the query originator, i.e. the peer at which a user
issues a top-k query q. The query originator performs some initialization. First,
it sets ttl which is either user-specified (or default). Second, it creates a unique
identifier qid for q which is useful to distinguish between new queries and those
received before. Then, q is included in a message that is broadcast by the query
originator to its reachable neighbors. Algorithm 1 shows the pseudo-code of
query forwarding. Each peer that receives the message including q checks qid
(see line 2, Algorithm 1). If it is the first time the peer has received q, it saves
the query (i.e. saves the query in the list of seen queries and the address of the
sender as its parent) and decreases the query ttl by 1 (see lines 3-4, Algorithm 1).
If the ttl is greater than 0, then the peer sends the query message to all neighbors
except its parent (see lines 5-7, Algorithm 1). Then, it executes q locally. If q
has been already received, then if the old ttl is smaller than the new ttl, the
peer proceeds as where q is received for the first time but without executing q
locally (see lines 10-18, Algorithm 1), else the peer sends a duplicate message to
the peer from which it has received q.

4.2 Bubbling Up Results

Recall that, when a peer submits a top-k query q, the local results of the peers
who have received q are bubbled (i.e returned upwards) up to the query originator
using query q’s forwarding tree. In ASAP, a peer’s decision to send intermediate
results to its parent is based on the improvement impact computed by using

Algorithm 1: receive Query(msg)
input : msg, a query message.

1 begin

2 if (!already Received(msg.getID()) then

3 memorize(msg);
4 msg.decreaseTTL();
5 if (msg.getTTL() > 0) then

6 forwardToNeighbors(msg);
7 end

8 executeLocally(msg.getQuery());

9 else

10 qid = msg.getID();
11 oldMsg = SeenQuery(qid).;
12 if (msg.getTTL() > oldMsg.TTL()) then

13 memorize(msg);
14 msg.decreaseTTL();
15 if (msg.getTTL() > 0) then

16 forwardToNeighbors(msg);
17 end

18 sendDuplicateSignal(qid, oldMsg.getSender());

19 else

20 sendDuplicateSignal(qid, msg.getSender());
21 end

22 end

23 end

the ratio of its current top-k intermediate result set over the top-k intermediate
result set which it has sent so far to its parent. This improvement impact can
be computed in two ways: by using the score or rank of top-k results in the
result set. Therefore, we introduce two types of improvement impact: score-based
improvement impact and rank-based improvement impact.

Intuitively, the score-based improvement impact at a given peer for a given
top-k query is the gain of score of that peer’s current top-k intermediate set
compared to the top-k intermediate set it has sent so far.

Definition 5 Score-based improvement impact. Given a top-k query q, and
peer p ∈ N q.ttl(q.p0), let Tcur be the current top-k intermediate set of q at p
and Told be the top-k intermediate set of q sent so far by p. The score-based
improvement impact of q at peer p, denoted by IScore(Tcur, Told) is computed as

IScore(Tcur, Told) =

∑

d∈Tcur

q.f(d, q.c) −
∑

d′∈Told

q.f(d′, q.c)

k
(2)

Note that in Formula 2, we divide by k instead of ‖Tcur − Told‖ because we do
not want that IScore(Tcur, Told) be an average which would not be very sensitive
to the values of scores. The score-based improvement impact values are in the
interval [0, 1].

Intuitively, the rank-based improvement impact at a given peer for a given
top-k query is the loss of rank of results in the top-k intermediate result set sent
so far by that peer due to the arrival of new intermediate results.

Definition 6 Rank-based improvement impact. Given a top-k query q and
peer p ∈ N q.ttl(q.p0), let Tcur be the current top-k intermediate result set of q
at p and Told be the top-k intermediate result set of q sent so far by p. The
rank-based improvement impact of q at peer p, denoted by IRank(Tcur, Told) is
computed as

IRank(Tcur, Told) =

∑

d∈Tcur\Told

(k − rank(d, Tcur) + 1)

k ∗ (k + 1)

2

(3)

Note that in Formula 3, we divide by k∗(k+1)
2 which is the sum of ranks of a

set containing k items. The rank-based improvement impact values are in the
interval [0, 1].

Notice also that, in order to minimize network traffic, ASAP does not bubble
up the results (which could be large), but only their scores and addresses. A
score-list is simply a list of k pairs (ad, s), such that ad is the address of the peer
owning the data item and s its score.

A simple way to decide when peer must bubble up newly received intermedi-
ate results to its parent is to set a minimum value (threshold) that must reach its
improvement impact. This value is set initially by the application and it is the
same for all peers in the system. Note also that this threshold does not change
during the execution of the query. Using both types of improvement impact we
have introduced, we have two types of static threshold-based approaches. The
first approach uses the score-based improvement impact and the second one the
rank-based improvement impact.

A generic algorithm for our static threshold-based approaches is given in
Algorithm 2. In these approaches, each peer maintains for each query a set Told
of top-k intermediate results sent so far to its parent and a set Tcur of current
top-k intermediate results. When a peer receives a new result set N from its
children (or its own result set after local processing of a query), it first updates
the set Tcur with results in N (see line 2, Algorithm 2). Then, it computes the
improvement impact imp of Tcur compared to Told (line 3, Algorithm 2). If imp
is greater than or equal to the defined threshold delta or if there are no more
children’ results to wait for, the peer sends the set Ttosend = Tcur \ Told to its
parent and subsequently sets Tcurr to Told (see lines 4-7, Algorithm 2).

5 Dynamic Threshold-based Approaches for Bubbling up

Results

Although the static threshold-based approaches are interesting to provide results
quickly to user, they may be blocking if results having higher scores are bubbled
up before those of lower score. In other words, sending higher score’s results will
induce a decrease of improvement impact of the following results. This is because
the improvement impact considers the top-k intermediate results sent so far by

Algorithm 2: Streat(k, Tcur, Told, N, delta, Func)
input : k, number of results; Tcur , current top-k; Told, top-k sent so far; N , new

result set; delta, impact threshold; Func, type of improvement impact.
1 begin

2 Tcur = mergingSort Topk(k, Tcur , N);
3 imp = Func(Tcur , Told);
4 if ((imp ≥ delta) or all Results()) then

5 Ttosend = Tcur \ Told;
6 send Parent(Ttosend, all Results());
7 Told = Tcur ;

8 end

9 end

the peer. Thus, results of low scores even if they are in the final top-k results
may be returned at the end of the query execution. To deal with this problem,
an interesting way would be to have a dynamic threshold, i.e. a threshold that
decreases as the query execution progresses. However, this would require finding
the right parameter on which the threshold depends. We have identified two
possible solutions for the dynamic threshold. The first one is to use an estimation
of the query execution time. However, estimating the query execution time in
large P2P system is very difficult because it depends on network dynamics, such
as connectivity, density, medium access contention, etc., and the slowest queried
peer. The second, more practical, solution is to use the peer’s result set coverage,
i.e for each peer the proportion of peers in its sub-tree including itself (i.e. all
its descendants and itself) which have already processed the query to decrease
the threshold.

5.1 Peer’s Local Result Set Coverage

Definition 7 Peer’s local result set coverage. Given a top-k query, and p ∈
N q.ttl(q.p0), let A be the set of peers in the sub-tree whose root is p in the query
q’s forwarding tree. Let E be the set of peers in A which have already processed
q locally. The local result set coverage of peer p for q, denoted by Cov(E ,A), is
computed using the following equation:

Cov(E ,A) =
‖E‖

‖A‖

Peer’s local result set coverage values are in the interval [0, 1].
Note that is very difficult to have the exact value of a peer’s local result set

coverage without inducing an additional number of messages in the network. This
is because each peer must send a message to its parent each time its local coverage
result set value changes. Thus, when a peer at hop m from query originator
updates its local result coverage, m messages will be sent over the network. To
deal with this problem, an interesting solution is to have an estimation of this
value instead of the exact value.

The estimation of peer’s local result set coverage can be done using two
different strategies: optimistic and pessimistic. In the optimistic strategy, each

peer computes the initial value of its local result set coverage based only on
its children nodes. This value is then updated progressively as the peers in its
sub-tree bubble up their results. Indeed, each peer includes in each response
message sent to its parent the number of peers in its sub-tree (including itself)
which have already processed the query locally and the total number of peers in
its sub-tree including itself. This couple of values is used in turn by its parent
to estimate its local result set coverage. Contrary to the optimistic strategy, in
the pessimistic strategy, the local result set coverage estimation is computed at
the beginning by each peer based on the Time-To-Live received with the query
and the average degree of peers in the system. As in the case of the optimistic
strategy, this value is updated progressively as the peers in its sub-tree bubble
up their results.

In our dynamic threshold-based approaches, we estimate a peer’s local result
set coverage using the pessimistic strategy because the estimation value is more
stable than with the optimistic strategy. Now, let us give more details about how
a peer’s local result set coverage pessimistic estimation strategy is done.

5.2 Peer’s Local Result set Coverage Pessimistic Estimation

In order to estimate its local result set coverage, each peer pi maintains for each
top-k query q and for each child pj a set C1 of pairs (pj , a) where a ∈ N is the
number of peers in the sub-tree of peer pj including pj itself. pi maintains also
a set C2 of pairs (pj , e) where e ∈ N is the total number of peers in the sub-tree
of peer pj including pj itself which have already processed locally q. Now let ttl′

be the time-to-live with which pi received query q and ϕ be the average degree
of peers in the system. At the beginning of query processing, for all children of

pi, e = 0 and a =

ttl′−2∑

u=0

ϕu. During query processing, when a child pj in ψ(pi, q)

wants to send results to pi, it inserts in the answer message its couple of values
(e, a). Once pi receives this message, it unpacks the message, gets these values
(i.e. e and a) and updates the sets C1 and C2. The local result set coverage of
peer pi for the query q is then estimated using Formula 4.

C̃ov(C1, C2) =

∑

(pj ,e)∈C1

e

∑

(pj ,a)∈C2

a
(4)

Note that peer’s local result set coverage estimation values are in the interval
[0, 1].

5.3 Dynamic Threshold Function

In the dynamic threshold approaches, the improvement impact threshold used
by a peer at a given time t of the query execution depends on its local result set

coverage at that time. This improvement impact threshold decreases as the local
result set coverage increases. To decrease the improvement impact threshold used
by a peer as the local result set coverage increases, we use a linear function that
allows peers to set their improvement impact threshold for a given local result
set coverage. Now let us define formally the threshold function.

Definition 8 Dynamic Threshold Function. Given a top-k query q and p ∈
N q.ttl(q.p0), the improvement impact threshold used by p during q’s execution,
is a monotonically decreasing function H such that:

H :

∣∣∣∣∣
[0, 1] → [0, 1]

x 7→ −α ∗ x+ α

(5)

with α ∈ [0, 1[. Notice that x is a peer’s result set coverage at given time and α
the initial improvement impact threshold (i.e. H(0) = α).

5.4 Reducing Communication Cost

Using a rank-based improvement impact has the drawback of not reducing as
much as possible network traffic. This is because the rank-based improvement
impact value is equal to 1 (the maximum value it can reach) when a peer receives
the first result set (from one of its children or after local processing of a query).
Thus, each peer always sends a message over the network when it receives the
first result set containing k results. To deal with this problem and thus reduce
communication cost, we use peers’ result sets coverage to prevent them to send
a message when they receive their first result set. Therefore, the idea is to allow
peers to start sending a message if and only if their local result sets coverage
reaches a predefined threshold. With this result set coverage threshold, peers
send intermediate results based on the improvement impact threshold obtained
from the dynamic threshold function H define above.

5.5 Dynamic Threshold Algorithms

Our dynamic threshold approaches algorithms are based on the same principles
as the static threshold ones. A generic algorithm for our dynamic threshold-
based approaches is given in Algorithm 3. When a peer receives a new result
set N from its children (or generates its own result set after local processing of
a query), it first updates the set Tcur of its current top-k intermediate results
with results in N (see line 2, Algorithm 3). If its current result set coverage
cov is greater than the defined threshold result set coverage cov′, then the peer
computes the improvement threshold delta using the dynamic function H and
subsequently the improvement impact imp (see lines 3-5, Algorithm 3). If imp is
greater than or equal to delta or if there are no more children’ results to wait for,
then the peer sends the set Ttosend = Tcur \ Told to its parent and subsequently
sets Tcurr to Told (see lines 6-9, Algorithm 3). Recall that Tcur is the set of the
current top-k intermediate results and Told is the top-k intermediate results sent
so far to its parent.

Algorithm 3: Dtreat(k, Tcur, Told, N, Func, cov, ¯cov,H)
input : k; Tcur ; Told; N ; Func; cov, current local result set coverage; ¯cov,

result set coverage threshold; H, a dynamic threshold function.
1 begin

2 Tcur = mergingSort Topk(k, Tcur , N);
3 if (cov > ¯cov) then

4 delta = H(cov);
5 imp = Func(Tcur, Told);
6 if ((imp ≥ delta) or all Results()) then

7 Ttosend = Tcur \ Told;
8 send Parent(Ttosend, all Results());
9 Told = Tcur ;

10 end

11 end

12 end

6 Dealing with peers failures in ASAP

One main characteristics of P2P systems is the dynamic behaviour of peers.
It may happen that some peers leave the system (or fail) during the query
processing. As a result peers may become inaccessible in the result bubbling up
phase. In this section, we deal with this problem.

6.1 Absence of parent

In the query results bubbling up phase, each peer p bubbles up the results of peers
in its subtree to its parent. It may happen that p’s parent is inaccessible because
it has left the system or failed. The question is which path to choose to bubble
up p’s intermediate results to the query originator. To deal with this problem
a naive solution is that p sends its intermediate results directly to the query
originator when p’s parent is inaccessible. Recall that at the query forwarding
phase the IP address and port of the query originator is communicated to all
peers which have received the query. However the naive approach has some
drawbacks. First, it may incur expensive merge of intermediates results at query
originator which may be resource consuming. Second, by returning intermediate
results of the peer whose parent is failed directly to the query originator, we
reduce the capacity of peers to prune uninteresting intermediate results and this
may increase significantly the volume of transferred data over the network.

Our solution to deal with the above mentioned problem is as following. Each
peer p maintains locally for each active query q a list QPath involving the
addresses of peers (IP addresses and ports) in the path from the query originator
to p in the q’s forwarding tree. QPath list is sorted by increasing positions of
peers from the peer p in query q forwarding tree (the first item in this list is
the parent of p, the second item is the grand parent of p, etc.). For constructing
this list, each peer, including the query originator, adds its address to the query
message before forwarding it to the neighbours. Thus, when a query message
reaches a peer p, it contains the address of all parents of p.

In the phase of results bubble up when a peer detects that his parent (i.e
first item in the list QPath) is inaccessible, the peer sends its new results to

the next peer in the list QPath which is reachable. Another problem which
may happen is that a peer may leave the system without being able to send
to its parent the results received so far from its children, and this may have
serious impact in the accuracy of final top-k results. To overcome this problem
we adopt the following approach. During the results bubbling up phase, when
a peer finds that its parent is unreachable, it sends its current top-k results to
the next available peer in the list QPath. Although, this technique can increase
the volume of data transferred in highly dynamic environment it may improve
significantly the accuracy of top-k results.

6.2 Adjustment of Peer’ local result set coverage

When computing the local result set coverage, we must take into account the
fact that a peer may change parent when its direct parent becomes inaccessible.
Indeed, not taking this into account will result in overestimation of peers’ result
sets coverage which may affect the value of the impact of intermediate results
and thereby reducing the ability of peers to bubble up good quality results as
soon as possible. In this section, we present our technique for adjusting the local
result set coverage which is based on updating sets C1 and C2 which each pi
maintains for each top-k query q and for each child pj . Recall that C1 is a set of
pairs (pj , a) where a ∈ N is the number of peers in the sub-tree of peer pj and
C2 a set of pairs (pj , e) where e ∈ N is the total number of peers in the sub-tree
of peer pj which have already processed locally the query.

To help peers to have a good estimation of their result set coverage when
some peers become inaccessible, we modify as follows our approach for peers
failures management presented previously. Each peer pi maintains for its parent
pj and for each active query the latest values of the estimation of number of
peers which have already processed the query in the sub-tree and the number
of peers in its sub-tree it has sent to pj . In the results bubbling up phase, when
pj is inaccessible, pi inserts into its answer message to its new parent pk (the
first accessible peer in QPath list) the following information: 1) the new and
the latest (sent to pj) values of the number of peers and the number of peers
which have already processed locally in the sub-tree; 2) the address of the peer
which is before pk in the list QPath (this peer is one of child of pk in the query
forwarding tree) .

When a peer pk receives an answer message of a query q from a peer pj
whose parent is inaccessible, it updates its estimation about the number of peers
and the number of peers which have already processed locally q in the sub-
tree of its direct child pr which is declared as ”inaccessible” by pj (see lines
2-17, Algorithm 4). Then pk activates a trigger to inform pr (when it becomes
accessible) that pj is no longer in its sub-tree (see line 18, Algorithm 4).

7 Feedback Measures For Intermediate Results

Although it is important to provide good quality results as soon as possible to
users, it is also interesting to associate “probabilistic guarantee” to the interme-

Algorithm 4: result Coverage Adjustment(msg)
input : msg, an answer message of a query; C1; C2.

1 begin

2 if (change Parent(msg) then

3 qid = msg.getQueryID();
4 sender = msg.getAnswerSender();
5 al = getNbPeersSent(msg);
6 el = getNbAnsPeersSent(msg);
7 p = getLastPeerInacessible(msg);
8 if (el > C2.get(p)) then

9 x1 = C2.get(p);
10 y1 = C1.get(p);

11 else

12 x2 = C2.get(p) − el;
13 y2 = C1.get(p) − al;

14 end

15 C2.update(p,
x1+x2

2
);

16 y2 = C1.update(p,
y1+y2

2
);

17 end

18 propagateUpdate(queryId, Sender, p, al, el);

19 end

diate results allowing the user to know how far these results are from the final
results. For example, we may wish to be able to give probabilistic guarantees,
such as: “with probability γ, the current top-k results are likely to be the final
top-k results”. Our goal is to provide a mechanism to continuously compute
these guarantees as results are bubbled up to the query originator. To do so, we
compute two feedback measures which are returned to the user continuously: 1)
the proportion of peers whose local results are already considered in the compu-
tation of the current top-k (we call this the proportion of contributor peers); 2)
the probability of having the best k results in the current top-k results (we call
this the stabilization probability). In this section, we present how these feedback
measures can be computed.

Note that our goal is not to provide approximative top-k result with proba-
bilistic guarantees where at the end of the query execution approximative top-k
result set is returned to user with a probability showing how this result is far
from the exact top-k result. In our work, probabilistic guarantees are computed
continuously during the execution of the query on intermediate results as in [5].
Notice that the work presented in [5] considered centralized databases where it
is easier to get some information on data stored (e.g data distribution or scores
distribution, number of data stored, etc.) and to collect statistics during query
processing, in order to provide probabilistic guarantees for top-k intermediate
results. Therefore, the approach proposed in [5] cannot easily be applied for un-
structured P2P system where data are completely distributed (i.e. there is no
centralized catalog).

7.1 Stabilization probability

To be able to calculate the stabilization probability (i.e the probability that the
current top-k is the exact top-k for a query q), we use the following information:

– the total number L of queried peers for the query q
– the total number M of data items shared by the L peers
– the number l of peers whose data items are taken into account in calculating

the current top-k result of q
– the total number m of data items shared by the l peers

In Section 4.1, we presented how to estimate the parameter L and how to
calculate l. Note that the calculation of m can be done by including in each
answer message which a peer sends to its parent the number of data items which
have already taken into account in the calculation of this response. However
to be able to estimate M it is necessary to know the number l′ of peers that
are already known by the query initiator and the number m′ of data items of
those peers. The mechanism to calculate l′ and m′ works as follows. Each peer
pi maintains for each child pj a set C3 of pairs (pj , c, d) where c is the number of
peers which pi knows in the sub-tree whose root is pj and d the number of data
items shared by the c peers. At the beginning of query processing, each peer sets
c = 0 and d = 0. In the phase of result bubbled up, when a child pj in ψ(pi, q)
wants to send results to pi, it inserts in the answer message the couple of values

(
∑

(pj ,c,d)∈C3

c,
∑

(pj ,c,d)∈C3

d). Once pi receives this message, it unpacks the message,

gets these values and updates the set C3.
The total number M of data items of all queried peers is then estimated

using Formula 6.

M = ‖D(p0)‖+m′ +
‖D(p0)‖+m′

l′ + 1
∗ (L− l′ − 1) (6)

where D(p0) is the number of data items shared by the query originator.

By assuming that the data distribution over peers is uniform, the probability
Pm
k of finding the k best data items in the current top-k result is:

Pm
k =

Cm−k
M−k

Cm
M

(7)

If l peers over L have already bubbled up their local results to query origi-
nator, the probability of having m data items on these l peers is:

Pm
l =

∣∣∣∣∣
1 if l = L

C
m
M × (

l

L
)
m

× (
L− l

L
)
M−m

otherwise
(8)

Knowing that l peers have already bubbled up their local results to query
originator, the probability of having at least k data items is given by:

P≥k
l =

M∑

m=k

Pm
l (9)

To find all the k best results in those l peers there must be at least k data
items on these l peers and all the best results must be owned by these l peers.

Thus the probability of having all the the top-k results in the current top-k
result set is equal to:

P ktop
l =

M∑

m=k

Pm
l × Pm

k (10)

To ensure a better estimation of the probability that the current top-k is the
exact top-k in the case of peers failures, we have adopted the technique presented
in Section 6 to readjust the estimation of all parameters used for calculating that
probability.

7.2 Proportion of contributor peers

The proportion of contributor peers of a given current top-k results is the number
of queried peers whose local results are already considered in the computation
of that current top-k over the total number of queried peers. This proportion is
equal to estimation of the query originator local result set coverage presented in
Section 5. Thus, continuously we return the latter coverage to the user as the
proportion of contributor peers.

7.3 Discussion

In some cases, it may happen that an unstructured P2P system is configured
so that an issued query reaches all peers in the system (e.g by using very high
ttl). In this case an efficient way to estimate the number of queried peers (i.e the
network size) is to use gossip-based aggregation approach [19]. This approach
relies on the following statement: if exactly one node of the system holds a
value equal to 1, and all the other values are equal to 0, the average is 1/N .
The system size could thus be directly computed. To run this algorithm, an
initiator should take the value equal to 1, and start gossiping; the reached nodes
participate to the process by setting their value to 1. At each predefined cycle,
each node in the network chooses one of its neighbors at random and swaps its
estimation parameter (the network size and the number of shared data items).
The contacted node does the same (push/pull heuristic of [19]). Both nodes then
recompute their estimation as follows:

Estimation =
Estimation+Neighbor′s Estimation

2

By relying on gossip-based aggregation approach, we can also estimate the
total number of data items shared by all peers in the system.

Notice that to provide correct estimations, this algorithm needs to wait a
certain number of rounds to elapse before computing the size estimation; this
period is the required time for the gossip to propagates in the whole overlay
and for the values to converge. Notice that this method converge to the exact
value in the stable system as demonstrated in [19]. Gossip protocols have been
shown to provide exponentially fast convergence with low message transmission
overhead as presented in [21].

8 Performance Evaluation

In this section, we evaluate the performance of ASAP through simulation using
the PeerSim simulator [20]. This section is organized as follows. First, we de-
scribe our simulation setup, the metrics used for performance evaluation. Then,
we study the effect of the number of peers and the number of results on the
performance of ASAP, and show how it scales up. Next, we study the effect of
the number of replicas on the performance of ASAP. We also study the effective-
ness of our solution for providing probabilistic guarantees on the top-k results.
After that, we study the effect of data distribution on the performance of ASAP.
Finally, we investigate the effect of peers failures on the correctness of ASAP.

8.1 Simulation Setup

We implemented our simulation using the PeerSim simulator. PeerSim is an
open source, Java based, P2P simulation framework aimed to develop and test
any kind of P2P algorithm in a dynamic environment. It consists of configurable
components and it has two types of engines: cycle-based and event-driven engine.
PeerSim provides different modules that manage the overlay building process and
the transport characteristics.

We conducted our experiments on a machine with a 2.4 GHz Intel Pentium
4 processor and 2GB memory. The simulation parameters are shown in Table 1.
We use parameter values which are typical of P2P systems [15]. The latency
between any two peers is a normally distributed random number with mean of
200 ms. Since users are usually interested in a small number of top results, we set
k = 20 as default value. In our experiments we vary the network size from 1000
to 10000 peers. In order to simulate high heterogeneity, we set peers’ capacities
in our experiments, in accordance to the results in [15]. This work measures
the peers capacities in the Gnutella system. Based on these results, we generate
around 10% of low-capable, 60% of medium-capable, and 30% of high-capable
peers. The high-capable peers are 3 times more capable than medium-capable
peers and still 7 times more capable than low-capable ones.

In the context of our simulations each peer in the P2P system has a table
R(data) in which attribute data is a real value. The number of rows of R at
each peer is a random number uniformly distributed over all peers greater than
1000 and less than 20000. Unless otherwise specified, we assume only one copy
of each data item in our system (i.e. no data replication). We also ensure that
there are not two different data items with the same score. In all our tests, we
use the following simple query, denoted by qload as workload:
SELECT val FROM R ORDER BY F (R.data, val) STOP AFTER k
The score F (R.data, val) is computed as:

1

1 + |R.data− val|

In our simulation, we compare ASAP with Fully Distributed (FD) [2], a baseline

Parameters Values

Latency Normally distributed
random number,
Mean = 200 ms,
V ariance = 100

Number of peers 10,000 peers

Average degree of peers 4

ttl 9

k 20

Number of replicas 1
Table 1. Simulation parameters.

approach for top-k query processing in unstructured P2P systems which works
as follows. Each peer that receives the query, executes it locally (i.e. selects the
k top scores), and waits for its children’s results. After receiving all its children
score-lists, the peer merges its k local top data items with those received from
its children and selects the k top scores and sends the result to its parent.

In our experiments, to evaluate the performance of ASAP comparing to FD,
we use the following metrics:

(i) Cumulative quality gap: As defined in Section 3, is the sum of the quality
difference between intermediate top-k result sets received until the stabiliza-
tion time and the final top-k result set.

(ii) Stabilization time: We report on the stabilization time, the time of receiv-
ing all the final top-k results.

(iii) Response time: We report on the response time, the time the query ini-
tiator has to wait until the top-k query execution is finished.

(iv) Communication cost: We measure the communication cost in terms of
number of answer messages and volume of data which must be transferred
over the network in order to execute a top-k query.

(v) Accuracy of results: We define the accuracy of results as follows. Given a
top-k query q, let V be the set of the k top results owned by the peers that
received q, let V ′ be the set of top-k results which are returned to the user
as the response of the query q. We denote the accuracy of results by acq and
we define it as

acq =
‖V ∩ V ′‖

‖V ‖

(iv) Total number of results: We measure the total number of results as the
number of results received by the query originator during query execution.

In our experimentation, we perform 30 tests for each experiment by issuing
qload 20 different times and we report the average of their results. Due to space
limitations, we only present the main results of ASAP’s dynamic threshold-based
approaches denoted by ASAP-Dscore and ASAP-Drank. ASAP-Dscore uses a
score-based improvement impact and ASAP-Drank a rank-based improvement

impact. ASAP’s dynamic threshold-based approaches have proved to be better
than ASAP’s static threshold-based approaches without being expensive in com-
munication cost. In our all experiments, for ASAP-Dscore approach we use
H(x) = −0.2x+ 0.2 as dynamic threshold function and 0 as peer’s local result
set coverage threshold. In the case of Asap-Drank, we use H(x) = −0.5x+0.5 as
dynamic threshold function and 0.05 as peer’s local result set coverage threshold.

8.2 Performance Results

Effect of number of peers We study the effect of the number of peers on the
performance of ASAP. For this, we ran experiments to study how cumulative
quality gap, stabilization time, number of answer messages, volume of transferred
data, number of intermediate results and response time increase with the addi-
tion of peers. Note that the other simulation parameters are set as in Table 1.

Figure 2(a) and 2(b) show respectively how cumulative quality gap and sta-
bilization time increase with the number of peers. The results show that the cu-
mulative quality gap of ASAP-Dscore and ASAP-Drank is always much smaller
than that of FD, which means that ASAP returns quickly high quality results.
The results also show that the stabilization time of ASAP-Dscore is always much
smaller that of ASAP-Drank and that of FD. The reason is that ASAP-Dscore
is score sensitive, so the final top-k results are obtained quickly.

Figure 2(c) shows that the total number of results received by the user in-
creases with the number of peers in the case of ASAP-Dscore and ASAP-Drank
while it is still constant in the case of FD. This is due to the fact that FD
does not provide intermediate results to users. The results also show that the
number of results received by the user in case of ASAP-Dscore is smaller than
that of ASAP-Drank. The main reason is that ASAP-Dscore is score sensitive
in contrast to ASAP-Drank.

Figure 2(d) and Figure 2(e) show that the number of answer messages and
volume of transferred data increase with the number of peers. The results show
that the number of answer messages and volume of transferred data of ASAP-
Drank are always higher than those of ASAP-Dscore and FD. The results also
show that the differences between ASAP-Dscore and FD’s number of answer
messages and volume of transferred data are not significant. The main reason
is that ASAP-Dscore is score sensitive in contrast to ASAP-Drank. Thus, only
high quality results are bubbled up quickly.

Figure 2(f) shows how response time increases with increasing the numbers
of peers. The results show that the difference between ASAP-Dscore and FD
response time is not significant. The results also show that the difference between
ASAP-Drank and FD’s response time increases slightly in favour of ASAP-Drank
as the number of peers increases. The reason is that ASAP-Drank induces more
network traffic than ASAP-Dscore and FD.

(a) Cumulative quality gap vs. Num-
ber of peers

(b) Stabilization time vs. Number of
peers

(c) Total number of results vs. Num-
ber of peers.

(d) Number of answer messages vs.
Number of peers

(e) Volume of transferred data vs.
Number of peers

(f) Response time vs. Number of
peers

Fig. 2. Impact of number of peers on ASAP performance

(a) Cumulative quality gap vs. k (b) Stabilization time vs. k

(c) Volume of transferred data vs. k

Fig. 3. Impact of k on ASAP performance

(a) Cumulative quality gap vs. Num-
ber of replicas

(b) Stabilization time vs. Number of
replicas

Fig. 4. Impact of data replication on ASAP performance

Effect of k We study the effect of k, i.e. the number of results requested by
the user, on the performance of ASAP. Using our simulator, we studied how

Fig. 5. Accuracy of results vs. fail rate

cumulative quality gap, stabilization time and volume of transferred data evolve
while increasing k from 20 to 100, with the other simulation parameters set as
in Table 1. The results (see Figure 3(a), Figure 3(b)) show that k has very slight
impact on cumulative quality gap and stabilization time of ASAP-Dscore and
ASAP-Drank. The results (see Figure 3(c)) also show that by increasing k, the
volume of transferred data of ASAP-Dscore and ASAP-Drank increase less than
that of FD. This is due to the fact that ASAP-Dscore and ASAP-Drank prune
more intermediate results when k increases.

Data replication Replication is widely used in unstructured P2P systems to
improve search or achieve availability. For example, modern unstructured over-
lays like BubbleStorm [29] use large number of replicas for each object placed in
the overlay to improve their search algorithms.

We study the effect of the number of replicas, which we replicate for each
data (uniform replication strategy [14]), on the performance of ASAP. Using our
simulator, we studied how cumulative quality gap and stabilization time evolve
while increasing the number of replicas, with the other simulation parameters
set as in Table 1. The results (see Figure 4(a) and Figure 4(b)) show that in-
creasing the number of replicas for ASAP and FD decrease ASAP-Dscore and
ASAP-Drank’s cumulative quality gap and stabilization time. However, FD’s
cumulative quality gap and stabilization time are still constant. The reason is
that ASAP returns quickly the results having high quality in contrast to FD
which returns results only at the end of query execution. Thus, if we increase
the number of replicas, ASAP finds quickly the results having high scores.

Effectiveness of our solution for computing “probabilistic guarantees”

In this section, we study the effectiveness of the proposed solution in Section 7 for
computing the probabilistic guarantees, by comparing them with optimal values.
For this, we ran experiments to study how our probabilistic guarantees values
evolve comparing to the optimal (i.e real) values during the query execution in

the case of ASAP-Dscore. Figure 6(a) and Figure 6(b) show that the difference
between our probabilistic guarantees values and the exact values is very slight.
The results also show that our probabilistic guarantees values converge to exact
values and this before the end of the execution of the query execution. This means
that our solution provides reliable guarantees for the user on the intermediate
results.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 20 40 60 80 100 120 140

%
 o

f
co

n
tr

ib
u

to
r

p
ee

rs

Execution time (s)

Estimated value
Exact value

(a) Proportion of contributor peers
vs. Execution time (s)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 20 40 60 80 100 120 140
S

ta
b

il
iz

at
io

n
 p

ro
b

ab
il

it
y

Execution time (s)

Estimated value
Exact value

(b) Stabilization probability vs. Ex-
ecution time (s)

Fig. 6. Effectiveness of our solution for computing probabilistic guarantees

Data distribution In this section, we study the effect of data distribution on
the performance of our top-k query processing solution. Often relevant data items
are grouped together, stored on a group of neighbouring peers. If these groups
of peers have some good data objects for top-k, they become the sweet region in
the network that can contribute a lot to a final top-k. To study the effect of data
distribution on the performance of ASAP, we randomly distribute the top-k data
items of our test bed queries respectively on 4, 6, 8 and 10 peers of P2P system
and the other data (i.e which are not in the top-k results) uniformly over all
the peers of the system. Using our simulator, we studied how cumulative quality
gap, stabilization time and volume of transferred data evolve while only 4, 6, 8
and 10 peers of the P2P system store the top-k results with the other simulation
parameters set as in Table 1. The results (see Figure 7(a) and Figure 7(b)) show
that ASAP can take advantage of grouped data distribution to provide quickly
high quality results to users in contrast to FD. The results (see Figure 7(c)) also
show that in the case of ASAP, the higher the top-k data items are grouped
together, the smaller is the volume of transferred data over the network, while
this volume is constant in the case of FD.

Effect of peers failures In this section, we investigate the effect of peers’
failures on the accuracy of top-k results of ASAP. In our tests, we vary the value

 0
 20
 40
 60
 80

 100
 120
 140

 4 6 8 10

C
u
m

u
la

ti
v
e

q
u
al

it
y
 g

ap

Number of peers holding the top-k

ASAP-Dscore
ASAP-Drank

FD

(a) Cumulative quality gap vs.
Number of peers holding the top-k
results

 0
 20
 40
 60
 80

 100
 120
 140

 4 6 8 10

S
ta

b
il

iz
at

io
n
 t

im
e

(s
)

Number of peers holding the top-k

ASAP-Dscore
ASAP-Drank

FD

(b) Stabilization vs. Number of
peers holding the top-k results

 0

 0.5

 1

 1.5

 2

 2.5

 3

 4 6 8 10V
ol

um
e

of
 t

ra
ns

fe
rr

ed
 d

at
a

(M
B

)

Peers holding the top-k

ASAP-Dscore
ASAP-Drank

FD

(c) Volume of transferred data vs.
Number of peers holding the top-k re-
sults

Fig. 7. Impact of data distribution on ASAP performance

of fail rate and investigate its effect on the accuracy of top-k results. Figure 5
shows accuracy of top-k results for ASAP-Dscore, ASAP-Drank and FD while
increasing the fail rate, with the other parameters set as in Table 1. Peers’ failures
have less impact on ASAP-Dscore and ASAP-Drank than FD. The reason is that
ASAP-Dscore and ASAP-Drank return the high-score results to the user as soon
as possible. However, when increasing the fail rate in FD, the accuracy of top-k
results decreases significantly because some score-lists are lost. Indeed, in FD,
each peer waits for results of its children so in the case of a peer failure, all the
score-lists received so far by that peer are lost.

9 Related Work

Efficient processing of top-k queries is both an important and hard problem that
is still receiving much attention. Several papers have dealt with top-k query pro-

cessing in centralized database management systems [9, 18, 27, 24]. In distributed
systems [10, 16, 7, 31, 33], previous work on top-k processing has focused on ver-
tically distributed data over multiple sources, where each source provides a rank-
ing over some attributes. Some of the proposed approaches, such as recently [3],
try to improve some limitations of the Threshold Algorithm (TA) [13]. Follow-
ing the same concept, there exist some previous work for top-k queries in P2P
over vertically distributed data. In [8], the authors propose an algorithm called
”Three-Phase Uniform Threshold” (TPUT) which aims at reducing communi-
cation cost by pruning away intelligible data items and restricting the number
of round-trip messages between the query originator and other nodes. Later,
TPUT was improved by KLEE [22] that uses the concept of bloom filters to
reduce the data communicated over the network upon processing top-k queries.
It brings significant performance benefits with small penalties in result precision.
However, theses approaches assume that data is vertically distributed over the
nodes whereas we deal with horizontal data distribution.

For horizontally distributed data, there has been little work on P2P top-k
processing. In [2], the authors present FD, a fully distributed approach for top-k
query processing in unstructured P2P systems. We have briefly introduced FD
in section 8.1.

PlanetP [11] is the content addressable publish/subscribe service for unstruc-
tured P2P communities up to ten thousand peers. PlanetP uses a gossip protocol
to replicate global compact summaries of content (term-to-peer mappings) which
are shared by each peer. The top-k processing algorithm works as follows. Given
a query q, the query originator computes a relevance ranking (using the global
compact summary) of peers with respect to q, contacts them one by one from
top to bottom of ranking and asks them to return a set of their top-scored docu-
ment names together with their scores. However, in a large P2P system, keeping
up-to-date the replicated index is a major problem that hurts scalability.

In [6], the authors present an index routing based top-k processing tech-
nique for super-peer networks organized in an HyperCuP topology which tries
to minimize the number of transfer data. The authors use statistics on queries
to maintain the indexes built on super-peers. However, the performance of this
technique depends on the query distribution.

In [32], the authors present SPEERTO, a framework that supports top-k
query processing in super-peer networks by using a skyline operator. In SPEERTO,
for a maximum of K, denoting an upper bound on the number of results re-
quested by any top-k query (k ≤ K), each peer computes its K-skyband as a
pre-processing step. Each super peer maintains and aggregates the K-skyband
sets of its peers to answer any incoming top-k query. The main drawback of this
approach is that each join or leave of peer may induce the recomputing of all
super-peersK-skyband. Although these techniques are very good for super-peers
systems, they cannot apply efficiently for unstructured P2P systems, since there
may be no peer with high reliability and computing power.

Zhao et al. [34] use a result caching technique to prune network paths and
answer queries without contacting all peers. The performance of this technique

depends on the query distribution. They assume acyclic networks, which is re-
strictive for unstructured P2P systems.

10 Conclusion

In this paper we deal with as-soon-as-possible top-k query processing in P2P
systems. We proposed a formal definition for as-soon-as-possible top-k query
processing by introducing two novels notions: stabilization time and cumulative
quality gap. We presented ASAP, a family of algorithms which uses a threshold-
based scheme that considers the score and the rank of intermediate results to
return quickly the high quality results to users. We validated ASAP through
implementation and extensive experimentation. The results show that ASAP
significantly outperforms baseline algorithms by returning final top-k result to
users in much better times. Finally, the results demonstrate that in the pres-
ence of peers’ failures, ASAP provides approximative top-k results with good
accuracy, unlike baseline algorithms.

References

1. R. Akbarinia, V. Martins, E. Pacitti, and P. Valduriez. Global Data Management,
chapter Design and Implementation of Atlas P2P Architecture. IOS Press, first
edition, 2006.

2. R. Akbarinia, E. Pacitti, and P. Valduriez. Reducing network traffic in unstruc-
tured p2p systems using top-k queries. Distributed and Parallel Databases, 19(2-
3):67–86, 2006.

3. R. Akbarinia, E. Pacitti, and P. Valduriez. Best position algorithms for top-k
queries. In Proceedings of Int. Conf. on Very Large Data Bases (VLDB), pages
495–506, 2007.

4. S. Androutsellis-Theotokis and D. Spinellis. A survey of peer-to-peer content dis-
tribution technologies. ACM Computing Surveys, 36(4):335–371, 2004.

5. B. Arai, G. Das, D. Gunopulos, and N. Koudas. Anytime measures for top-k
algorithms. In Proceedings of Int. Conf. on Very Large Data Bases (VLDB), pages
914–925, 2007.

6. W.-T. Balke, W. Nejdl, W. Siberski, and U. Thaden. Progressive distributed top k
retrieval in peer-to-peer networks. In Proceedings of Int. Conf. on Data Engineering
(ICDE), pages 174–185, 2005.

7. N. Bruno, L. Gravano, and A. Marian. Evaluating top-k queries over web-accessible
databases. In Proceedings of Int. Conf on Data Engineering (ICDE), pages 369–
380, 2002.

8. P. Cao and Z. Wan. Efficient top-k query calculation in distributed networks. In
Proceedings of Annual ACM Symposium on Principles of Distributed Computing
(PODC), pages 206–215, 2004.

9. S. Chaudhuri and L. Gravano. Evaluating top-k selection queries. In Proceedings
of Int. Conf. on Very Large Databases (VLDB), pages 397–410, 1999.

10. S. Chaudhuri, L. Gravano, and A. Marian. Optimizing top-k selection queries
over multimedia repositories. IEEE Transactions on Knowledge Data Engineering,
16(8):992–1009, 2004.

11. F. M. Cuenca-Acuna, C. Peery, R. P. Martin, and T. D. Nguyen. Planetp: Us-
ing gossiping to build content addressable peer-to-peer information sharing com-
munities. In Proceedings of IEEE Int. Symp. on High-Performance Distributed
Computing (HPDC), pages 236–249, 2003.

12. W. K. Dedzoe, P. Lamarre, R. Akbarinia, and P. Valduriez. Asap top-k query
processing in unstructured p2p systems. In Proceedings of IEEE Int. Conf on
Peer-to-Peer Computing (P2P), pages 187–196, 2010.

13. R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware.
In Proceedings of Symposium on Principles of Database Systems (PODS), pages
102–113, 2001.

14. G. Feng, Y. Jiang, G. Chen, Q. Gu, S. Lu, and D. Chen. Replication strategy in
unstructured peer-to-peer systems. In Proceedings of IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pages 1–8, 2007.

15. P. K. Gummadi, S. Saroiu, and S. D. Gribble. A measurement study of napster
and gnutella as examples of peer-to-peer file sharing systems. Computer Commu-
nication Review, 32(1):82, 2002.

16. U. Güntzer, W.-T. Balke, and W. Kießling. Optimizing multi-feature queries for
image databases. In Proceedings of Int. Conf. on Very Large DataBases (VLDB),
pages 419–428, 2000.

17. K. Hose, M. Karnstedt, K.-U. Sattler, and D. Zinn. Processing top-n queries in
p2p-based web integration systems with probabilistic guarantees. In Proceedings
of International Workshop on web and databases (WebDB), pages 109–114, 2005.

18. V. Hristidis, N. Koudas, and Y. Papakonstantinou. Prefer: a system for the efficient
execution of multi-parametric ranked queries. In Proceedings of ACM. Int Conf.
on Management of Data (SIGMOD), pages 259–270, 2001.

19. M. Jelasity and A. Montresor. Epidemic-style proactive aggregation in large overlay
networks. In Int. Conference on Distributed Computing Systems (ICDCS), pages
102–109, 2004.

20. M. Jelasity, A. Montresor, G. P. Jesi, and S. Voulgaris. The Peersim simulator.
http://peersim.sf.net.

21. D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computation of aggregate
information. In Symposium on Foundations of Computer Science (FOCS), pages
482–491, 2003.

22. S. Michel, P. Triantafillou, and G. Weikum. Klee: A framework for distributed
top-k query algorithms. In Proceedings of Int. Conf. on Very Large Data Bases
(VLDB), pages 637–648, 2005.

23. B. C. Ooi, Y. Shu, and K.-L. Tan. Relational data sharing in peer-based data
management systems. SIGMOD Record, 32(3):59–64, 2003.

24. L. Qin, J. X. Yu, and L. Chang. Diversifying top-k results. PVLDB, 5(11):1124–
1135, 2012.

25. L. Ramaswamy, J. Chen, and P. Parate. Coquos: Lightweight support for continu-
ous queries in unstructured overlays. In Proceedings of IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pages 1–10, 2007.

26. S. Schmid and R. Wattenhofer. Structuring unstructured peer-to-peer networks.
In Proceedings of IEEE Int. Conf. on High Performance Computing (HiPC), pages
432–442, 2007.

27. M. Shmueli-Scheuer, C. Li, Y. Mass, H. Roitman, R. Schenkel, and G. Weikum.
Best-effort top-k query processing under budgetary constraints. In Proceedings of
Int. Conf. on Data Engineering (ICDE), pages 928–939, 2009.

28. I. Tatarinov, Z. G. Ives, J. Madhavan, A. Y. Halevy, D. Suciu, N. N. Dalvi, X. Dong,
Y. Kadiyska, G. Miklau, and P. Mork. The piazza peer data management project.
SIGMOD Record, 32(3):47–52, 2003.

29. W. W. Terpstra, J. Kangasharju, C. Leng, and A. P. Buchmann. Bubblestorm:
resilient, probabilistic, and exhaustive peer-to-peer search. In SIGCOMM, pages
49–60, 2007.

30. D. Tsoumakos and N. Roussopoulos. Analysis and comparison of p2p search meth-
ods. In Proceedings of Int. Conf. on Scalable Information Systems (Infoscale),
page 25, 2006.

31. A. Vlachou, C. Doulkeridis, and K. Nørv̊ag. Distributed top-k query processing by
exploiting skyline summaries. Distributed and Parallel Databases, 30(3-4):239–271,
2012.

32. A. Vlachou, C. Doulkeridis, K. Nørv̊ag, and M. Vazirgiannis. On efficient top-k
query processing in highly distributed environments. In Proceedings of ACM. Int
Conf. on Management of Data (SIGMOD), pages 753–764, 2008.

33. M. Ye, W.-C. Lee, D. L. Lee, and X. Liu. Distributed processing of probabilis-
tic top-k queries in wireless sensor networks. IEEE Trans. Knowl. Data Eng.,
25(1):76–91, 2013.

34. K. Zhao, Y. Tao, and S. Zhou. Efficient top-k processing in large-scaled distributed
environments. Data and Knowledge Engineering, 63(2):315–335, 2007.

