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ABSTRACT

Virtual Arc Consistency (VAC) is a recent local consistency
for processing Cost Function Networks (or Weighted Con-
straint Networks) that exploits a simple but powerful con-
nection with classical Constraint Networks. It has allowed
to close hard frequency assignment benchmarks and is ca-
pable of directly solving networks of submodular functions.
The algorithm enforcing VAC is an iterative algorithm that
solves a sequence of classical Constraint Networks. In this
work, we show that Dynamic Arc Consistency algorithms
can be suitably injected in the virtual arc consistency itera-
tive algorithm, providing noticeable speedups.
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1. INTRODUCTION
Graphical model processing is a central problem in AI.

The optimization of the combined cost of local cost func-
tions, central in the valued CSP framework [12], captures
problems such as weighted MaxSAT, Weighted CSP or Max-
imum Probability Explanation in probabilistic networks. It
has applications in resource allocation, combinatorial auc-
tions, bioinformatics. . .

Dynamic programming approaches such as bucket or clus-
ter tree elimination can be used to tackle such problems
but are inherently limited by their guaranteed exponential
time and space behavior on graphical models with high tree-
width. Instead, Depth First Branch and Bound allows to
keep a reasonable space complexity but requires good (strong
and cheap) lower bounds on the minimum cost to be effi-
cient.

In the last years, increasingly better lower bounds have
been designed by enforcing local consistencies on Cost Func-
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tion Networks (CFNs). Enforcing is done by the iterated
application of so-called Equivalence Preserving Transforma-
tions (EPTs, [7]) which extend the usual local consistency
operations used in pure CSP. EPTs move costs between
cost functions of different arities while keeping the problem
equivalent. By ultimately moving cost to a constant function
with empty scope, they are able to provide a lower bound
on the optimum cost which can be incrementally maintained
during branch and bound search.

Traditional local consistencies such as AC*, DAC*, FDAC*
or EDAC* [10] apply available EPTs in any order. Instead,
Virtual Arc Consistency (VAC [5, 6]) planifies the sequence
of EPTs to apply from the result of enforcing classical AC
on a classical constraint network which forbids combinations
of values with non zero costs. VAC is not only stronger than
those local consistencies: it is also able to solve submodular
cost functions, it has a low order polynomial enforcing algo-
rithm and has allowed to close hard frequency assignment
benchmarks [5]. But it is still too expensive for general use.

In this paper, we significantly increase the efficiency of
VAC by exploiting its iterative behavior. Indeed, each itera-
tion of VAC requires to enforce classical AC on the hardened
version of the current network. But this network is just
the result of the incremental modifications done by EPTs
applied in the previous iterations. This situation, where
AC is iteratively enforced on incrementally modified ver-
sions of a constraint network, has been previously considered
in Dynamic Arc Consistency algorithms [1, 3] for Dynamic
CSPs [8].

After suitable adaptation, we observe that the introduc-
tion of Dynamic arc consistency inside VAC provides sig-
nificant speedups on a variety of problems. This may be,
as far as we know, one of the first successful application of
Dynamic AC algorithms.

2. BACKGROUND

2.1 Cost function networks
A Cost Function Network (CFN), or weighted CSP (WCSP)

is a tuple (X,D,W,m) where X is a set of n variables. Each
variable i ∈ X has a domain Di ∈ D. For a set of variables
S, we denote by ℓ(S) the set of tuples over S. W is a set of e
cost functions. Each cost function wS ∈ W assigns costs to
assignments of variables in S i.e. wS : ℓ(S) → [0..m] where
m ∈ {1, ...,+∞}. The addition and subtraction of costs are
bounded operations, defined as a⊕ b = min(a+ b,m), a⊖ b
= a − b if a < m and m otherwise. The cost of a com-
plete tuple t is the sum of costs ValP (t) =

⊕
wS∈W wS(t[S])



where t[S] is the projection of t on S. In this paper, we
restrict ourselves to binary CFNs. We use notations wi and
wij for the unary and binary cost functions on variable i
and on variables i, j respectively. We assume the existence
of a unary cost function wi for every variable, and a nullary
cost function, noted w∅. This constant positive cost defines
a lower bound on the cost of every solution.

Enforcing a given local consistency on a CFN P trans-
forms it in an equivalent problem P ′ (ValP (t) = ValP ′(t) ∀t)
with a possibly increased lower bound w∅ on the optimal
cost. Enforcing is done by using equivalence-preserving trans-
formations (EPTs) which shift costs between cost functions.
Algorithm 1 introduces three basic EPTs. Project(wij , i, a, α)
moves an amount of cost α from a binary cost function to a
unary one. Conversely, Extend(i, a, wij , α) sends an amount
of cost α from a unary cost function to a binary one. Finally,
UnaryProject(i, α) projects an amount of cost α from a unary
cost function to the nullary cost function w∅.

Algorithm 1: Three elementary EPTs

Procedure Project(wij , i, a, α)1

wi(a)←− wi(a)⊕ α ;2

foreach b ∈ Dj do wij(a, b)←− wij(a, b)⊖ α;3

Procedure Extend(i, a, wij , α)4

foreach b ∈ Dj do wij(a, b)←− wij(a, b)⊕ α;5

wi(a)←− wi(a)⊖ α ;6

Procedure UnaryProject(i, α)7

foreach a ∈ Di do wi(a)←− wi(a)⊖ α;8

w∅ ←− w∅ ⊕ α ;9

Notice that a classical binary CSP can be represented as
a CFN with m = 1 (cost 1 being associated to forbidden
tuples). As usual, a value (i, a) is said to be AC w.r.t. a
constraint wij iff there is a pair (a, b) that satisfies wij (is a
support) and such that b ∈ Dj (is valid). A CSP is AC if
all its values are AC w.r.t. to all constraints. Enforcing AC
on a CSP produces its AC closure, which is equivalent to P
and is AC.

2.2 Virtual Arc Consistency

Definition 1. Given a CFN P = (X,D,W,m), the CSP
Bool(P ) = (X,D,W, 1) is such that ∃wS ∈W iff ∃wS ∈W ,
S 6= ∅ and wS(t) = 1⇔ wS(t) 6= 0. A CFN P is virtual arc
consistent (VAC) iff the arc consistent closure of the CSP
Bool(P ) is non-empty [6].

Bool(P ) is therefore a CSP whose solutions are exactly
all complete tuples having cost w∅ in P . If P is not VAC,
enforcing AC on Bool(P ) will lead to a domain wipe-out.
In this case, it has been shown in [6] that there exists a
sequence of EPTs which leads to an increase of w∅ when
applied on P . To exploit this property, VAC enforcing uses
an iterative three-phases process.

Phase 1 is an instrumented AC enforcing on the CSP
Bool(P ) that records every deletion in a dedicated data-
structure denoted as killer. When a value (i, a) lacks a valid
support on wij , we set killer((i,a)) = j and we delete the
value. If no domain wipe-out occurs, P is VAC and we stop.

Then, Phase 2 identifies the subset of value deletions that
are necessary to produce the wipe-out and stores them in a

queue R. This is achieved by tracing back the propagation
history defined by killer, in reverse order, from the wiped-
out variable up to non-zero costs. Phase 2 then computes
the maximum possible increase achievable in w∅, denoted λ,
and the set of EPTs to apply to P in order to achieve this
increase. As shown in [6], all the amounts of cost that the
EPTs will move are stored in two arrays of integers, k(j, b)
and kij(j, b), that store the number of λ that needs to be
respectively projected on (j, b) and extended from (j, b) to
wij . These cost moves follow a simple law of conservation.
For any value (j, b) in non wiped-out variable j which is not
a source of cost (wj(b) = 0), the amount of cost that arrives
in (j, b) by Project is exactly the amount of cost that leaves
(j, b) by Extend (See [6], page 465).

∀(j, b) s.t. wj(b) = 0, k(j, b) =
∑

wij∈W

kij(j, b) (1)

Phase 3 of VAC, as described in detail in Algorithm 2,
modifies the original CFN by applying the EPTs defined by
the data-structures k and kij on all the deleted values that
have been stored in R. A value (j, b) deleted by wij will
receive a cost of k(j, b)×λ by Project from wij (line 7). This
requires to first extend a cost kij(i, a) × λ from the invalid
supports (i, a) to wij (line 5). The result of this phase is
a new problem P ′, equivalent to P but with an increased
lower-bound w∅ (line 8).

It is important to realize that at the end of Phase 1, when
a wipe-out is detected in variable i0, there may still be un-
deleted values which have no valid support because the cor-
responding domain has not been revised. These“pending for
revision” domains are represented in the propagation queue
QAC . The remaining values either have a valid support or
have been deleted and have a non empty associated killer.
Such a problem will be called a justified partial AC closure
of Bool(P ). It cannot have larger domains than Bool(P )
and all deletions are properly justified by their killer.

Algorithm 2: VAC - Phase 3: Applying EPTs

while R 6= ∅ do1

(j, b)←− R.pop();2

i←− killer (j, b);3

foreach a ∈ Di s.t. kij(i, a) 6= 0 do4

Extend(i, a, wij , λ× kij(i, a));5

kij(i, a)←− 0;6

Project(wij , j, b, λ× k(j, b));7

UnaryProject(i0, λ);8

This VAC algorithm takes a O(ed) space complexity. One
iteration of the algorithm has a time complexity in O(ed2)
as long as an optimal AC algorithm is used in Phase 1.

Ultimately, VAC iterations enforce AC on a sequence of
slightly modified CSPs: Bool(P ), Bool(P ′), . . . This moti-
vates the use of dedicated Dynamic AC algorithms to enforce
VAC.

2.3 Dynamic Arc Consistency

Definition 2. A dynamic CSP problem is a sequence
P0, P1, ..., Pn of CPSs where each Pi is a CSP resulting from
addition or retraction of a constraint in Pi−1 [1].

Dynamic arc consistency algorithms (DnAC) aim at main-
taining arc consistency in the sequence of problems Pi. AC



enforcing is naturally incremental for restriction (constraint
addition): it suffices to start enforcing AC (Phase 1) with
an initial queue QAC that contains just the variables of the
new constraint. But AC is not incremental for relaxation
(constraint removal). This last case needs therefore to be
handled specifically: values that have been deleted directly
or indirectly because of the removed constraint need to be
restored, if there is no other reason to delete them.

Several algorithms have been proposed for DnAC. In this
paper, we will use AC/DC2 [1] which improved AC/DC [2]
by introducing persistent data-structures. The most impor-
tant one is a justification(i, a) array (as in DnAC4 [3]) that
remembers which constraint has been responsible for the
deletion of (i, a). This is exactly equivalent to the killer
data-structure of VAC.1

Upon retraction of a given constraint wij , AC/DC2 goes
through three stages: 1) initialization: only values in the do-
mains of i and j which have been deleted because of wij are
candidate for restoration and marked as “Propagable”. This
can be tested in the justification array. 2) propagation: each
of the propagable values is propagated to neighboring vari-
ables to check if they offer a new valid support for deleted
values (which also will be marked as “Propagable”). When
a value has been propagated to all neighbor variables, it is
marked as “Restorable” and will be restored. Note that a
variable i having propagable values can check neighboring
values (j, b) for restorability only if they have been removed
due to the lost of support on the constraint wji (known
through justification). 3) filtering: all restored values need
to be checked again for arc consistency. This can be done us-
ing plain AC enforcing provided the queue QAC is initialized
to enforce the revision of domains of variables with restored
values.

The space complexity of AC3 based algorithm AC/DC is
O(nd + e). For AC/DC2, its time complexity is defined by
the algorithm used for filtering in the last stage: O(ed3) for
AC-3 and O(ed2) for AC-2001.

3. DYNAMIC VAC ALGORITHM
When VAC is enforced, the CFN P is incrementally modi-

fied in Phase 3 of every VAC iteration. Hence, we propose an
improved version of VAC, called dynamic VAC (DynVAC),
which uses dynamic AC to maintain AC on the successive
Bool(P ) instead of refiltering from scratch at each iteration
as done in the standard VAC algorithm. We use AC/DC2 [1]
based on AC2001 instead of AC3 as it is apparently the most
efficient available algorithm. This also has the advantage
that the justification data-structure of AC/DC2 is provided
for free by the killer array in VAC.

In traditional Dynamic CSPs, DnAC algorithms are ap-
plied after each constraint removal or addition. In the case of
VAC, the situation is more complex because a series of mod-
ifications of Bool(P ) occurs during Phase 3 through applica-
tions of different EPTs. A simple call to Project(wij , i, a, α)
can be decomposed in 1) an increase of cost of the unary cost
function wi(a) and 2) a decrease of costs in the binary cost
function wij . If a previously zero cost wi(a) becomes non-
zero, the associated value (i, a) is removed from Bool(P ) and

1AC/DC2 also introduces a time-stamp(i, a) structure that
remembers the order of deletions. The authors of AC/DC2
have acknowledged that this data-structure is actually sub-
sumed by the justification(i, a) data-structure (Private com-
munication).

this corresponds to a restriction. Conversely, if the non-zero
cost of a pair (a, b) reaches zero, this previously forbidden
pair in wij becomes authorized and this corresponds to a
relaxation. Instead of applying a DnAC algorithm inside
each Project, Extend and UnaryProject operation, we observe
that a better approach consists in applying DnAC principles
only after Phase 3 to avoid useless restorations/deletions of
values by DnAC.

Each iteration of VAC transforms the current CFN P into
a modified problem P ′ with cost functions w′

i and w′

ij . After
Phase 2, it is already possible to compute the values of w′

i

and w′

ij because they are defined by a known sequence of
applications of Project, Extend and UnaryProject on wi and
wij . For example, if i is not the wiped-out variable, we have
for any value a:

w′

i(a) = wi(a)⊕ (k(i, a).λ) ⊖
wij∈W

(kij(i, a).λ)

Similar computations can be done for the wiped-out vari-
able and w′

ij . We now show that the global effect of all
EPTs on Bool(P ) in Phase 3 is a set of relaxations only, at
the unary and binary levels.

Property 1. Following Phase 2, we know that: a) ∀(i, a):
w′

i(a) ≤ wi(a). b) ∀(i, a) and (j, b): if w′

ij(a, b) 6= wij(a, b)
then (i, a) or (j, b) is deleted in the current justified partial
AC closure of Bool(P ).

Proof. (a) In VAC, the only operation that may increase
unary costs is the Project operation. However, according to
equation 1, any value (i, a) that receives cost by Project will
later Extend the same amount of cost (to other binary cost
functions or to w∅). Hence, unary costs cannot increase.

(b) The only way for a binary cost wij(a, b) to change is
by a Project from wij or an Extend onto it. However, Phase 3
of VAC applies Project and Extend to values extracted from
the queue R of deleted values (built by Phase 2). Therefore
when the cost of a pair (a, b) changes, either (i, a) or (j, b)
must have been deleted.

Corollary 1. The EPTs applied in Phase 3 of VAC,
transforming Bool(P ) into Bool(P ′), generate only the fol-
lowing types of relaxations: 1) values (i, a) that become au-
thorized (wi(a) > w′

i(a) = 0). 2) pairs ((i, a), (j, b) that
become authorized (wij(a, b) > w′

ij(a, b) = 0).

Proof. From Property 1(a), we know that unary costs
may only decrease. Some may therefore go from a non-
zero cost to a zero cost. Therefore the corresponding value
re-appears in Bool(P ′). This can be considered as the re-
traction of a unary constraint.

From Property 1(b), the costs of pairs may either increase
or decrease. If a binary cost (a, b) increases from zero to non-
zero, this cannot destroy a valid support because either of
the 2 values is deleted in the current partial closure. The
support cannot be valid. If the cost of (a, b) decreases how-
ever, it may create a new support for a or b.

Therefore, the DnAC algorithm used can be specialized
for relaxations (Algorithm 3). The restoration protocol con-
sists of 3 stages, as in AC/DC2. Note that Bool(P ) is main-
tained after Phase 3 of each iteration, so Di mentioned in
the following represents the domain of variable i in the final
justified partial AC closure obtained after Phase 1.

The initialization stage scans all the values in the queue
R to identify which values should be restored (line 2).The



2a

b

1

2 a

b

2

a

b

3
a

b

4

1

11

1

(a) Original problem (b) Bool(P ) (c) Phase1

2 2

1 1
1

1

1

0

0

w∅ = 0

(d) Phase 2

1 2
1

1

1 1
1

1

w∅ = 0

1

1

2
1

1
1

1

w∅ = 0

1 1
1

1
1

1

w∅ = 1

(e) Phase3

Figure 1: Iteration 1

(a) Updated Bool(P ) (b) Phase 1

1 1
1

1
1

1

11

1

w∅ = 1

(c) Phase 2

1

11

1

1

1

1

1

w∅ = 1

1 1

1

1

1 1

w∅ = 1

1

1

1

1 1
1
1

w∅ = 1
1

1 1
1

w∅ = 2

(d) Phase3

Figure 2: Iteration 2

wiped-out variable i0 is processed separately (line 7). As
Corollary 1 shows, there are 2 possible cases: (1) when
a value (i, a) becomes authorized wi(a) > w′

i(a) = 0, it
will be restored (line 5), (2) when a new valid support ap-
pears for a value (j, b) by satisfying (wij(a, b) ⊕ wi(a)) >
(w′

ij(a, b) ⊕ w′

i(a)) = 0 and killer (j, b) = i, (j, b) will be re-
stored (line 6). When a value (i, a) is restored, it is stored
in an array restored [i] and variable i is kept in a list RL for
future propagation.

Algorithm 3: Update Bool(P )

Procedure Initialization1

foreach (j, b) ∈ R do2

i ←− killer [j, b];3

foreach a ∈ Di −Di do4

if (wi(a) > 0) ∧ (w′

i(a) = 0) then5

Restore(i, a);
if b /∈ Dj ∧ w′

i(a) = 0 ∧ w′

ij(a, b) = 0 then6

Restore(j, b);

foreach a ∈ Di0 s.t. wi0(a) > 0 ∧ w′

i0
(a) = 0 do7

Restore(i0, a);

Procedure Restore(i, a)8

add a into Di and restored[i];9

add i into RL;10

killer [i, a] ← nil;11

Procedure Propagation12

while RL 6= ∅ do13

i← RL.pop();14

foreach wij ∈W do15

foreach b ∈ Dj −Dj s.t. killer [j, b]= i do16

if ∃a ∈ restored[i] s.t. w′

ij(a, b) = 0 then17

Restore(j, b);

restored[i] ← ∅; QAC ← QAC ∪ {j | wij ∈W}18

The propagation stage (line 12) propagates value restora-
tions to direct neighbours of the variables whose domain has

been extended, as in AC/DC2. Each such variable i can re-
store a value (j, b) in a neighbour variable j if it was deleted
due to wij (line 16) and is now supported by a restored value
in i (line 17). After propagating all restored values, the re-
stored list is emptied (line 18) to avoid repropagating values
which have been already propagated.

The filtering stage must eliminate the restored values
(i, a) which are not arc consistent on some constraint wij

and properly set the associated killer (i, a) to j. This is
precisely what is achieved by the Phase 1 of VAC. Hence, we
integrated this stage into Phase 1 by adding the neighbour
variables of variables having restored values into the revision
propagation queue QAC (line 18).

The DynVAC algorithm can be proved to be correct by
showing that the result it provides to the next iteration of
VAC is a justified partial AC closure of Bool(P ′). We do
not give the proof here because of limited space (it will be
made available in the final version using additional pages).

3.1 Example
The essential gain of DynVAC compared to VAC lies in

the fact that the list of variables to revise during Phase 1 is
not reset to the full set of variables X at each iteration but
is instead maintained along all iterations, avoiding useless
repeated filtering. We illustrate this on a small example.

Consider the binary CFN in Figure 1(a). Each variable
has two values a and b represented as vertices. Non-zero
unary costs are displayed besides values. An edge between
two vertices indicates that the corresponding pair has a non-
zero binary cost. Zero costs are not represented. In Bool(P )
(Figure 1(b)), forbidden values are shown as crossed-out and
edges represent forbidden pairs.

Suppose that the revision order in Phase 1 is (w13, w34,
w12, w24). After revising w13, w34, w12, (3, a), (4, b) and
(2, b) have been deleted from Bool(P ) respectively. Phase 1
stops because variable 2 has wiped-out (Figure 1(c)). The
gray arrows represent the state of the killer data-structure,
pointing to the variable that offered no valid support. In
Phase 2 (Figure 1(d)), the deletion of (2, b) alone is suffi-
cient for the wipe-out. It uses the non-zero costs w12(b, b)



and w1(a) to provide w∅ with a maximal amount of cost
λ = 1. The numbers in italic associated with gray arrows
precisely indicate the corresponding value of k(i, a). Apply-
ing identified EPTs, Phase 3 (Figure 1(e)) transforms P into
an equivalent problem P ′ with w′

∅ = 1. Extended costs are
shown in bold.

VAC enforcing continues because P ′ is still not VAC. To
update Bool(P ) in Fig. 1(c), we consider ((1, a), (2, a), (2, b))
for restoration because only w12 has been modified by EPTs
in Phase 3. Only (2, b) is restored because it has a zero
cost and a support (b, b) on w12. This restoration does not
lead to further restorations. The constraints of the updated
Bool(P ) are directly defined by P ′. In fact, the updated
result in Figure 2(a) is already a justified partial AC closure
of Bool(P ′) with two extra deleted values (3, a) and (4, b)
and the associated killer. The next Phase 1 starts from this
updated Bool(P ). (4, a) is removed after revising w24 and
variable 4 wipes out (Figure 2(b)). Phase 2 and Phase 3,
perform as in the previous iteration. The final problem (Fig-
ure 2(d)) with w′′

∅ = 2 is VAC.

3.2 Complexity
DynVAC has the same space complexity as VAC, in O(ed).
The update initialization stage has a O(nd) time complex-

ity because there are at most n × d values having positive
costs (line 5, Algorithm 3).

The worse-case time complexity of the propagation stage
is O(ed2) because each pair of values involved in a constraint
is tested at most once (line 16, Algorithm 3).

So, the time complexity to update Bool(P ) is O(ed2),
which does not modify the complexity of Phase 3 of VAC.

An iteration of DynVAC has therefore a O(ed2) time com-
plexity, similarly to VAC, as long as an optimal AC algo-
rithm is used in Phase 1. Although DynVAC does not have
an improved asymptotic complexity compared to VAC, ex-
perimental tests presented in the next section will show im-
portant speedups in practice.

4. EXPERIMENTS
In this section, we compare the efficiency of DynVAC

and VAC used as pre-processing algorithms on a large set
of benchmarks from the Cost Function Library2. For each
problem, as in [5,6], we enforce a limited version of VAC that
stops iterating as soon as the increase in the lower bound
w∅ becomes less than ε = 0.05. The experiments are im-
plemented in the toulbar2 solver and run on a 2.66GHz
Intel(R) Core(TM)2 with 4GB of RAM.

Table 1 presents results including the run-time and the
lower bound w∅(lb) on a set of specific instances which have
previously been used for VAC experimentations in [5, 6].
The problems are Radio Link Frequency Assignment prob-
lems (celar, [4]) uncapacited warehouse location problems
(warehouse, [9]) and bioinformatics Tag-SNP identification
problems (tagsnp, [11]). These problems are interesting be-
cause they are non trivial in terms of size and not already
VAC. The final lower bound produced by DynVAC and VAC
should not necessarily the same because they may use dif-
ferent orders of constraint revision in Phase 1 after the first
iteration.

As expected, DynVAC outperforms VAC on these instances.
This is already visible in the celar benchmarks, where speedups

2
https://mulcyber.toulouse.inra.fr/scm/viewvc.php/trunk/?root=costfunctionlib

Table 1: Results of DynVAC compared to VAC on

a subset of usual significant instances

VACε DynVACε

lb time lb time

celar

scen07r 28,809 17.29 29,639 11.39
scen08r 8 1.34 8 1.12
scen11r 2,953 0.76 2,953 0.45
scen13r 9,741 10.16 9,683 4.3

warehouse
lb (×106)

capa 17.16 2,362.25 17.16 325.35
capb 12.80 2,111.44 12.96 397.92
capc 11.45 2,389.82 11.46 439.32
mq1 3.25 1,990.23 3.30 442.91
mq2 3.29 2,041.63 3.15 407.68
mq3 3.24 2,244.76 3.12 455.56
mq4 3.36 2,172.19 3.48 418.26
mq5 3.21 1,864.61 3.24 330.03

tagsnp
lb (×106)

10442 20.69 19.29 20.69 3.98
11739 5.62 2,748.7 5.62 142.07
13306 7.19 10.46 7.19 3.43
14226 25.67 33.5 25.67 8.99
16421 3.15 43.71 3.15 5.69
17034 38.31 113.34 38.31 25.51
6858 20.15 123.19 20.15 40.49
8956 6.66 21.9 6.66 2.97
9150 40.51 125.44 40.51 8.51
6389 13.53 551.18 13.28 11.47
27498 4.47 33.55 4.47 12.48
30461 20.29 91.48 20.29 29.19
39997 1.52 147.55 1.52 28.62

by a factor of 2 or more are observed. Even more impressive
speedups, up to a factor of 7, can be observed on the ware-
house or tagsnp instances. Two explanations can be identi-
fied for these large speedups. First, these problems contain
very large costs, leading to a large number of VAC iterations.
This gives more opportunities for DynVAC to reuse work
done on previous iterations. Second, these problems have
variables with large domains, making AC enforcing costly,
thus boosting the effects of DynVAC savings. These lower
bounds of DynVAC can be either smaller or larger than the
bounds provided by the static VAC but over all instances,
the difference never exceeds 3%.

To collect more extensive evidence of the interest of Dyn-
VAC, we applied DynVAC on a larger set of instances ex-
tracted from the CFLib repository. Table 2 shows the mean
value of the run-time (in seconds), the lower bound (lb) and
the number of iterations (iter) for enforcing VAC using either
the usual static VAC algorithm or the new DynVAC variant.
Each line corresponds to a different problem class covering
Size instances. The cases where our DynVAC algorithm per-
forms better in time or lower bound compared to the static
VAC are indicated in bold. These experiments show that
DynVAC is respectively 1.6, 3 and 5 times faster than VAC
for the classes celar, tagsnp, warehouse while providing sim-
ilar lower bounds on average. Notice that the mean number
of iterations of DynVAC may increase compared to VAC,
but the total average run-time is nevertheless reduced as ex-
pected: there is less work to do at each iteration in DynVAC
because deletions are inherited from previous iterations.

However, DynVAC is slower than VAC (respectively 7 and
4 times) for all the maximum clique problems categories



Table 2: Value of the lower bound, cpu-time and number of iterations needed to process different real and

crafted problem from the “Cost Function Library”. The “Size” column indicates the number of instances in

the class.

class Size
VACε DynVACε DynVACε with heuristic

lb time iter lb time iter lb time iter
celar 32 6,180 3.14 382 6,204 1.92 418 5,892 1.12 319

protein maxclique 10 1,016 51 1,022 1,016 364 1,022 1,016 56.95 1,022

tagsnp r0.5 25 1.43×106 364.31 8,798 1.43×106 116.57 4,653 1.43×106 81.46 5,810

tagsnp r0.8 82 1.11×106 4.64 155 1.11×106 1.53 120 1.11×106 2.54 150

dimacs maxclique 65 266 0.78 284 266 3.65 284 266 0.96 284
planning 68 1,074 0.25 46 1,074 0.19 50 1,072 0.23 76

warehouse 57 7.23×106 341 946 7.24×106 66 719 7.25×106 114.17 790

we tested: protein maxclique and dimacs maxclique. These
problems have a specific structure, with only Boolean do-
mains, unary cost functions with only unit costs and binary
differences. On these problems, we noticed that each it-
eration leads to the useless restoration of many values in
cascade which will again be uselessly deleted in the next it-
eration. These values are therefore iteratively restored and
deleted at each iteration, increasingly slowing down the al-
gorithm.

In order to improve the efficiency of DynVAC, we have
used the variable-based revision heuristic proposed in [13]
during AC enforcing in Phase 1 to improve the efficiency of
the Phase 1. This heuristic selects first in QAC the variable
having the smallest current domain size in Bool(P ). Then,
constraints are processed in ascending order of the domain
sizes of the opposite variables. The results, presented in the
last column of Table 2, show that the heuristic allows to
drastically improve the performance of DynVAC on max-
imum clique problems, leading to performances which are
comparable to the static VAC in this highly unfavorable case
(a 20% overhead in time, which is probably largely explained
by the computation of the ordering heuristics).

5. CONCLUSION
This paper presents an incremental approach for enforcing

VAC in CFNs. It combines the idea of dynamic arc consis-
tency algorithms with the iterative VAC algorithm in order
to efficiently maintain arc consistency in the CSP Bool(P )
during VAC enforcing.

The new algorithm provides a lower bound of the same
quality level as the static VAC algorithm but rapidly out-
performs static VAC on many problems, as expected. This
is especially true for problems involving large costs and large
domains. However, DynVAC may become slow on some spe-
cific problems like the maximum clique problems. Using
a revision heuristic on domain sizes inside the AC instru-
mented algorithm allows to avoid this pathological behavior
while still providing good speedups on other problems.

In the future, we intent to use DynVAC to maintain VAC
in a branch and bound search tree to directly solve CFNs and
also to extend the algorithm to non-binary cost functions.
Another interesting area would be to identify other revision
ordering heuristics that could improve the performance of
DynVAC but also improve the produced lower bound.
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