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Abstract

The amount of data available greatly increases every year and information can

be quite valuable in the right hands. The existing mechanisms for selling goods,

such as VCG, cannot handle sharable goods, such as information. To alleviate

this limitation, in this paper, we study mechanisms for selling goods that can be

shared or copied. We present and analyze theoretically and experimentally efficient

incentive compatible mechanisms for selling a single sharable good to bidders who

are happy to share it.

1 Introduction

The evolution of the Web, and thus the facility of sharing data and putting data online

has greatly improved, at least in the last decade. The data deluge can be noted in

many day to day use cases: electronic journals access, music sharing, videos, social

networks, open data initiatives etc. In the knowledge representation community (in

a broad sense, and mainly in the database community) it is implicitly assumed that

every answer to a query will be simply allocated to the user (unless constrained due

to privacy restrictions); not to mention that the multiplicity of knowledge requesters

was simply regarded as a simple extension of the individual case. However, in today’s

Web (Web of Data, Web of Science, Web of Knowledge, Semantic Web, Web 2.0 etc)

information being given freely clearly does not always hold in practical applications

where the requesters are in direct competition for information. The bottom line is

that data, seen as an allocatable good, has the property of high cost production but

negligible cost to copy. Studying implications of pricing information and allocating it

thus becomes highly timely [1, 2]. The pricing information question on the web has

also been investigated from a Linked Data perspective where information markets are

being created [3, 4, 5]. The authors acknowledge the need to study the implications of

mechanism design in this setting.

A very important issue is that data can easily be shared (for example, music or

software). If we were to apply well known auction mechanisms (e.g. VCG) to selling

pieces of information that can be shared, hence are infinitely copied, no profit would

be made; this would happen because competition is what drives the prices up [6] and
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offering more items - here infinite - than buyers essentially removes any competition

in this setting. And yet getting profit is usually the first goal of a seller. Now, [7]

examines expanding auctions where more copies of the same good are offered as the

competition increases. However, their mechanism does not handle infinite copies and it

is likely not incentive compatible (IC), meaning that bidder would have an incentive to

lie which would break down the mechanism. For this reason, it is important to propose

IC mechanisms for this problem. Some mechanisms have been proposed in [8, 9] but

they analyze the mechanisms from a worse case view point. As shown by [3] this is

not always relevant in practice where the distributions are not always a-priori known.

Taking inspirations from these algorithm in this paper we present and analyze several

incentive compatible mechanisms for selling a single sharable good to bidders who are

happy to share it, aiming at creating competition by restricting the number of winners.

The only related work the examines this problem is [9]. However, this work is

only concerned with examining the performance of the proposed mechanisms in the

worst case, meaning how poor the performance becomes for any input even if this

poor performance only occurs for extremely unlikely input. For a practical application,

what would interest a company or an individual selling the information is the expected

revenue that can be obtained from each mechanism. In view of this, in this paper,

we thoroughly study mechanisms for selling goods that can be shared or copied as

many times as necessary. We further the analysis of incentive compatible mechanisms,

characterize a whole family of such mechanisms that can be used and evaluate the

revenue obtained and the efficiency of these mechanisms, comparing also against the

mechanisms of [9], showing that our mechanisms are better in average performance in

most cases.

2 Incentive Compatible Mechanisms

In this section, we present formally the setting that we will address in this paper. We

then present several incentive compatible mechanisms, starting from two baseline ones

(mechanism Mk+1 and Mr) and then characterizing a family of such mechanisms,

which generalizes the basic mechanism MA.1 We subsequently evaluate these mech-

anisms in Section 3.

We consider a set of n bidders want shared access to a piece of information. The

valuations of the bidders who want shared access are −→v = {v1, . . . , vn}.

Now, the good could be also allocated to all the buyers but in this case we would not

be able to extract any profit. For example, if we apply the well known VCG mechanism

to this setting, the goods will be sold to all the buyers at a price equal to 0, thus making

no money whatsoever! This essentially happens because offering more items than

buyers essentially removes any competition which would drive the prices up. There

is a couple of straight forward ways to deal with this issue:

1. Restricting the number of winners. If the number of winners is fixed to a

number k which is less than the actual number n of interested buyers, then this

immediately will create competition between the bidders. By running an (m +

1This is a very basic and straight forward mechanism and a variation of this has been presented in [9].
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1)th price auction, henceforth denoted as mechanism Mk+1, we can guarantee

that this is IC and provides some profit while ensuring that the bidders will all

pay the same price.

2. Setting a reserve price. Instead of fixing the number of winners, a reserve price

r is set; any bidder with valuation higher than r will buy the good. Now, the

only IC mechanism in this instance is to make every winner pay r, henceforth

denoted as mechanism Mr; otherwise if the price paid depends on their bids,

these bidders (who have valuations higher than r) will bid r + ǫ, ǫ > 0 instead,

as they know that any bid above r will guarantee that they win.

A serious shortcoming of both these mechanisms (Mk+1 and Mr) is that the num-

ber of winners and the reserve price, respectively, should be selected optimally be-

forehand in order to maximize the revenue of the seller. This would need to rely on

information such as prior knowledge of the distribution of the valuations. It cannot

depend on the actual bidders valuations as then the mechanism would not be IC.

To alleviate this shortcoming, we need to design a mechanism that chooses the

number of winners and subsequently the price that they pay so as to maximize the total

revenue of the seller. Essentially, we should maximize:

max
j∈{1,...,n}

jv(j)

where v(j) are the valuations of −→v ordered from highest to lowest. A first attempt

would be to select j as to maximize:

max
j∈{1,...,n}

jv(j+1)

instead and the price paid by the winners would be equal to v(j+1), the top bid that did

not win. This is essentially the main idea from both the Vickrey (i.e. second price)

auction [10] and the VCG mechanism. However, in this case this mechanism is not IC.

The bidders can manipulate the price that they pay, and whether they win or not, by

submitting a bid which is not their true value thus changing the number of winners j.
It is relatively easy to check that neither a winner nor a loser can gain by increasing her

bid. However, as shown next, both a winner and the (j+1)− th bidder whose bid sets

the price can gain by lowering their bids:

Example 1 Assume valuations −→v = {11, 9, 8, 5, 3}. When all bidders declare their

true values, then the mechanism selects j = 2 winners and they both pay v(3) = 8.

• Any of the two top bidders would be able to profit by lowering her bid to v′1 =
3.5. So if the first one lies, then the ordered set of valuations would be {9,8,5,3.5,3}

and then the mechanism would select j = 4 winners all paying v(5) = 3.

• The third highest bidder can also profit by lowering her bid to v′ = 3.5, be-

cause then the ordered set of valuations would be {11,9,5,3.5,3} and then the

mechanism would again select j = 4 winners all paying a price of v(5) = 3.
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Why does this happen? While the price paid by a winner does not depend on her bid,

the number of winners does, and therefore it is possible to indirectly manipulate the

price paid. In fact, this is the reason why an IC mechanism must essentially ignore the

bid of a bidder iwhen deciding whether bidder i is a winner and the price that she pays.

The following mechanism MA satisfies this requirement:

Definition 1 (IC Revenue Maximizing Mechanism MA)

For each bidder i ∈ {1, . . . , n} do:

If i > 1 and v(i) = v(i−1) then

decision is same as bidder with valuation v(i−1),

Else

Compute j∗ such that j∗ = argmaxj jv
(j)
−i ,2

where −→v−i is −→v without the valuation v(i)

If v(i) < v
(j∗)
−i , bidder with value v(i) does not win

otherwise, she is a winner and pays v
(j∗)
−i

Theorem 1 Mechanism MA is IC.

As a variation of this mechanism has been presented in [9] and it is easy to prove

that it is IC we will not do so here. What we will focus on are the properties of this

mechanism as they have not been analyzed in previous work and they will be useful

both in the experimental analysis we will conduct, as well as in generalizing it to the

family of mechanisms we will later present.

We give two examples of how this mechanism works, the second of which contains

tied valuations:

Example 2 Assume valuations −→v = {11, 9, 7, 5, 3}.

• For bidder 1: −−→v−1 = {9, 7, 5, 3}, therefore j∗ = 3 and since v1 = 11 ≥ 5 = v
(3)
−1

she wins with payment 5.

• For bidder 2: −−→v−2 = {11, 7, 5, 3}, therefore j∗ = 3 and since v2 = 9 ≥ 5 = v
(3)
−2

she wins with payment 5.

• For bidder 3: −−→v−3 = {11, 9, 5, 3}, thus j∗ = 2 and since v3 = 7 < 9 = v
(2)
−3 she

does not win.

• For bidder 4: −−→v−4 = {11, 9, 7, 3}, thus j∗ = 3 and since v1 = 5 < 7 = v
(3)
−4 she

does not win.

• Bidder 5 (the bidder with the lowest valuation) can never win in this mechanism.

Therefore the two bidders with the highest valuations will win at a payment equal to

the fourth highest bid of 5.

2In case that argmax is a set, we define it to return the maximum element, meaning that if ∃j1 < j2

where j1v
(j1)
−i

= j2v
(j2)
−i

are the maximizing terms, then argmax will return j2 and similarly if there are

more maximizing terms.
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Example 3 Assume valuations −→v = {10, 10, 7, 7, 7, 5}.

• For bidders 1 (and 2): −−→v−1 = {10, 7, 7, 7, 5}, therefore j∗ = 4 and since v1 =

10 ≥ 7 = v
(4)
−1 they win with payment 7.

• For bidder 3 (as well as 4 and 5): −−→v−3 = {10, 10, 7, 7, 5}, therefore j∗ = 4 and

since v3 = 7 ≥ 7 = v
(4)
−3 they win (payment 7).

• Bidder 6 does not win.

Therefore the five bidders with the highest valuations will win at a payment equal to

the fifth highest bid of 7.

Now, notice that had we been able to use all the information available the optimal

allocation in Example 2 would have been to sell the good to the top three bidders at a

price equal to 5. However, the third bidder is not a winner meaning that some efficiency

has been lost. On the other hand, in Example 3, bidders 3, 4 and 5 pay their valuation.

It makes sense to examine the properties of this mechanism, regarding which of the

bidders win and the price that they pay.

We will use the following lemma.

Lemma 1 If the ith term is the maximizing one for the optimization problem solved by

mechanism MA, when it disregards bidder i’s bid, then it is also the maximizing term

when the bid of bidder i′ = i+ 1 is disregarded. Furthermore, if the maximizing term

is instead the j-th one (where j 6= i), when disregarding bidder i’s bid, then either it

remains the maximizing term, when disregarding bidder i′’s bid (i′ = i + 1), or the

new ith term is the maximizing one.

Proof Note that the vectors of valuations −→v−i and −−→v−i′ , when i′ = i+1, differ only by a

single element. More specifically, the ith highest value in each vector differs, and this is

equal to v(i
′) in vector −→v−i, while it is equal to v(i) in vector −−→v−i′ . When the mechanism

solves the optimization problem for determining whether bidder i is a winner, it looks

for the highest term among terms jv
(j)
−i . Now as −→v−i and −−→v−i′ differ by a single element

this means that all the terms jv
(j)
−i , with exactly one exception, are exactly the same

as the terms jv
(j)
−i′ . The terms that are different in the two optimization problems are:

iv(i
′) (when examining bidder i) and iv(i) (when examining bidder i′ = i + 1). Since

v(i
′) ≤ v(i), this means that if iv(i

′) is the highest term in the optimization problem for

bidder i then term iv(i) is certain to be the highest term in the optimization problem for

bidder i′. The opposite is not necessarily true. We want to stress that this holds only

for that specific term tied to the i′ − th bid. If another term was the maximum then it

does not mean that it will remain maximum when disregarding the next bidder.

Proving the second part of the lemma is easy, as the only term which changes is the

i-th one. We know that the j-th term is larger than any other term, when disregarding

bidder i’s bid, therefore, when disregarding bidder i′’s bid, there is a single term that

might be higher and this is the i-th one. Meaning that either the j-th or the i-th term is

the maximizing one.
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We obtain the following theorem:

Theorem 2 When using mechanism MA some number j′ of the top bidders will win,

where j′ ≤ j∗ + 1 and j∗ = argmaxj jv
(j+1). The price that they all pay is equal to

v(j
∗+1). Furthermore j′ ≤ j∗, when there are no ties in the bidders’ valuations.

Proof For the optimization problem solved when determining whether bidder 1 wins

(disregarding her bid), we can easily check that the solution is to select j∗ bidders as

winners, because ∀j : v
(j)
−1 = v(j+1). Therefore bidder 1 is selected to buy the good

and pays v(j
∗+1). For the remaining bidders, there are two cases:

• The optimization problems select the same solution (meaning j∗) when disre-

garding each bidder i = 2, . . . , j∗. Now, we know from Lemma 1 that when

bidder j∗ + 1 is disregarded, the solution will be j∗. Therefore, j∗ winners will

be selected and they will pay v(j
∗+1). There is an exception to this, which is

when there is a tie, i.e. v(j
∗+1) = v(j

∗), because then bidder j∗ + 1 will also

win. But bidder j∗ + 2 will not be a winner as from Lemma 1 we know that the

(j∗ + 1)th term is the maximizing one. Unless, of course, v(j
∗+2) = v(j

∗+1),

which is impossible though. Assume that it is so: v(j
∗+2) = v(j

∗+1). Then

(j∗+1)v(j
∗+2) > j∗v(j

∗+1), which means that j∗ could not have been chosen as

the solution when solving the optimization problem of finding argmaxj jv
(j+1),

which is a contradiction. Therefore, in the case of a tie and only then, there will

be exactly j∗ + 1 winners.

• There exists j′ ≤ j∗, such that the optimization problems select the same solution

(meaning j∗) when disregarding each bidder i = 2, . . . , j′ − 1, however, when

bidder j′ is disregarded, then a different solution is selected. In that case, the

maximizing term can only be the j′-th term (from the second part of Lemma 1),

which means the j′ is not selected as a winner. Therefore less than j∗ bidders

will win. The winners will pay v(j
∗+1).

To complete the proof we need to check that there cannot be a case where a bidder does

not win and a bidder with lower valuation does win. This again follows easily from the

second part of Lemma 1. Assuming that it can happen we must have some bidder j′′

who does not win while bidder j′′ + 1 does win. However, we know that for bidder

(j′′ + 1)’s optimization problem the solution must either be the same as that for j′′’s
(she cannon win then), or be the j′′-th term (and again she cannon win). So this leads

to a contradiction.

We can observe that this mechanism has some very desirable properties beyond be-

ing simply IC: firstly, all the winners pay the same price, so there can be no envy really

among them, and, secondly, they pay the price v(j
∗+1) that is the one that maximizes

the profit of the seller. However, in order for the profit of the seller and the efficiency

of the system to be maximized it should be that j∗ (or j∗ + 1) bidders should win at

this price. To alleviate this weakness of mechanism MA, we will examine some varia-

tions of it, eventually generalizing it to a whole family of mechanisms. Essentially, the

maximization step j∗ = argmaxj jv
(j)
−i will be replaced via use of a voting protocol.
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First, notice that the desired optimization maxj∈{1,...,n} jv
(j) and the maximiza-

tion step j∗ = argmaxj jv
(j)
−i of mechanism MA are the same optimization problem

when bidder i is the one with the highest valuation (her valuation is ranked first). In

other cases though, they can lead to different results and this is the reason for the in-

efficiency. We cannot use any knowledge of the bidder’s value when deciding when

she’s a winner or not, not even the rank (i.e. how many other bidders have a higher

valuation). Therefore, we propose to examine all possible cases for the rank of the

valuation of bidder i and then aggregate the “optimal” number of winners in each case

via a voting protocol.

Example 4 Assume valuations −→v = {11, 9, 7, 5, 3}.

• For bidder 1, it is −−→v−1 = {9, 7, 5, 3}. For her valuation we can assume the

following cases:

1. v1 ≥ 9. The set of valuations is {v1, 9, 7, 5, 3}.

2. 9 > v1 ≥ 7. The set of valuations is {9, v1, 7, 5, 3}.

3. 7 > v1 ≥ 5. The set of valuations is {9, 7, v1, 5, 3}. In all three of these

cases it is optimal to have 3 winners.

4. 5 > v1 ≥ 3. The set of valuations is {9, 7, 5, v1, 3}, and it is optimal to

either have 3 (when v1 ≥ 4) or 4 (when v1 < 4) winners. Only when

v1 < 4 would bidder 1 win.

5. v1 < 3. The set of valuations is {9, 7, 5, 3, v1} and bidder 1 would never

be a winner.

• For bidder 2, we obtain similar results to the above.

• For bidder 3: −−→v−3 = {11, 9, 5, 3}. We examine the cases:

1. v3 ≥ 11. The set of valuations is {v3, 11, 9, 5, 3}.

2. 11 > v3 ≥ 9. The set of valuations is {11, v3, 9, 5, 3}. In both these cases

it is optimal to have 2 winners.

3. 9 > v3 ≥ 5. The set of valuations is {11, 9, v3, 5, 3}, and it is optimal to

have 2 (when v3 ≥ 7.5) or 3 (when v3 < 7.5) winners. Only in the second

subcase would bidder 3 win.

4. 5 > v3 ≥ 3. The set of valuations is {11, 9, 5, v3, 3}, and it is optimal to

have 3 (when v3 ≥ 4) or 4 (when v3 < 4) winners. Only in the second

subcase would bidder 3 win.

5. v3 < 3. The set of valuations is {11, 9, 5, 3, v3}, and bidder 3 is never

selected as a winner.

• For bidder 4 the same analysis yields that in no subcase would she win and the

same is true for bidder 5.

To illustrate what we mean we re-examine the setting of Example 2.
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Example 5 Assume valuations −→v = {11, 9, 7, 5, 3}.

• For bidder 1, it is −−→v−1 = {9, 7, 5, 3}. For her valuation we can assume the

following cases:

1. v1 ≥ 9. Then the whole set of valuations would be {v1, 9, 7, 5, 3}, and it

would be optimal to have 3 winners.

2. 9 > v1 ≥ 7. Then the whole set of valuations would be {9, v1, 7, 5, 3}, and

it would be optimal to have 3 winners.

3. 7 > v1 ≥ 5. Then the whole set of valuations would be {9, 7, v1, 5, 3}, and

it would be optimal to have 3 winners.

4. 5 > v1 ≥ 3. Then the whole set of valuations would be {9, 7, 5, v1, 3}, and

it would be optimal to either have 3 (when v1 ≥ 4) or 4 (when v1 < 4)

winners. Only in the second subcase (when v1 < 4) would bidder 1 win.

5. v1 < 3. Then the whole set of valuations would be {9, 7, 5, 3, v1}, and it

would be optimal to either have 4 (when v1 ≥ 2.5) or 2 (when v1 < 2.5)

winners. In either case bidder 1 would not be selected as a winner.

• For bidder 2, we obtain similar results the analysis for bidder 1.

• For bidder 3: −−→v−3 = {11, 9, 5, 3}. For her valuation we can assume the follow-

ing cases:

1. v3 ≥ 11. Then the whole set of valuations would be {v3, 11, 9, 5, 3}, and it

would be optimal to have 2 winners.

2. 11 > v3 ≥ 9. Then the whole set of valuations would be {11, v3, 9, 5, 3},

and it would be optimal to have 2 winners.

3. 9 > v3 ≥ 5. Then the whole set of valuations would be {11, 9, v3, 5, 3},

and it would be optimal to have 2 (when v3 ≥ 7.5) or 3 (when v3 < 7.5)

winners. Only in the second subcase would bidder 3 win.

4. 5 > v3 ≥ 3. Then the whole set of valuations would be {11, 9, 5, v3, 3},

and it would be optimal to either have 3 (when v3 ≥ 4) or 4 (when v3 < 4)

winners. Only in the second subcase would bidder 3 win.

5. v3 < 3. Then the whole set of valuations would be {11, 9, 5, 3, v3}, and it

would be optimal to either have 4 (when v1 ≥ 2.5) or 2 (when v1 < 2.5)

winners. In either case bidder 3 would not be selected as a winner.

• For bidder 4: −−→v−4 = {11, 9, 7, 3}. For her valuation we can assume the follow-

ing cases:

1. v4 ≥ 11. Then the whole set of valuations would be {v4, 11, 9, 7, 3}, and it

would be optimal to have 3 winners.

2. 11 > v4 ≥ 9. Then the whole set of valuations would be {11, v4, 9, 7, 3},

and it would be optimal to have 3 winners.

3. 9 > v4 ≥ 7. Then the whole set of valuations would be {11, 9, v4, 7, 3},

and it would be optimal to have 3 winners.
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4. 7 > v4 ≥ 3. Then the whole set of valuations would be {11, 9, 7, v4, 3},

and it would be optimal to either have 3 (when v4 ≥ 14/3) or 2 (when

v3 < 14/3) winners.

5. v4 < 3. Then the whole set of valuations would be {11, 9, 7, 3, v4}, and it

would be optimal to either have 4 (when v1 ≥ 2.5) or 2 (when v1 < 2.5)

winners.

• Bidder 5 (the bidder with the lowest valuation) can never win (unless there is

a tie which we choose not to consider when designing our mechanisms, as it

happens with very low probability), therefore we do not analyze her case.

What can we observe from this example? Examining what happens each time we

tried to solve the optimization problem for each bidder, the optimal number of winners

changes as the valuation of that bidder is assumed to various ranges of values; of course

the knowledge of this value is ignored in order to keep the mechanism IC, this is the

reason why we need to examine all these possible cases. Now, note that considering

only the case when this value is assumed to be higher than the highest among the

remaining valuations and basing the decision on only that case, gives mechanism MA.

However, this does not use the information from all the other cases where the bidder

examined might still be a winner. Thus, we propose to use a voting protocol where, for

each case where the bidder examined is selected to be a winner, votes would be cast

for the number of winners that maximize the total profit.

We see that the decision regarding each bidders depends on the cases examined.

Thus, we generalize the previous mechanism to consider all cases examined. To this

end, we propose the following family of mechanisms M∗ where each case (i.e. when

the rank of the missing valuation is k) casts votes with weight wk:

Definition 2 (Family of IC Mechanisms M∗(−→w , δ))
Select the function δ(< profit >,< max_profit >)
For each bidder i ∈ {1, . . . , n} do:

If i > 1 and v(i) = v(i−1) then

decision is same as bidder with valuation v(i−1),

Else

Set −→v−i as −→v without the valuation v(i)

Set ψk = 0, ∀k = 1, . . . , n
For k = 1, . . . , n− 1 do

Assume that the missing valuation (denoted v) is

v
(k−1)
−i > v ≥ v

(k)
−i , where v

(0)
−i = ∞ & v

(n)
−i = 0

Set the weight wk

Define the terms tl =

{

(l − 1)v
(l)
−i; l < k,

lv
(l)
−i; l ≥ k.

Among these terms, find the highest: l1
and the second highest: l2

The min and max values of term (k − 1)v are resp.:

tmin = (k − 1)v
(k)
−i and tmax = (k − 1)v

(k−1)
−i

If tl1 ≥ tmax and l1 ≥ k then
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ψl1 = ψl1 + wk (full vote for best - weighted)

If tl2 ≥ tmax and l1 ≥ k then

ψl1 = ψl1 + wkδ(tl2 , tl1) (partial vote for 2nd best)

If tmax > tl1 ≥ tmin and l1 ≥ k then

ψl1 = ψl1 + wk

( tl1−tmin

tmax−tmin

+
∫ tmax

tl1

δ(tl1 ,x)

tmax−tmin

dx
)

If tmax > tl2 ≥ tmin and l2 ≥ k then

ψl2 = ψl2 + wk
tl2−tmin

tmax−tmin

δ(tl2 , tl1)
Select j∗ = argmaxψj

If v(i) < v
(j∗)
−i , bidder with value v(i) does not win

otherwise, she is a winner and pays v
(j∗)
−i

The two lines that are presented in bold define the parameters that characterize

the whole range of mechanisms that belong to this family of mechanisms M∗. For

example, mechanism MA, which we presented earlier, is derived from M∗, by setting

δ() = 0,w1 = 1 andwk = 0, ∀k > 1. In this paper we will also use in our experiments,

the following two mechanisms which are derived from M∗:

• mechanism MV , in which δ(x, y) = x
y

and wk = 1, ∀k

• mechanism MW , in which δ(x, y) = x
y

and w1 = 1, while wk = (n −

2)
v
(k)
−i

−v
(k−1)
−i

v
(1)
−i

−v
(n−1)
−i

, ∀k > 1

In both these mechanisms, the best option gets 1 vote while the second best option

(regarding the number of winners) gets votes equal to the ratio of the second highest

and the highest profits. However, in the first mechanism, the weights for all cases

are 1, while in the second the votes are weighted depending on how likely each case

v
(k−1)
−i > v ≥ v

(k)
−i is, which depends on the distance between the values v

(k−1)
−i and

≥ v
(k)
−i .3 Let us give a couple of examples:

Example 6 Assume valuations −→v = {11, 9, 7, 5, 3}.

• For bidder 1, examining all cases (k = 1 . . . 4) we get that having three winners

gets the most votes (ψ3 = 3). So the bidder wins and pays v
(3)
−i = 5.

• For bidder 2, we obtain the same results and price.

• For bidder 3: −−→v−3 = {11, 9, 5, 3} and we examine cases:

1. k = 1 : v3 ≥ 11. The valuations are {v3, 11, 9, 5, 3}. The best choices are

l1 = 2 and l2 = 3, thus ψ2 = ψ2 + 1 and ψ3 = ψ3 +
5
6 .

2. k = 2 : 11 > v3 ≥ 9. Similarly, the mechanism updates ψ2 = ψ2 + 1 and

ψ3 = ψ3 +
5
6 .

3Given that we do not use any prior information regarding the distribution of valuations, this is the

most logical way to assign probabilities to each case. Essentially, as we do not assume any knowledge of

the distribution of valuations, we will approximate it as a uniform distribution with bounds the lowest and

highest values that are known at each step of the algorithm.
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3. k = 3 : 9 > v3 ≥ 5. The valuations are {11, 9, v3, 5, 3}, thus l1 = 3,

l2 = 4, tmax = 18 and tmin = 10. Therefore ψ3 = ψ3 + 0.967 and

ψ4 = ψ4 +
1
5 .

4. k = 4 : 5 > v3 ≥ 3. The valuations are {11, 9, 5, v3, 3}, thus l1 = 4,

l2 = 3 (but l2 < k = 4 so votes are cast), while tmax = 15 and tmin = 9.

Therefore ψ4 = ψ4 + 0.9463.

The tally of votes is: ψ2 = 2, ψ3 = 2.63 and ψ4 = 1.15, hence j∗ = 3. Hence

bidder 3 wins and pays v
(j∗)
−i = 5.

• For bidder 4: −−→v−4 = {11, 9, 7, 3}. Following the same reasoning, j∗ = 3 (ψ3 =
3) and therefore she does not win.

To summarize, the three bidders with the highest valuations (11, 9 and 7) would win

and each pays a price equal to 5.

Example 7 Assume valuations −→v = {11, 9, 7, 5, 3}.

• For bidder 1, it is −−→v−1 = {9, 7, 5, 3}. The following cases are examined by the

mechanism:

1. k = 1 : v1 ≥ 9. Then valuations are {v1, 9, 7, 5, 3}. Best is to have l1 = 3
winners and second best to have l2 = 2, so ψ3 = ψ3+1 and ψ2 = ψ2+

14
15 .

2. k = 2 : 9 > v1 ≥ 7. The valuations are {9, v1, 7, 5, 3}. Again, ψ3 = ψ3+1
and ψ2 = ψ2 +

14
15 .

3. k = 3 : 7 > v1 ≥ 5. The valuations are {9, 7, v1, 5, 3}. Now, the best

choice is l1 = 3 and second best is l2 = 4, however tmax = 14 and

tmin = 10. Therefore, ψ3 = ψ3 + 1 and ψ4 = ψ4 +
12−10
14−10

14
15 = ψ4 +

7
15 .

4. k = 4 : 5 > v1 ≥ 3. The valuations are {9, 7, 5, v1, 3}. l1 = 4 and

thus ψ4 = ψ4 +
1
2 + 2(ln 15− ln 12) = ψ4 + 0.9463. On the other hand,

l2 = 2 < k = 4, therefore no votes are cast.

The tally is that j∗ = 3 = argmaxψj has received most votes, as ψ3 = 3.

Therefore the bidder with valuation 11 wins and pays v
(j∗)
−i = 5.

• For bidder 2, after using the same process, we obtain the same results and price.

• For bidder 3: −−→v−3 = {11, 9, 5, 3}. The following cases are examined by the

mechanism:

1. k = 1 : v3 ≥ 11. The valuations are {v3, 11, 9, 5, 3}. The best choices are

l1 = 2 and l2 = 3, thus ψ2 = ψ2 + 1 and ψ3 = ψ3 +
5
6

2. k = 2 : 11 > v3 ≥ 9. The valuations are {11, v3, 9, 5, 3}. Again l1 = 2
and l2 = 3, thus ψ2 = ψ2 + 1 and ψ3 = ψ3 +

5
6 .

3. k = 3 : 9 > v3 ≥ 5. The valuations are {11, 9, v3, 5, 3}. In this subcase,

l1 = 3 and l2 = 4, while tmax = 18 and tmin = 10. Therefore ψ3 =
ψ3 +

5
8 + 15

8 (ln 18− ln 15) = ψ3 + 0.967 and ψ4 = ψ4 +
1
5 .
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4. k = 4 : 5 > v3 ≥ 3. The valuations are {11, 9, 5, v3, 3}. In this subcase,

l1 = 4 and l2 = 3 (but l2 < k = 4 so votes are cast), while tmax = 15 and

tmin = 9. Therefore ψ4 = ψ4 +
1
2 + 2(ln 15− ln 12) = ψ4 + 0.9463.

The total tally of votes is: ψ2 = 2, ψ3 = 2.63 and ψ4 = 1.15, hence j∗ = 3.

Therefore, the bidder with valuation 7 wins and pays v
(j∗)
−i = 5.

• For bidder 4: −−→v−4 = {11, 9, 7, 3}.

• Following the same reasoning, we find that j∗ = 3, with ψ3 = 3 votes and

therefore the bidder with valuation 5 does not win.

To summarize, we find that under mechanism MV , the three bidders with the highest

valuations (11, 9 and 7) would win and each pays a price equal to 5. However, this

does not mean that mechanism MV work always best; as we will see in the experi-

mental evaluation, when the valuations can take only a couple of possible values then

mechanism MA is better!

Figure 1: Table of experimental results for 3 up to 20 bidders. The valuation distribu-

tion used is Uniform{1, . . . , 100}. (PR stands for profit; EF for efficiency) The error of

the simulation is no larger than the first decimal point of each of the results presented

in all the tables.

Figure 2: Table of experimental results for 3 up to 20 bidders. The values have a 50%
chance of being 1 or 10.
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Figure 3: Table of experimental results for 3 up to 20 bidders. The values have a 10%
chance of being 55, 60, 65, . . . , 95, 100.
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Figure 4: Revenue and efficiency of mechanisms Mk+1 and MR as the number of

winners k and the reserve price R varies (versus those of MW ). The number of bidder

n = 10.

3 Experimental Evaluation

In this section, we conduct experiments to evaluate the performance of the mechanisms

we presented in the previous section. Our goal is to compare the seller revenue and the

efficiency (i.e. the sum of the valuations of all winners) of the different mechanisms

MA, MV and MW as opposed to using the baseline mechanisms Mk+1 and MR. We

will also compare them with the Parameterized Random Sampling Optimal Price auc-

tion (RSOPr) presented in Section 6.1 of [9]; we have implemented an improvement

of this mechanism which does not allow one of the two randomized sets to be empty4

and we assume knowledge of the distribution in order to select the optimal value of

the parameter r for this mechanism. In the experiments we call this mechanism MP

(i.e. probabilistic). Note that in [9], another algorithm is proposed for this problem:

the Random Sampling Profit Extraction auction (RSPE); however the performance of

this mechanism is very poor as it sacrifices half the profit (in most cases), therefore we

chose not to include it in our experiments.

Now, there is very little research and knowledge on what real distributions of the

valuations for data are like. Some information on current data markets is given in [3],

however very little is known about the real values for such data. Obviously, different

distributions would affect to some degree the performance of the different mechanisms.

In view of this, we present here three sets of experiments each performed with a differ-

ent valuation distribution. We explain why we select each, in turn, before presenting

the results of the simulation.

Experiment Set 1: We simulate n bidders whose valuations are i.i.d. random

4The original algorithm which did not impose this restriction had much worse performance, and it would

always perform worse than the other algorithms, therefore it does not provide a good enough benchmark

without this (minor) modification, as this significantly improves the mechanism’s performance.
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variables drawn from the uniform distribution on {1, . . . , 100}. The number of bidders

n varies from 3 to 20. For the baseline mechanisms Mk+1 and MR, we calculate

beforehand the best values for k andR respectively that maximize the expected revenue

using the knowledge of the distribution from which the bids are drawn; for the other

mechanisms no such knowledge is necessary.

The results of these experiments are presented in the table of Figure 1. The best

revenue among the mechanisms MA, MV and MW (of family M∗) is consistently

obtained by mechanism MW . Its revenue is actually better than that of mechanism

Mk+1 (with k set optimally to maximize revenue), because mechanism MW adjusts

the number of winners based on the actual bids submitted rather than choosing the

same number regardless of the input. On the other hand, mechanism MR (with R set

optimally) clearly outperforms the other mechanisms, because it uses its knowledge

of the expected valuations to set a threshold (a reserve price) R which must be paid

by all winning bidders. In this way it balances the revenue from each winner against

the number of bidders. However, this mechanism is very dependent on knowing the

distribution of valuations, as setting the reserve R to the wrong value will reduce very

significantly the revenue obtained. In fact, to examine this effect we present in Figure 4,

the revenue and efficiency of mechanisms Mk+1 and MR for different values of k and

R respectively. We observe that the revenue obtained from MR degrades significantly

if R deviates by more than 15 from its optimal value. What is worse, if mistakenly the

valuations were assumed to be between 1 and 50 (or, even worse, between 1 and 200),

which would have approximately halved (or doubled resp.) the value for R, then very

little revenue would be obtained!

Regarding the efficiency of the mechanisms, we observe that all of them perform

similarly. The only exception is mechanism MA, because, as we’ve seen in Example 2,

sometimes the mechanism reduces the number of winners which significantly impacts

its efficiency.

Finally, we notice that mechanism MP performs worst than any other mechanism

(even Mk+1 in many cases). This happens because the mechanism splits the problem

into two separate problems and uses the solution (i.e. the best price) of one to impose

the cutoff price for the other; however, the solutions for these two problems are not

always very close (or identical which would be the optimal case) and this leads to a

loss of revenue and some efficiency.

Experiment Set 2: In the previous experiment set, we assumed that the valuations

could take a continuum of values. The extreme opposite of this is that only two values

are possible, thus we assume here that the values have a 50% chance of being either 1
or 10. While we do not believe that this could be realistic (to have so small a number

of possible values), this case is suggested in [9] as the case when the deterministic

algorithms would fail to produce good results.

The results of these experiments are presented in the table of Figure 2. We observe

that the performance of the baseline mechanisms is similar in broad terms to the previ-

ous experiment set. Regarding the other mechanisms, now mechanism MA performs

best, better than mechanisms MV and MW . This is not entirely surprising as the pos-

sible values are only two, which means that in almost all cases the optimal decision

would be to select the bidder with value 10 and make them pay 10, which matches

the maximum profit that can ever be extracted from any (not necessarily IC) mecha-
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nism; the other more complex mechanisms MV and MW try to be cleverer, but that

is unnecessary and they suffer a bit because of this.

Furthermore, mechanism MP actually shines in this case, even if it is outperformed

by mechanism MA: because of having only two possible values, and the solutions for

the two problems solved by the mechanism are almost always identical, therefore this

leads to almost maximal revenue and efficiency.

Experiment Set 3: We mentioned that the second distribution is probably not re-

alistic for real data markets. However, this does pose the question what happens in an

intermediate case, where there are relatively few possible values (but still not as few as

only two). To this end, we assumed for the third experiment set we conducted, that the

values have a 10% chance of being 55, 60, 65, . . . , 95, 100 (10 possible values in total).

The results of these experiments are presented in the table of Figure 3. In this case,

we notice that the observations of the different mechanisms performance are close to

those made for the first experiment set. In particular, disregarding the baseline mech-

anisms, mechanism MW performs best in this set closely followed by mechanism

MV . Mechanism MP lacks in performance to a substantial degree (the exception

being when the number of bidders n approaches 20) and so does mechanism MA.

To summarize our observations from all the experiment sets, we notice that the

baseline mechanism MR is overall consistently the best, but it relies significantly on

selecting the best reserve R. Our proposed mechanisms (and in particular MW and

MV ) are typically the best among the other mechanisms. The exception to this is when

there are very few (two or close) possible valuations when it is more advantageous to

use mechanisms MA primarily and MP secondary. However, we remind the reader

that mechanism MP also relies on using knowledge of the valuation distribution in

order to select the optimal parameter r, albeit to a lesser extend than mechanism MR.

4 Conclusions

In this paper, we studied mechanisms for selling sharable information goods. We pre-

sented and analyzed several IC mechanisms, including a family of such mechanisms,

for selling a single sharable good to bidders who are happy to share it; furthermore, we

analyzed the properties of these mechanisms via simulations (for the most part).
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There are still a number of avenues for future work. The most important extension

is to examine whether we can generalize our mechanisms to the case where several

goods are sold to bidder who want to buy bundles of these and are willing to share or

would want each good exclusively. Furthermore, for the single unit case examined in

this paper, the mechanisms of family M∗ restrict the number of winners, in a simi-

lar manner to mechanism Mk+1, the difference being not using prior knowledge; in

this spirit, our second extension will examine new mechanisms that estimate a reserve

price (like MR, the highest revenue mechanism we considered) without using prior

knowledge about the valuation distribution.
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