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Abstract— A human’s center of mass (CoM) trajectory is
useful to evaluate the dynamic stability during daily life activ-
ities such as walking and standing up. To estimate the subject-
specific CoM position in the home environment, we make use
of a statically equivalent serial chain (SESC) developed with
a portable measurement system. In this paper we implement
a constrained Kalman filter to achieve an online estimation
of the SESC parameters while accounting for the human
body’s bilateral symmetry. This results in constraining SESC
parameters to be consistent with the human skeletal model used.
The proposed identification method can inform the subject or
the therapist, in real-time, about the quality of the on-going
CoM estimation. This information can be helpful to reduce
the identification time and establish a personalized protocol.
A Kinect is used as a markerless motion capture system for
measuring limb orientations while the Wii board is used to
measure the subject’s center of pressure (CoP) during the
identification phase. CoP measurements and Kinect data were
recorded for four able-bodied subjects. The recorded data was
then given to the proposed recursive algorithm to identify the
parameters of the SESC online. A cross-validation test was
performed to verify the identification performance. The results
for these subjects are shown and discussed.

I. INTRODUCTION

It is expected that 16% of the world’s population will
become 65 years old or older by 2015 [1]. This fact
underlines the importance of developing technologies to
support the rehabilitation environment of elderly individuals.
Monitoring systems are being developed to help diagnose
a subject’s mobility;such toolsmay be used to asses and
prevent fall risks [2],providing additional tools for balance
rehabilitation [3].

To avoid falling during unsupported standing, a human’s
center of mass (CoM) projection to the horizontal plane
should be confined to the area delimited by his feet. The same
is true for any other movementwhere small accelerations
are applied to the CoM. Estimating CoM position for a
human, or a humanoid robot, is important to evaluatepostural
stability. Additionally, CoM tracking can be usedas a task
during balance training, and to quantitatively evaluate a
patient’s improvement before, during and after following a
rehabilitation program.

Currently, the most widely used method for CoM estima-
tion makes use of information contained in tables, such as
the ones provided by [4] or [5]; with it a weighted sum of
each body segment’s center of mass position is performed
in order to determine the total CoM. This method requires
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the position of each segment to be known.Usually, the
segment’s orientation is determined by a number of inertial
sensors [6], [7] or by means of video analysis used to
track a set of markers attached to the subject.This segment
based approachto CoM estimationis dependent on the
reliability of the anthropometric table, certain errors can
occur if the subject does not match the population from
which the table originated. That is, the anthropometric table
describes the segment parameters for a specific population;
the table’s data will be different for subjects of different
age, somatotype, and physical fitness level. Depending on
the application, medical imaging techniques could also be
used to improve the table estimates; however, such additional
measurements increase the cost and the complexity of the
estimation [8]. For example, the work done by Venture et
al. [9] is capable of providing subject-specific mass and
inertial parameters of each body segment, but as it requires
accurate measurement of segment acceleration, a high-end
motion capture system and force platform are necessary.
Estimating the CoM position for a wide range of motions
can also be done using the double integral method [10].This
method requires all movements to be performed on top of
an instrumented surface.A subject-specific CoM estimation
using the previously described methods is unsuitable for
in-home rehabilitation due to high equipment costs.

The statically equivalent serial chain (SESC) method for
CoM estimation of a linked chain can be used to overcome
these difficulties. The SESC method was introduced by
Espiau and Boulic [11] for the control of a tree shaped, linked
structure. It was first applied by Cotton el al. to provide
a personalized CoM estimation for a young subject [12],
and later for a group of elderly patients [13]. The SESC
method allowed them to estimate the subjects’ CoM position
but required the use of a marker based Motion Capture
system.We have demonstrated that it is possible to use a
low cost sensor like the Kinect to track CoM position with
the SESC [14], making it attractive for in-home use.

In previous work [14]; we gathered all the necessary data
before the identification process began. This batch style
method gives no insight to the subject nor the therapist
about the quality of the on-going identification. It is also
likely to make the experimental time longerand have re-
dundant postures for identification. In this paper, we aim
at developing recursive algorithms which provide real-time
information regarding the identification. In this way, a visual
interface is provided for the user which can help to determine
if the identification has converged or not. This knowledge
offers a visualclue as to which limbs should be moved in
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Fig. 1. The human skeleton model includes 9 links [17]. The SESC is
depicted in blue.

order to improve the parameter estimate. Such framework
can naturally allow the experimental procedure to be effective
and minimize the measurement time for the identification [9].
In order to further optimize the identification, a constrained
Kalman filter was used [15]. The filter allows knowledge of
the mechanical model to be written into the state estimate, in
many cases reducing the complexity of the system. Here we
use it to introduce the assumption of the subject’s bilateral
symmetry. We expect the recursive approach to converge
faster and with a minimum numbers of postures [16].

II. STATICALLY EQUIVALENT SERIAL CHAIN MODEL

A. Model definition

A linked chain’s CoM position can be expressed as a func-
tion of the chain’s link orientations and a set of parameters
determined by the chain’s structure.These parameters can
be thought of as containing the geometric description of the
links of a virtual, open, serial chain whose end-effector is
attached to the original chain’s CoM. This chain is known
as the statically equivalent serial chain (SESC) [11], [12].

In order to estimate the CoM position of a human subject
we use skeleton model composed of 9 links connected by
spherical joints (see Fig. 1).We considerthis model to be
a tree structure made up of fourindividual serial chains,all
of them joined at the torso.To find the SESC parameters,
the reference frameRi is associated to each link. If the
origin of Ri in frame Rj is given by the vectorj ~di, and
the relative orientation between the frames is given byjAi,
then thehomogeneous transformation between them is given
by (1).

jTi =

[

jAi
j ~di

0 1

]

(1)

Each link is assumed to have a massmi, located at
a point ~ci in its local reference frame. The total CoM
position of the chain can be found by performing the matrix

multiplication (2).

~CM =
[

I A∗
1 . . . A∗
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]
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(2)

whereI is an identity matrix andA∗
i is the 3-by-3 orientation

matrix of link i with respect to the global frame. The
values in~ri describe the geometry of the SESC and can be
explicitly determined as a function of the links’ masses, their
CoM position inthe localreference frame, and the distance
between the origins of two consecutive frames. For details
on how toobtain~ri, please refer to [11], [12], [14].

When all of the chain’s joints are revolute or spherical,~ri

is a constant valued 3-by-1 vector. Additionally, the CoM can
be referenced to a floating frame attached to the skeleton. For
example, by using the torso as a base for the SESC Eq. (2)
can be rewritten as follows:

1 ~CM =
[

A∗
1 . . . A∗

9

]







~r1
...
~r9






= B~R (3)

where1 ~CM is the CoM positionmeasured from the origin of
R1 , B contains the orientation matrices for all of the chain’s
links, and ~R represents a 27-by-1 vector of subject-specific
parameters.

B. Model reduction

It was noted in [12] that due to the redundancy of the
SESC, different ~R vectors may result in the same CoM
estimate.We hope to obtain a parameter vector that is
consistent with the physical model. To do this, we make
the following assumptions to remove some of the chain’s
redundancies:i) The floating frame R1 is attached to the
skeleton at the torso. ii) Bilateral symmetry exists, as we
consider the left arm and leg to be identical in mass and
size to the right ones. iii) As depicted in Fig. 1, one axis of
the associated reference frameRi lies on the line segment
connecting two joints. iv) The CoM position for all limb
segments,~ci, also lies in this straight line. The last two
assumptions result in some of the values in~R to be equal
to zero. These values and their corresponding columns in
B can be removedwithout affecting the result. With these
assumptions we decrease the number of unknown parameters
from 27 to 11 constants.That is,~r1 remains a 3-by-1 vector
while r2...9 are represented by only 1 scalar each. In Sec. III-
B we use assumption ii) to further reduce the model by

applying physical constraints to the estimated vector~̂R.

C. Parameter Estimation

To determine the geometric parameters of an open ended
serial chain such as the one described in Eq. (3), we may
use a batch approach in which all data is collected first;
or a recursive one where each new measurement improves

our knowledge of~̂R [16]. To identify the SESC parameters
the batch approach was used in [12], [14],but has the



disadvantage of requiring a large number of postures to be
performed by the subject as it offers no feedback as to which
postures offer new information.To make the identification
procedure more user-friendly, we implement the recursive
approach. For either method, the same principles apply:
i) A reasonable estimate of the CoM position for a set of
calibration postures is needed. ii) A numerical estimationof
~R can be achieved without a complete knowledge of the
subject’s CoM position.In [12], it was noted that the use of
partial information requires a larger number of data pointsto
maintain accuracy.In this way, we define the measurement
vector ~Y as:

~Y =

[

Bx

Bz

]

~R (4)

CoP offers a good approximation for the ground plane
projection of CoM during quiet standing due to the small
accelerations experienced by the CoM [12]. To determine if
a posture is stable enough, we observe the CoP position and
the limbs’ roll-pitch-yaw angles during a 30 sample window.
This corresponds approximately to 1 second. We look at the
standard deviation of the angles and CoP values to judge if
the pose was stable during this time window to be used as
identidification data.

III. MODEL IDENTIFICATION

A. Kalman Filter

The Kalman filter is utilized toestimate the value of a state
vector evolving in a dynamical system. It can also be used
to determine a set of constant values from a group of noisy
measurements. Consider a linear dynamic system defined as:

~Xk = Fk−1
~Xk−1 + ~wk (5)

where the subindexk denotes the time step. The evolution of
the state vector~Xk is dictated by the matrixFk−1 and a zero
mean process noise~wk with covarianceQk. Vector ~Xk may
be estimated based on a series of measurements~Yk; where
each measurement is a linear combination of the states and a
zero mean measurement noise~vk with covarianceRk. That
is to say, each measurement can be expressed in the form:

~Yk = Hk
~Xk + ~vk (6)

whereHk is referred to as the configuration matrix.
When a recursive estimation method is applied, each

new measurement is used to update the current state vector

estimate ~̂Xk. The Kalman filter, provides an optimal linear
solution to the problem where the noisy system defined by
Eq. (5) and (6) [15].

If the state vector~X is fixed (Fk−1 = I) and subject
to noise, the Kalman filter equations may be written as
follows [15], [16]:

P−
k = P+

k−1
+Qk−1 (7)

Kk = P−
k H

T
k

(

HkP
−
k H

T
k +Rk

)−1
(8)

~̂Xk = ~̂Xk−1 +Kk

(

~Yk −Hk
~̂Xk−1

)

(9)

P+

k = (I−KkHk)P
−
k (10)

whereP−
k andP+

k represent the estimation covariance matri-
ces before and after updating the state,I is an identity matrix
andKk is the optimal Kalman filter gain which minimizes
the squared error of the estimation (rmse). In other words

this gain minimizes the functionJk = ( ~X−
~̂Xk)

T ( ~X−
~̂Xk).

A level of robustness may be introducedby appropiately
selecting the noise covarianceQk. It can be used to account
for modeling errors by increasing the filter’s response to new
measurements [15].

When estimating a constant vector~̂X using recursive
techniques, it is possible to determine, in real-time, which
values have been identified. Convergence of the states may
be observed in the diagonal values ofP, which decreases as
stimulating data is processed. In other words, the values of
P hint as to which postures should be performed to obtain
additional information.

B. The constrained Kalman filter

The performance of a Kalman filter sometimes can be
improved with additional knowledge of the model. All in-
depth knowledge of the system may be expressed as a set of
linear and non linear equality and inequality constraints on
the states, and the filter may be rewritten to express them.

Linear equality constraints may be implemented into the
filter by either: i) Reducing the model by creating a simple
one in which the new states are a linear combination of
the original states. This can potentially increase computa-
tion speed. ii) Increasing the model by introducing perfect
measurements. iii) Projecting the filter estimate into the
acceptable state space. Linear inequality constraints canbe
dealt with using a quadratic programming approach which
minimizes the distance between the constrained and uncon-
strained state estimates. In this way the constrained estimate
is not taken into account to determine the updated state
once a new measurement is available. It has been suggested
that a better way to include linear inequality constraints,
as well as nonlinear equality and inequality constraints into
the model is to redefine the statistic distribution associated
with the Kalman filter [15], [18]. The redefinition consists
in truncating the probability distribution function of thefilter
in such a way as to include only the acceptable solutions for
the state estimate.

It is possible to add a set of linear equality constraints to
our model by recognizing the subject’s bilateral symmetry,as
stated in Sec. II-B. After explicitly developing the relations
for each SESC parameter we note that:~r2 = −~r4, ~r3 = −~r5,
~r6 = ~r8, and~r7 = ~r9. The corresponding columns ofB (3)
may becombined asneeded to reflect these constraints [15].
The new, constrained model used for identification is given
by:

~Rk = ~Rk−1 = ~R (11)
~Yk = Bk

~Rk + ~vk (12)

where~R has been reduced to a 7-by-1 vector which contains
the SESC parameters,~Yk is the 2-by-1 position of the CoP
as measured fromR1 at time k, and Bk is the 2-by-7



configuration matrix of the system which can be obtained
by measuring the orientation of the limbs.

IV. SENSORS

A. Kinect

The Kinect sensor was originally conceived as an input
device to be used with video games. This sensor can estimate
the depth of a scene by projecting a pattern of infrared
light and interpreting the deformed pattern observed by a
camera mounted on the device [2]. Using the middleware
provided by OpenNi-PrimeSensea skeleton can be fitted
over any person entering the scene. Joint positions and
limb orientations may be tracked, provided that the subject
remains mostly unoccluded and inside the field of vision of
the sensor.

B. Wii board

The Wii board was also intended to function as a video
game input device. It is capable of providing the vertical
component of the ground reaction force and the CoP position
of the subject. As it functions similarly to a force platform,
the player can interact with a virtual environment by shifting
his weight and moving his CoM along different trajectories.
This functionality has attracted the attention of the medical
community as it can be used as an inexpensive tool for the
rehabilitation of stroke patients [3]. Communication withthe
board is achieved via Bluetooth. For this purpose we make
use of the open sourcewiiuseproject.

V. EXPERIMENTAL RESULTS

A. Experimental setup and Data collection

Four able-bodied subjects, denoted as Sb01-Sb04, were
asked to stand on top of a Wii board. They were then required
to perform and hold a series of different postures in order to
calibrate their individual SESC. Although a set of postures
was suggested to the subjects, no restrictions were given
regarding exact limb orientation. All movements performed
in the 3D space were dependent on the subject’s physical
capacities. Fig. 2 contains a series of frames from the Kinect
recording and shows the test setup.

CoP information from the Wii board and skeletal infor-
mation from the Kinect were simultaneously recorded to be
used during the development of the recursive identification
algorithm. The Kinect camera was placed facing the subject,
three meters away from him. A nominal sampling rate of
30 Hz has been reported while using the Kinect. We have
found that this frequency is dependent on the system on
which the middleware runs. For our tests, in average, a
frame rate of 24 Hz was achieved. In order to be used
for identification, CoP data was expressed on the global
reference frame, that of the Kinect. Two recordings were
made for each subject; one for identification purposes, and
one for cross-validation.

B. Model Identification and Cross-validation

During identification, angular and CoP data were observed
in a 30 frame window. To determine if the information was
suitable for identification, we observed the standard deviation
of the 27 roll-pitch-yaw orientation angles and the two-
dimensional CoP position. If the sum of the deviations in
the limbs’ orientation angles was limited to be 40 deg and
the sum of the CoP deviations was under 13 mm, then the
posture performed during that window was considered static
and was used for identification.

The SESC parameter identification was done recursively
using the constrained Kalman filter described previously. One
recording session was used for identification while a differ-
ent recording was used for cross-validation to evaluate the
results. Fig. 3 shows the ground projection of the estimated
CoM position and the measured CoP position during the
cross-validation test of Sb03. Fig. 4 shows the evolution of
the estimated model parameters. In this figure, it is possible
to observe the parameter convergence.

Table I shows the identified SESC parameters~R for all
four subjects, as well as the estimation covariancePjj of
each parameter. The root mean squared error (rmse) obtained
during the cross-validation test is also shown. In Fig. 5 we
show the faster convergence of the SESC parameters when
the constrained filter is used. For clarity, we show only the
parameters linked to the upper arm for Sb03. The constrained
estimate,~r4, is seen to converge to a steady value faster than
the unconstrained version of~r∗4 and~r∗6 when using the same
measurements.

VI. DISCUSSION AND FUTURE WORK

Even though the model was augmented from the one
presented in [14] to include full 3D motion, the number
of parameters for the model description was only doubled,
not tripled as expected. This small increase in the number
of required parameters was mainly due to a careful model
definition andthe commonly made assumptions described.
This is convenient since the number of postures required
for the geometric calibration depends on the number of
parameters to identify. It is noted that the SESC parameters
corresponding to the arms,~r2,3, were not entirely consistent
with the model definition. Specifically, due to the frame
definition both parameters should have a negative value.
The estimated values may be due to the small masses of
these segments making them difficult to be identified. The
estimation of~r2 and~r3 may be improved by the addition of
the corresponding inequality constraints.

During the recording sessions and by observing the evolu-
tion of the parameter estimates while testing, it was possible
to obtain some insight into which poses can give valuable
information to the filter. This finding can be used in the
design of a sequence of posturesfor identification.As the
current sequence is not determined with such consideration,
it implies the possibility to improve the feeding data’s
excitability regarding the parameters. It can result in further
optimizing the whole identification protocol. For example,
the parameter convergence that can be observed in Fig. 4



Fig. 2. Online statically equivalent serial chain (SESC) parameter estimation. The length of each of the SESC’s link is updated when a static pose has
been found and can be observed in real-time. The color of the skeleton can be updatedso as to informto the subject and/or therapistabout the quality of
the indentification. In the figure, limbs starting out in red,gradually turn green as their corresponding parameters converge.
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Fig. 3. Cross validation results for Sb03. Measured CoP, shown in blue, is compared to the ground projection of the estimated subject’s CoM shown with
a dotted green line.

TABLE I

RESULTS OF THE PARAMETER ESTIMATION.

Sb01 Sb02 Sb03 Sb04
~R Pjj

~R Pjj
~R Pjj

~R Pjj

~r1[mm]
-28.80 0.0002 -52.21 0.0786 -29.28 0.0002 -3.51 0.0002
-86.31 0.0022 -45.75 0.6012 -60.45 0.0016 -50.21 0.0019

-106.13 0.0006 -2.58 0.1660 -78.31 0.0006 16.20 0.0004
~r2[mm] -10.45 0.0008 -19.06 0.2605 -6.72 0.0003 -3.51 0.0004
~r3[mm] 5.39 0.0006 -2.26 0.2452 0.84 0.0002 -5.52 0.0016
~r6[mm] -62.67 0.0006 -77.63 0.1621 -78.11 0.0009 -55.79 0.0004
~r7[mm] -27.49 0.0010 -44.10 0.2598 -34.43 0.0016 -39.99 0.0007

rmsex[mm] 26.29 18.59 13.54 13.30
rmsez[mm] 20.09 24.12 16.09 23.57

shows that the arms were adequately characterized early in
session while the torso and leg segments approached their
final value closer to the end of the trial. This is consistent
with the sequence of postures performed by the subject which
began by arm movements. Once the arm parameters con-
verged, postures which engage the lower extremities should
have been performed to make an efficient identification.The
set of postures used for identification can be seen in the
joint video. So far only able-bodied, young subjects have
been asked to participate in the study. Some of the postures
used for the SESC calibration should not be performed
unassisted by individuals with balance disorders as they are
too physically demanding and may present a fall risk. Our

current work is focused on finding an ideal identification
strategy to include these individuals. A new strategy may
include a multicontact situation, common in rehabilitation,
designed to assist the subject to maintain balance during the
identification.

VII. CONCLUSION

In this paper, weanalyzed the feasibility of identifying
SESC parameters using a recursive algorithm such as the
Kalman filter. In addition, constraints can be included intothe
estimation in order to obtain reliable parameters which are
consistent with the definition of the model and the physical
characteristics of the subject. It was encouraging to note in
Table I that the subjects’ parameters are roughly proportional
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filters during identification.

to each individual’s height. We have achieved good results
with this identification obtaining armse as low as 15 mm
for Sb03 while tracking the CoM ground projection with the
Kinect camera placed 3 meters away from the subject.

We focused on showing that the geometric calibration
of the SESC can be done online by using the recursive
techniques. This is an important improvement over the
previously used batch approach since the subject can perform
the postures with visual feedback. He can stop performing
postures just after the computation has converged, all the
while checking the resulting CoM estimation. As seen in
Fig. 2, CoM estimate approaches the subject’s body center
during identification. Also, the coloring of the segmentto
inform the subject aboutwhich part of his body should be
moved topromote convergence.The framework where the
subject can adaptively give effective postures to the adaptive
filter makes the identification closer to the optimal.

It is important to note that after the SESC parameter
identification, subject-specific CoM position can be esti-
mated only from Kinect information, even without a Wii
board present. This makes it appropriate for rehabilitation
purposes inside the in-home environment [19]. In addition,
it is also important toemphasizethat postures given during
identification were necessarily “static” as we used a CoP

sensor; but after the identification, the estimated CoM by the
SESC is valid and expected to be accurate also for “dynamic”
motions as long as a good limb orientation can be measured.
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