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Online Identification and Visualization of the Statically Equivalent
Serial Chain via Constrained Kalman Filter

Alejandro Gonzalez

Abstract— A human’s center of mass (CoM) trajectory is
useful to evaluate the dynamic stability during daily life activ-
ities such as walking and standing up. To estimate the subjéc
specific CoM position in the home environment, we make use
of a statically equivalent serial chain (SESC) developed wi
a portable measurement system. In this paper we implement
a constrained Kalman filter to achieve an online estimation
of the SESC parameters while accounting for the human
body’s bilateral symmetry. This results in constraining SESC
parameters to be consistent with the human skeletal model esl.
The proposed identification method can inform the subject or
the therapist, in real-time, about the quality of the on-gohg
CoM estimation. This information can be helpful to reduce
the identification time and establish a personalized protoal.
A Kinect is used as a markerless motion capture system for
measuring limb orientations while the Wii board is used to
measure the subject’s center of pressure (CoP) during the
identification phase. CoP measurements and Kinect data were
recorded for four able-bodied subjects. The recorded data was
then given to the proposed recursive algorithm to identify he
parameters of the SESC online. A cross-validation test was
performed to verify the identification performance. The reailts
for these subjects are shown and discussed.

. INTRODUCTION

It is expected that 16% of the world’s population will
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the position of each segment to be knowdsually, the
segment’s orientation is determined by a number of inertial
sensors [6], [7] or by means of video analysis used to
track a set of markers attached to the subjébis segment
based approaciio CoM estimationis dependent on the
reliability of the anthropometric table, certain errorsnca
occur if the subject does not match the population from
which the table originated. That is, the anthropometridetab
describes the segment parameters for a specific population;
the table’s data will be different for subjects of different
age, somatotype and physical fithess level. Depending on
the application, medical imaging techniques could also be
used to improve the table estimates; however, such addition
measurements increase the cost and the complexity of the
estimation [8]. For example, the work done by Venture et
al. [9] is capable of providing subject-specific mass and
inertial parameters of each body segment, but as it requires
accurate measurement of segment acceleration, a high-end
motion capture system and force platform are necessary.
Estimating the CoM position for a wide range of motions
can also be done using the double integral method [k
method requires all movements to be performed on top of
an instrumented surfacé subject-specific CoM estimation

become 65 years old or older by 2015 [1]. This faChsing the previously described methods is unsuitable for

underlines the importance of developing technologies
support the rehabilitation environment of elderly indivéds.

% -home rehabilitation due to high equipment costs.

The statically equivalent serial chain (SESC) method for

Monitoring systems are being developed to help diagnog€, estimation of a linked chain can be used to overcome
a subject's mobility;such toolsmay be used to asses andy,ese ifficulties. The SESC method was introduced by
prevenf[ fa_II risks [2] providing additional tools for balance Espiau and Boulic [11] for the control of a tree shaped, lthke
rehabilitation [3]. _ structure. It was first applied by Cotton el al. to provide
To avoid falling during un.sup.ported standlng, a human’g personalized CoM estimation for a young subject [12],
center of mass (CoM) projection to the horizontal plangnq |ater for a group of elderly patients [13]. The SESC
should be confined to the area delimited by his feet. The samg.thod allowed them to estimate the subjects’ CoM position
is true for any other movementhere small accelerations required the use of a marker based Motion Capture

are applied to the CoMEstimating CoM position for a gystem we have demonstrated that it is possible to use a
human, or a humanoid robot, is important to evalymistural o), cost sensor like the Kinect to track CoM position with

stapility. Additionally,.CoM tracking can.be. usexs a task he SESC [14], making it attractive for in-home use.
during balance training, and to quantitatively evaluate a |5 previous work [14]; we gathered all the necessary data
patient's improvement before, during and after following g,efore the identification process began. This batch style

rehabilitation program. - ~ method gives no insight to the subject nor the therapist
Currently, the most widely used method for CoM estimagpqot the quality of the on-going identification. It is also

tion makes use of information contained in tables, such FRely to make the experimental time longand have re-
the ones provided by [4] or [S]; with it a weighted sum ofgyngant postures for identificatiomn this paper, we aim
each body segment's center of mass position is performeg geveloping recursive algorithms which provide realetim
in order to determine the total CoM. This method requireg,formation regarding the identification. In this way, auds
interface is provided for the user which can help to deteemin
if the identification has converged or not. This knowledge
offers a visualclue as to which limbs should be moved in
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multiplication (2).

Cu=[1 A; ... A}] : 2)

9

wherel is an identity matrix and\.} is the 3-by-3 orientation
matrix of link ¢ with respect to the global frame. The
values in7; describe the geometry of the SESC and can be
explicitly determined as a function of the links’ massesijith
CoM position inthe localreference frame, and the distance
<—¢ <—¢ between the origins of two consecutive frames. For details
on how toobtain;, please refer to [11], [12], [14]
C‘b (__TR" When all of the chain’s joints are revolute or spherical,

is a constant valued 3-by-1 vector. Additionally, the CoM ca
be referenced to a floating frame attached to the skeletan. Fo
example, by using the torso as a base for the SESC Eq. (2)
can be rewritten as follows:

Fig. 1. The human skeleton model includes 9 links [17]. The&SSHs
depicted in blue.

—

1
order to improve the parameter estimate. Such framework 1Oy = [AT ... A5 ]| & | = BR (3)
can naturally allow the experimental procedure to be dffect 7y

and minimize the measurement time for the identification [9]
In order to further optimize the identification, a constean where!C,; is the CoM positiormeasured from the origin of
Kalman filter was used [15]. The filter allows knowledge ofR; , B contains the orientation matrices for all of the chain’s
the mechanical model to be written into the state estimate, links, and R represents a 27-by-1 vector of subject-specific
many cases reducing the complexity of the system. Here vparameters.

use it to introduce the assumption of the subject’s bilaterg Model reduction

symmetry. We expect the recursive approach to converge

faster and with a minimum numbers of postures [16]. It was noted in [12] that due to the redundancy of the
SESC, different R vectors may result in the same CoM
[l. STATICALLY EQUIVALENT SERIAL CHAIN MODEL estimate.We hope to obtain a parameter vector that is

consistent with the physical model. To do this, we make

A. Model definition the following assumptions to remove some of the chain’s

A linked chain’s CoM position can be expressed as a funéedundanciesi) The floating frame R, is attached to the
tion of the chain’s link orientations and a set of parameter@keleton at the torso. ii) Bilateral symmetry exists, as we
determined by the chain’s structuréhese parameters canconsider the left arm and leg to be identical in mass and
be thought of as containing the geometric description of th@ze to the right ones. iii) As depicted in Fig. 1, one axis of
links of a virtual, open, serial chain whose end-effector i€ associated reference fran#; lies on the line segment
attached to the original chain’s CoM. This chain is knowrfonnecting two joints. iv) The CoM position for all limb
as the statically equivalent serial chain (SESC) [11], [12] Segmentsg;, also lies in this straight line. The last two

In order to estimate the CoM position of a human subje@SSumptions result in some of the valueshrio be equal
we use skeleton model composed of 9 links connected l%g zero. These valu_es and thel_r correspondlng columns in
spherical joints (see Fig. 1)Ve considerthis model to be can b_e removedvithout affecting the resultwith these
a tree structure made up of foimdividual serial chainsall ~ assumptions we decrease thg number Qf unknown parameters
of them joined at the torsdlo find the SESC parameters, fom 27 to 11 constantshat is,; remains a 3-by-1 vector
the reference frameR; is associated to each link. If the While 2o are represented by only 1 scalar each. In Sec. lll-
origin of ®; in frame R; is given by the vectofd,, and B we use assumption ii) to further reduce the gnodel by
the relative orientation between the frames is giverd Ay,  applying physical constraints to the estimated vedtor
then thehomogeneous transformation between them is givee Parameter Estimation

by (1).
iA g } To determine the geometric parameters of an open ended

0 ) (1) serial chain such as the one described in Eq. (3), we may
use a batch approach in which all data is collected first;
Each link is assumed to have a mass, located at Of @ recursive one where each new measurement improves
a point ¢; in its local reference frame. The total CoM our knowledge ofR [16]. To identify the SESC parameters
position of the chain can be found by performing the matrixhe batch approach was used in [12], [1&ut has the

jTi_{



disadvantage of requiring a large number of postures to lvehereP, andPﬁ represent the estimation covariance matri-
performed by the subject as it offers no feedback as to whiates before and after updating the stdtes an identity matrix
postures offer new informatiormo make the identification andKj is the optimal Kalman filter gain which minimizes
procedure more user-friendly, we implement the recursiviie squared error of the estimationnge). In other words
approach. For either method, the same principles appliis gain minimizes the functiod), = (X — X;)7 (X — X;,).

|) A reasonable estimate of the CoM pOSition for a set OA level of robustness may be introducw appropia‘[e'y
calibration postures is needed. ii) A numerical estimatbn selecting the noise covarian@,. It can be used to account
R can be achieved without a complete knowledge of thgyr modeling errors by increasing the filter's response tw ne
subject’s CoM positionln [12], it was noted that the use of measurements [15]. A

par_t|al !nformat|on requ_lresalarger nL_meer of data pdiots When estimating a constant vecto using recursive
maintain accuracyin this way, we define the measurememtechniques, it is possible to determine, in real-time, Wwhic

vectorY’ as: . B. 1. values have been identified. Convergence of the states may
Y = [ N ] R (4)  be observed in the diagonal values®f which decreases as
stimulating data is processed. In other words, the values of

CoP offers a good approximation for the ground plang hint as to which postures should be performed to obtain
projection of CoM during quiet standing due to the smallqditional information.

accelerations experienced by the CoM [12]. To determine if
a posture is stable enough, we observe the CoP position add The constrained Kalman filter

the limbs’ roll-pitch-yaw angles during a 30 sample window. The performance of a Kalman filter sometimes can be
This corresponds approximately to 1 second. We look at thg,nroved with additional knowledge of the model. All in-
standard deviation of the angles and CoP values to judged'gpth knowledge of the system may be expressed as a set of
the pose was stable during this time window to be used §gear and non linear equality and inequality constraints o
identidification data. the states, and the filter may be rewritten to express them.
IIl. MODEL IDENTIFICATION _ Linear gquali.ty constr_aints may be implemepted inFo the
filter by either: i) Reducing the model by creating a simple
one in which the new states are a linear combination of
The Kalman filter is utilized t@stimate the value of a state the original states. This can potentially increase computa
vector evolving in a dynamical system. It can also be usegbn speed. ii) Increasing the model by introducing perfect
to determine a set of constant values from a group of noisyieasurements. iii) Projecting the filter estimate into the
measurements. Consider a linear dynamic system defined asceptable state space. Linear inequality constraintsbean
= = - dealt with using a quadratic programming approach which
Xie = Frma Xpm1 + @i ®) minimizes the 3ista?1ce betwe%n g'zhe consgt]raiflzd and uncon-
where the subindek denotes the time step. The evolution ofstrained state estimates. In this way the constrained atgim
the state vectokX, is dictated by the matri¥;_; and a zero is not taken into account to determine the updated state
mean process noisé;, with covarianceQ;,. Vector X, may once a new measurement is available. It has been suggested
be estimated based on a series of measureméntahere that a better way to include linear inequality constraints,
each measurement is a linear combination of the states andsawell as nonlinear equality and inequality constraints in
zero mean measurement noigewith covarianceR ;. That the model is to redefine the statistic distribution assediat
is to say, each measurement can be expressed in the forwith the Kalman filter [15], [18]. The redefinition consists
in truncating the probability distribution function of thiéer
in such a way as to include only the acceptable solutions for

whereHy, is referred to as the configuration matrix. the state estimate.
When a recursive estimation method is applied, each It is possible to add a set of linear equality constraints to
new measurement is used to update the current state vecdf model by recognizing the subject's bilateral symmegsy,

estimateX,. The Kalman filter, provides an optimal IinearStated in Sec. 1I-B. After explicitly developing the retats

solution to the problem where the noisy system defined b&?r eafh SESHC parameter we note that= —7y, 75 = —7%,
Eq. (5) and (6) [15] 76 = T3, andi; = 9. The corresponding columns @ (3)

may becombined ameeded to reflect these constraints [15].
%he new, constrained model used for identification is given
y:

A. Kalman Filter

Y = Hp Xi + 0 (6)

If the state vectorX is fixed Fr_1 = I) and subject
to noise, the Kalman filter equations may be written a
follows [15], [16]:

P, = Pl +Q (7) B = Moa=n 1)
- V., = B G 12
K, = P, H/ (H.P H] +Ry) 8) § el 0 (12)

o > > whereR has been reduced to a 7-by-1 vector which contains
Xy = X+ Ky (Yk - H’“Xk’l) ©)  the SESC parameters;, is the 2-by-1 position of the CoP
P! = (I-K,Hy)P, (10) as measured fromR; at time k, and By is the 2-by-7



configuration matrix of the system which can be obtaine®. Model Identification and Cross-validation

by measuring the orientation of the limbs. During identification, angular and CoP data were observed
in a 30 frame window. To determine if the information was
IV. SENSORS suitable for identification, we observed the standard dievia
) of the 27 roll-pitch-yaw orientation angles and the two-
A. Kinect dimensional CoP position. If the sum of the deviations in

The Kinect sensor was originally conceived as an inpdf'® limbs’ orientation angles was limited to be 40 deg and
device to be used with video games. This sensor can estimdf§ Sum of the CoP deviations was under 13 mm, then the
the depth of a scene by projecting a pattern of infrareBOSture performed during that window was considered static
light and interpreting the deformed pattern observed by @d was used for identification. _
camera mounted on the device [2]. Using the middleware 1"€ SESC parameter identification was done recursively
provided by OpenNi-PrimeSensa skeleton can be fitted USINg the constrained Kalman filter described previousie O
over any person entering the scene. Joint positions aﬁ%cordmg session was used for |dent|.f|cafuon while a differ
limb orientations may be tracked, provided that the subje& recording was used for cross-validation to evaluate the

remains mostly unoccluded and inside the field of vision ofesults. Fig. 3 shows the ground projection of the estimated
the sensor. CoM position and the measured CoP position during the

cross-validation test of Sb03. Fig. 4 shows the evolution of
B. Wii board the estimated model parameters. In this figure, it is passibl
to observe the parameter convergence. .

The Wii board was also intended to function as a video Table | shows the identified SESC parameté&rgor all
game input device. It is capable of providing the verticafour subjects, as well as the estimation covariaiitg of
component of the ground reaction force and the CoP positic®ch parameter. The root mean squared ersgsd) obtained
of the subject. As it functions similarly to a force platfarm during the cross-validation test is also shown. In Fig. 5 we
the player can interact with a virtual environment by shifti show the faster convergence of the SESC parameters when
his weight and moving his CoM along different trajectoriesthe constrained filter is used. For clarity, we show only the
This functionality has attracted the attention of the mallic parameters linked to the upper arm for Sb03. The constrained
community as it can be used as an inexpensive tool for tigstimate;7, is seen to converge to a steady value faster than
rehabilitation of stroke patients [3]. Communication witle ~ the unconstrained version &f andi when using the same
board is achieved via Bluetooth. For this purpose we mak®easurements.

use of the open souragiiuse project. Vl. DISCUSSION AND FUTURE WORK

Even though the model was augmented from the one
presented in [14] to include full 3D motion, the number
of parameters for the model description was only doubled,
not tripled as expected. This small increase in the number

Four able-bodied subjects, denoted as Sb01-Sb04, wes¢ required parameters was mainly due to a careful model
asked to stand on top of a Wii board. They were then requirefkfinition andthe commonly made assumptions described
to perform and hold a series of different postures in order tThis is convenient since the number of postures required
calibrate their individual SESC. Although a set of posturefor the geometric calibration depends on the number of
was suggested to the subjects, no restrictions were givparameters to identify. It is noted that the SESC parameters
regarding exact limb orientation. All movements performedorresponding to the arms; 3, were not entirely consistent
in the 3D space were dependent on the subject’s physiagith the model definition. Specifically, due to the frame
capacities. Fig. 2 contains a series of frames from the Kinedefinition both parameters should have a negative value.
recording and shows the test setup. The estimated values may be due to the small masses of

CoP information from the Wii board and skeletal infor-these segments making them difficult to be identified. The
mation from the Kinect were simultaneously recorded to bestimation of/, and73 may be improved by the addition of
used during the development of the recursive identificatiothhe corresponding inequality constraints.
algorithm. The Kinect camera was placed facing the subject, During the recording sessions and by observing the evolu-
three meters away from him. A nominal sampling rate ofion of the parameter estimates while testing, it was ptessib
30 Hz has been reported while using the Kinect. We hawe obtain some insight into which poses can give valuable
found that this frequency is dependent on the system dnformation to the filter. This finding can be used in the
which the middleware runs. For our tests, in average, @esign of a sequence of postuffes identification.As the
frame rate of 24 Hz was achieved. In order to be usecurrent sequence is not determined with such consideration
for identification, CoP data was expressed on the globdl implies the possibility to improve the feeding data’s
reference frame, that of the Kinect. Two recordings werexcitability regarding the parameters. It can result irtHar
made for each subject; one for identification purposes, amptimizing the whole identification protocol. For example,
one for cross-validation. the parameter convergence that can be observed in Fig. 4

V. EXPERIMENTAL RESULTS

A. Experimental setup and Data collection



Fig. 2. Online statically equivalent serial chain (SESC)ap@eter estimation. The length of each of the SESC’s linkpdated when a static pose has
been found and can be observed in real-time. The color ofkéleten can be updatesb as to informto the subject and/or therapiabout the quality of
the indentification. In the figure, limbs starting out in repladually turn green as their corresponding parametergecge.
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Fig. 3. Cross validation results for Sb03. Measured CoRysho blue, is compared to the ground projection of the esthaubject's CoM shown with
a dotted green line.

TABLE |
RESULTS OF THE PARAMETER ESTIMATION

Sho1 Sh02 Sh03 Sbh04
R Pj; R Pj; R Pj; R Pj;
2880 0.0002 5221 0.0786 -29.28 0.0002 _ -3.51 _ 0.0002
7 [mm] 8631 00022 -4575 06012 -60.45 0.0016 -50.21 0.0019
-106.13 0.0006 258 0.1660 -78.31 0.0006 16.20 0.0004
7 [mm] -10.45 0.0008 -19.06 0.2605  -6.72 0.0003  -3.51 0.0004
7[mm 539 00006 -2.26 0.2452 0.84 00002 552 0.0016
s [mm 62.67 0.0006 -77.63 01621 -7811 00009 -55.79 (000
7 [mm 2749 0.0010 4410 02598 -34.43 00016 -39.99 07000
Tmse, [mim) 26.29 18.59 13.54 13.30
Tmse. |mm) 20.09 24.12 16.09 23.57

shows that the arms were adequately characterized earlyaarrent work is focused on finding an ideal identification
session while the torso and leg segments approached thatirategy to include these individuals. A new strategy may
final value closer to the end of the trial. This is consistennclude a multicontact situation, common in rehabilitation,
with the sequence of postures performed by the subject whiclesigned to assist the subject to maintain balance durimg th
began by arm movements. Once the arm parameters cadentification.
verged, postures which engage the lower extremities should

have been performed to make an efficient identificatidre Vil. CONCLUSION

set of postures used for identification can be seen in the!n this paper, weanalyzed the feasibility of identifying
joint video. So far only able-bodied, young subjects haveSESC parameters using a recursive algorithm such as the
been asked to participate in the study. Some of the posturléglman filter. In addition, constraints can be included ithie
used for the SESC calibration should not be performegstimation in order to obtain reliable parameters which are
unassisted by individuals with balance disorders as they agonsistent with the definition of the model and the physical

too physically demanding and may present a fall risk. Ougharacteristics of the subject. It was encouraging to note i
Table | that the subjects’ parameters are roughly propaatio



r.[mm]

sensor; but after the identification, the estimated CoM lgy th
SESC is valid and expected to be accurate also for “dynamic”
motions as long as a good limb orientation can be measured.
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to each individual's height. We have achieved good results
with this identification obtaining amse as low as 15 mm [10]
for Sb03 while tracking the CoM ground projection with the
Kinect camera placed 3 meters away from the subject.

We focused on showing that the geometric calibratioftll
of the SESC can be done online by using the recursi\{gz]
techniques. This is an important improvement over the
previously used batch approach since the subject can perfo 3]
the postures with visual feedback. He can stop performing
postures just after the computation has converged, all the
while checking the resulting CoM estimation. As seen i?em]
Fig. 2, CoM estimate approaches the subject’s body centér
during identification. Also, the coloring of the segmeat
inform the subject abouwhich part of his body should be [15]
moved topromote convergenc&he framework where the ;¢
subject can adaptively give effective postures to the agapt
filter makes the identification closer to the optimal.

It is important to note that after the SESC parameter
identification, subject-specific CoM position can be esti-
mated only from Kinect information, even without a Wii (19
board present. This makes it appropriate for rehabilitatio
purposes inside the in-home environment [19]. In addition,
it is also important teemphasizehat postures given during
identification were necessarily “static’ as we used a CoP

[17]

context of the R2A2 project.
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