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Abstract—This paper presents a new reconstruction operator
to be used in a super-resolution scheme. Here, by reconstruction
in super-resolution, we mean the back-projection operation, i.e.
the way K low resolution (LR) images are aggregated to obtain
a smooth high resolution (HR) image. Within this method, we
replace the usual reconstruction procedure by a non-additive
reconstruction operation based on the nice properties of fuzzy
partitions. This non-additive reconstruction operator represents
a convex family of usual additive reconstruction operators. The
obtained reconstructed image is thus a convex family of usual
reconstructed images. It allows the super-resolution method to
be less sensitive to the choice of the reconstruction method. To
make the reading of this method easier, it is presented with1D
signals. We present some experiments to illustrate the proved
properties of this new operator.

Keywords—Super-resolution, imprecise guaranteed reconstruc-
tion, Choquet integral, capacities.

I. I NTRODUCTION

Images with a high spatial resolution (HR) can be required
when only low spatial resolution imagers are available. HR
images can e.g. improve the performances of a pattern recog-
nition algorithm or enhance relevant details in the contextof
image based medical diagnosis.

Super-resolution image reconstruction is a technique that
recovers a HR image from a sequence ofK aliased, blurred
and noisy low resolution (LR) images acquired from the same
scene by one or several image sensors. The reconstructed
high resolution image must be a disaliased version of the low
resolution ones and should contain more details. It is often
expressed as an optimization process leading to reconstruct
the image that should have been obtained by using the same
imager but with a sharper point spread function (i.e. the
response of an imaging system to an impulse signal) and with
a higher spatial resolution. Such reconstruction need the LR
images to be acquired with sub-pixel projected motions. Thus
an accurate knowledge of the motion between images is also
required.

Most of the super-resolution techniques are based on two
dual operators called projection and back-projection. Projec-
tion models how the LR images can be derived from the
HR image. Back-projection consists in aggregating the LR
images in order to reconstruct a smoothed version of the sough
after HR image. Super-resolution techniques are usually very
sensitive to the choice of those two operators.

In this paper, we propose an interval-valued back-
projection operator that ensures a kind of guarantee in
the back-projected image. In fact, the interval-valued back-
projected image is the convex family of any back-projected
image that would have been obtained by a reconstruction tech-
nique using a wide range of positive monomodal probabilistic
kernels. This work is a first step towards the definition of a
new super-resolution imaging technique that should be robust
w.r.t. a choice of both projection and back-projection kernels.

In order to ease the understanding of this new technique,
we restrict its presentation to1D signals (i.e. reconstructing
the lines of the image). The2D extension of the presented
concepts is straightforward.

Section II presents the up-to-date literature about super-
resolution techniques. The projection and back-projection
models are also mentioned here. The following part of this
paper, Section III, presents operators based on imprecise prob-
ability theories (capacity and possibility theory) that extend
the usual kernel based convolution. These operators allow
convoluting a signal with a convex family of usual kernels.
In Section IV, we present the guaranteed reconstruction and
back-projection operators which are the main results of this
paper. The guaranty property is clarified and proved. Section
V contains experiments that illustrate the guaranty property of
the reconstruction and back-projection operators.

II. SUPER-RESOLUTION

A. State of art

The first work on reconstructing a HR image from a
sequence of LR images was published in 1984 [1] and the
term ”Super-resolution” itself appeared at around 1990 [2].

An extensive literature exists about super-resolution tech-
niques that has been published in the last two decades. A recent
survey on super-resolution imaging techniques is available in
[3]. [4] also provides a snapshot of methods and techniques
to improve images and video beyond the capabilities of the
cameras.

These techniques differ with respect to modeling and
algorithmic aspects. They are usually divided into four broad
categories:

1) Frequency domain-based techniques,
2) Iterative back-projection techniques,



3) Optimization techniques and
4) Projection onto convex sets (POCS) techniques.

1) Frequency domain-based techniques:Tsai and Huang
[1] at first proposed a frequency domain approach for solving
the problem of super-resolution image reconstruction in 1984.
This approach is based on assuming the original high reso-
lution image to be band-limited. It exploits the translational
property of the Fourier Transform by using the aliasing rela-
tionship that exists between the Continuous Fourier Transform
(CFT) of the original real scene and the Discrete Fourier
Transform (DFT) of the acquired low resolution images. This
early approach deals neither with blur nor noise. It has been
further extended by Kimet al [5] by introducing a weighted
recursive least square algorithm that combines filtering and
reconstruction in order to account for noise, then by Kim and
Su [6] to account for blur. However, the obtained method is
not stable due to the fact that super-resolution is an ill-posed
inverse problem. They thus proposed a recursive algorithm [5]
that includes a regularization term.

2) Iterative back-projection techniques:Iterative back-
projection techniques work in the spatial domain. It consists in
reconstructing a HR image withK LR images. It is based on
two dual operators: projection and back-projection. Projection1

consists in estimatingK LR images based on a HR image.
Back-projection consists in restoring a smoothed HR image
based on theK LR images. Classically, the projection is
modeled by a linear operator corrupted by an additive noise:

Ik = Ak Î + β, ∀k = 1, . . . ,K (1)

whereIk is thekth N-dimensional vector which is the lexico-
graphically ordered version of thekth LR image andÎ is the
M-dimensional vector which is the lexicographically ordered
version of the HR image.β is a N-dimensional additive noise
andAk is aN ×M matrix.

Ak can be decomposed into a down sampling operatorDk

(N × M matrix), a blurring operatorBk (M × M matrix)
which expresses the point spread function (PSF) of the imager
and a warping operatorW k (M × M matrix) modeling the
motion betweenIk and Î. Ak is usually computed that way:

Ak = DkBkW k, ∀k = 1, . . . ,K. (2)

It is also convenient to represent the projection as one linear
equation:

I = AÎ + β (3)

Moreover, the back-projection is based on aM × NK
matrixR that performs an aggregation of theK low resolution
images into a smooth HR image:

Î = RI. (4)

In many papers,R is defined as beingAbp the dual operator
of A.

Iterative back-projection techniques generally use an itera-
tive algorithm to solve the super-resolution issue [7]. Starting
from an initial guesŝI0, this algorithm recursively update the
current guesŝIn based on reducing the error between the low

1This operator is often referred toobservation modelin the literature

resolution images{AkÎn}k=1...K obtained by projecting this
current guess and the measured LR images{Ik}k=1...K . A
good example of such a process, based on the Schultz iterative
method, can be written as:

În+1 = În + λR(I −AÎn), (5)

whereλ is a factor that ensures the convergence of the algo-
rithm. Some other models have been proposed that consider
occlusion and transparency [8] or specific models for the back-
projection operator [9].

3) Optimization techniques:Optimization techniques try
to solve Equation (3) in an optimization framework. It is
based on defining an objective function composed of two
terms. The first term expresses how the HR image fits the
LR images by mean of the back-projection model. The second
term discards inappropriate solutions, preventing over-fitting.
A very common expression of this kind of algorithm, where
the fitting term is based on quadratic error, can be written as:

ǫ(Î) = ‖I −AÎ‖2 + λ‖QÎ‖2 (6)

whereQ is the regularisation matrix andλ > 0 is a regulari-
sation parameter used to control the regularization level of the
solution. Note that optimizing the unregularized Equation(6)
leads to the recursive Equation (5).

Iterative back-projection techniques can be seen as a partic-
ular case of optimization techniques. Both techniques makeuse
of a projection and a back-projection operator to alternatively
go from HR space to LR space and from LR space to HR
space.

4) Projection onto convex sets techniques:The Projection
Onto Convex Sets (POCS) techniques aim at solving the
super-resolution problem on the constraint satisfaction problem
framework. The POCS method has been introduced in [10]
[11] in 1982. In [12] [13], Stark explains the general tech-
nique for applying POCS for image restoration. He applied
this concept to the super-resolution problem in [14]. These
techniques also extensively use projection and back-projection
operators.

Recently POCS has been used for estimating a high res-
olution image from multi-camera low resolution surveillance
imaging [15].

B. Projection and Back-projection

In order to simplify the presentation of the developed
guaranteed reconstruction operators, we restrict this problem
to one dimension. Instead of considering an imageI, we work
with a 1D signalS. The extension in 2D of the proposed
concepts is straightforward.

Reconstruction is involved in the projection and back-
projection model underlying most super-resolution methods.
Indeed, a projection is, in some sense, a modified resampling
method for retrieving a LR signal from a HR signal. This is a
modified resampling since it allows displacements whose norm
is not sampling step multiplicative.

The reconstruction of a signalS = (Sn)n=1,...,N is condi-
tioned by the Nyquist Shannon sampling theorem and, in most
cases, a sampled version of the Sine Cardinal kernel is con-
voluted with the sampled image to achieve its reconstruction.



It is often better [16], [17] to consider a reconstruction which
involves a band limited discrete kernelηω = (ηωn )n=1,...,N ,
which is not translation invariant since its shape depends on
the reconstruction locationω. Reconstruction, in that way, of
the sampled signalS at positionω ∈ Ω is written as:

S̃(ω) =
N
∑

n=1

Snη
ω
n . (7)

In super-resolution, the projection describes the way a
LR signalSk is obtained from the HR signal̂S. The global
description of this model is the following sequence I/ recon-
struction of the continuous signal, II/ transformation of the
obtained continuous signal and III/ LR sampling. We thus
recognize a transformed down-sampling procedure.

Ŝ
I
−→ S̃

II
−→ S̃k

III
−−→ Sk

The formal mathematical description follows here and can be
understood by taking the previous scheme in the reverse order.
Thus, for anyn = 1, . . . , N ,

Sk
n = S̃k(ωn) = S̃

(

t−1
k (ωn)

)

=

M
∑

m=1

Ŝmη
t
−1

k
(ωn)

m . (8)

Where t−1
k is a geometric transformation that we consider

here to be a translation. From this projection model, the
transformation and down-sampling operations clearly appear.

While projection is some kind of transformed down-
sampling, the back-projection model that we propose here isa
transformed up-sampling model. This model will be used and
extended in the next sections.

Within this approach, we obtain eitherK back-projected
HR signalsŜk from K LR signalsSk or one fused back-
projected HR signal̂S.

First, let us describe how we obtain theK back-projected
HR signals. Back-projecting thekth LR signal involves I/
reconstructing the LR signal in order to obtain a continuous
signal, II/ transforming the obtained continuous signal, III/
HR sampling this signal. We thus recognize a transformed
up-sampling procedure. The formal mathematical description
follows here.

Sk I
−→ S̃k

II
−→ S̃

III
−−→ Ŝk

Once again, the following formal mathematical description
should be read form point III to I in the previous scheme.
Thus, for anym = 1, . . . ,M ,

Ŝk
m = S̃(ωm) = S̃k (tk(ωm)) =

N
∑

n=1

Sk
nη

tk(ωm)
n . (9)

Then, how the fused back-projected HR signal is computed
is described here. Let us consider themth pixel in the HR
space. Thenth pixel of the kth LR image can be seen as
an information with a weightηtk(ωm)

n in the reconstruction
process of themth pixel value. Thus, a straightforward way to
fuse all the information provided by theK LR images should
be:

Ŝm = γ

K
∑

k=1

N
∑

n=1

Sk
nη

tk(ωm)
n , (10)

γ being a normalizing factor such that, if∀k ∈ {1, . . . ,K},
∀n ∈ {1, . . . , N}, Sk

n = C (C being a constant value), then
∀m ∈ {1, . . . ,M}, Ŝm = C. This normalizing factorγ equals
1
K

due to the fact thatηtk(ωm) is summative:

C = γ

K
∑

k=1

N
∑

n=1

Cηtk(ωm)
n

=⇒
1

γ
=

K
∑

k=1

N
∑

n=1

ηtk(ωm)
n =

K
∑

k=1

1 = K.

Thus, Equation (10) is nothing else but the usual average of
theK reconstructed signalŝSk:

Ŝm =
1

K

K
∑

k=1

Ŝk
m. (11)

III. S IGNAL CONVOLUTION WITH A CAPACITY

A. Capacity, possibility measure and imprecise expectation

Let Θ be any discrete or continuous space. A capacityν on
Θ is a monotone confidence measure, i.e. a set-valued function
defined on the power setP(Θ) such thatν(∅) = 0, ν(Θ) = 1
and if A ⊆ B ⊆ Θ, thenν(A) ≤ ν(B).

A probability measure is a particular case of capacity which
respects the additivity axiom. Another particular capacity
which is of interest for us is the concave capacity: this is a
capacity which is 2-alternating, i.e. for anyA and B ⊆ Θ,
then

ν(A ∩B) + ν(A ∪B) ≤ ν(A) + ν(B).

From a concave capacity, a dual confidence measureνc, which
is convex (opposite inequality to concave), is computed in this
way:

∀A ⊆ Θ, νc(A) = 1− ν(Ac). (12)

The two measures,νc and ν, encode a family of probability
measures, denoted byM(ν), and defined by:

M(ν) = {P | ∀A ⊆ Θ, νc(A) ≤ P (A) ≤ ν(A)}.

This encoding property is due to the sensitivity analysis
interpretation [18] of concave capacities.

A possibility measure is a particular case of concave
capacity [19]. Similarly to probability theory, a possibility
measureΠ is equivalently represented by its distribution
function: the possibility distributionπ. In probability theory,
the link between distribution and measure is summative. In
possibility theory, this link is maxitive: for anyA ⊆ Ω,
Π(A) = maxω∈A π(ω).

Since a concave capacity measure is non-additive, the
conventional expectation operator cannot be used. The ex-
pectation operator must be replaced by its generalization,
called the Choquet integral (denotedC) [20]. Using a Choquet
integral to compute the expectation of any bounded (discrete
or continuous) functionf leads to an interval-valued operator
whose bounds are given by:

Eν(f) = [Eν(f), Eν(f)] = [Cνc(f),Cν(f)]. (13)

The key point of this approach is that the interval-valued ex-
pectation obtained by means of a concave capacity measure is



the set of all the single-valued expectations obtained by using
all the convolution kernels encoded by the considered concave
capacity. This fundamental property comes from the work of
Denneberg [21] linking precise and imprecise expectations.

Theorem 1:Let f : Θ → R be a (discrete or continuous)
bounded function and letν be a concave capacity defined onΘ,
∀P ∈ M(ν), EP (f) ∈ Eν(f) and∀y ∈ Eν(f), ∃P ∈ M(ν)
such thaty = EP (f).

B. Signal convolution with a capacity

In most convolution-based signal applications (like low-
pass filtering, sampling or reconstruction), the used convolu-
tion kernels are positive and have a unitary gain. These kernels
are calledsummative kernels. For instance, the super resolution
involves a reconstruction (7) kernel that is summative:

N
∑

n=1

ηωn = 1.

In that case, the convolution kernel can be seen as a
probability distribution or a probability density function that
induces a probability measure, computed in this way:

∀A ⊆ {1, . . . , N}, Pηω (A) =
∑

n∈A

ηωn .

From this remark, we can show that reconstruction, which
is a convolution operation can be written as an expectation
operator:

S̃(ω) = Eηω (S). (14)

We propose to rewrite these operations with the expectation
operator since it allows dealing with a family of convolution
kernels by switching from the usual probability theory to
imprecise probability theory. Since a probability measureis
in one to one correspondence with a probability distribution
or a probability density function (and thus with summative
convolution kernels) we can claim that a concave capacityν
encodes a family of summative convolution kernels equivalent
to M(ν).

All the necessary definitions were given in Sections III-A to
directly define the imprecise convolution based upon a capacity
neighborhood.

Definition 1: Let S : Ω → R be a (discrete or continuous)
signal and letν be a concave capacity defined onΩ, The
convolution ofS by ν is defined by:

S∗ν = Eν(S) = [Cνc(S),Cν(S)] (15)

S∗ν represents all the convolutions we would have obtained
with the set of convolution kernels encoded byν.

Some particular applications of this operator have already
been proposed: imprecise linear filtering and noise level esti-
mation [22], [23], guaranteed image rigid transformation [24]
or link between fuzzy morphology and imprecise filtering [25].

IV. GUARANTEED IMPRECISE BACK-PROJECTION

The back-projection method is particularly sensitive to the
reconstruction kernel choice: see its expression (9). In this
section we propose a particular case of the precise recon-
struction involved in the back-projection. This operator is
based on a reconstruction kernel which is the convolution
of a summative kernelκ with a fuzzy partition of the LR
signal domain. This operator is interesting for two reasons: 1/
it allows to transfer to the reconstructed signal the smoothness
of the chosen fuzzy partition and 2/ it allows an extension to
a guaranteed imprecise reconstruction operator and then toa
guaranteed back-projection operator, which is the main object
of this article.

A. Fuzzy partition based precise reconstruction

The reconstruction kernelηω that we propose to use is
constructed from a fuzzy partition on the signal domain.
Let {Cn}n=1,...,N be theN atoms of a fuzzy partition à la
Ruspini ofΩ, i.e. a set of unimodal symmetrical fuzzy intervals
{µn}n=1,...,N complying with [26], [27]:∀ω ∈ Ω,

•
∑M

n=1 µn(ω) = 1,

• ∃!n, such thatµn(ω) > 0 andµn+1(ω) ≥ 0,

• µn is continuous.

A useful tool for our developments is the definition of the
union of fuzzy subsets in the fuzzy partition.

Definition 2: Let A ⊂ {1, . . . , N} be a subset of nodes of
the à la Ruspini fuzzy partition{µn}n=1,...,N . Let ⊥A be the
notation for

⋃

n∈A Cn where the membership function of this
union of fuzzy subsets is theLukasiewicz T-conorm defined
by:

∀ω ∈ Ω, µ⊥A(ω) =
∑

n∈A

µn(ω).

Note that∀A ⊆ {1, . . . , N}, ∀ω ∈ Ω, min(1,
∑

n∈A µn(ω))
=

∑

n∈A µn(ω), since
∑

n∈A µn(ω) ≤ 1.

Such operator fulfills an important property: for any sets
of partition nodesA,B ⊂ {1, . . . , N},

∀ω ∈ Ω, µ⊥A∪⊥B(ω)+µ⊥A∩⊥B(ω) = µ⊥A(ω)+µ⊥B(ω). (16)

Equation (16) is directly deduced from the following gen-
eral equation which is true for any sequence(un)n=1,...,N

of real numbers:
∑

n∈A∪B un =
∑

n∈A un +
∑

n∈B un −
∑

n∈A∩B un.

Usually a reconstruction operator (7) involves, for any
ω ∈ Ω, a summative kernelηω = (ηωn )n=1,...,N . In our
approach, we propose to work with a summative kernelηω

which is the convolution of another summative kernelκ
with the fuzzy partitionµ. Thus, we propose to consider a
reconstruction kernel defined for anyω of the image domain
Ω by:

∀n = 1, . . . , N, ηωn = (κ ∗ µn) (ω) = Eκω (µn). (17)

In that case, the reconstruction of a signal can be written as

S̃κ(ω) =

N
∑

n=1

Sn (κ ∗ µn) (ω). (18)



It can be shown that the set of weights((κ ∗ µn)(ω))n=1,...,N

is a summative kernel. Indeed,
∑N

n=1 η
ω
n =

∑N
n=1

∫

Ω
κ(u −

ω)µn(u)du =
∫

Ω κ(u − ω)
∑N

n=1 µn(u)du =
∫

Ω κ(u− ω)du
= 1.

The interest of this reconstruction is its stability due to
the smoothness of the fuzzy partition basis function. Indeed,
convolution is a type of averaging: it tends to be a smoothing
operation. Generally speaking, a convolution of two functions
inherits the “best” properties of both its operands. For instance,
if µ is continuous onΩ, then, for anyn, ω 7→ ηωn =
(κ ∗ µn) (ω) is continous and thus is̃Sκ since it is a weighted
sum of theseN functions, see (18). Fixed smoothness could
be passed to the reconstructed signal when the smoothness of
the fuzzy partition is fixed.

Now we can show that the probability measure associated
to the summative kernelηω (17), which is a probability
distribution, can be written, for any coalition of sampling
positions (or fuzzy partition nodes)A, by

Pηω (A) = Eκω (µ⊥A). (19)

Indeed,Pηω (A) =
∑

n∈A ηωn =
∑

n∈A

∫

Ω
κ(u − ω)µn(u)du

=
∫

Ω κ(u − ω)
∑

n∈A µn(u)du =
∫

Ω κ(u − ω)µ⊥A(u)du =
Eκω (µ⊥A). Finally, the precise reconstruction operator is

S̃κ(ω) = EPηω (S). (20)

B. Guaranteed reconstruction

Proposition 1 shows the stability of the expectation (precise
or imprecise) operator when applied to coalitions of fuzzy
subsets of a fuzzy partition à la Ruspini.

Proposition 1: Let {Cn}n=1,...,N be a fuzzy partition à la
Ruspini ofΩ.

1) Let P be a continuous probability measure onΩ.
Then Pµ, defined, for any subset of nodesA ⊂
{1, . . . , N}, by: Pµ(A) = EP (µ⊥A) is a discrete
probability measure.

2) Let ν be a continuous concave capacity, thenνµ , for
any subset of nodesA ⊂ {1, . . . , N}, by: νµ(A) =
Eν(µ⊥A) = Cν(µ⊥A) is a discrete concave capacity.

3) if P ∈ M(ν) thenPµ ∈ M(νµ).

Proof:

1) This point is directly due to the linearity of the expec-
tation operator and to property (16).

2) First it should be noted that for any concave capacityν,
for any f andg in L1(Ω), Cν(f + g) ≤ Cν(f) +Cν(g). If f
andg are comonotonic onΩ, thenCν(f+g) = Cν(f)+Cν(g).

µ⊥A∪⊥B andµ⊥A∩⊥B are comonotonic onΩ. Indeed, due to
the Lukasiewicz T-conorm definition, (i) ifµ⊥A∩⊥B = 0 and
is flat, then whatever the monotonicity ofµ⊥A∪⊥B, they are
comonotonic ; (ii) ifµ⊥A∩⊥B > 0 thenµ⊥A∩⊥B = µ⊥A∪⊥B or
µ⊥A∪⊥B = 1 and thusµ⊥A∪⊥B andµ⊥A∩⊥B are comonotonic.

Therefore Cν(µ⊥A∪⊥B + µ⊥A∩⊥B) = Cν(µ⊥A∪⊥B) +
Cν(µ⊥A∩⊥B).

From expression (16), we also have thatCν(µ⊥A∪⊥B +
µ⊥A∩⊥B) = Cν(µ⊥A +µ⊥B), which is≤ Cν(µ⊥A) +Cν(µ⊥B),
becauseν is concave. Thus,

νµ(A ∪B) ≤ νµ(A) + νµ(B)− νµ(A ∩B),

νµ is a concave capacity.

3) If Pµ(A) = EP (µ⊥A) is a probability measure and
νµ(A) = Cν(µ⊥A) is a concave capacity andP ∈ M(ν),
then a direct implication of Theorem 1 is thatPµ ∈ M(νµ).

From these stability results, we construct an imprecise re-
construction operator which is guaranteed to contain a set of
reconstructors that we can tune. This new operator employs a
fuzzy representation of the involved reconstruction kernel κ.
Instead of considering usual summative reconstruction kernel
κ as it is done in the reconstruction operator (18), we use
a possibility distributionπ. It allows explicitly working with
families of usual reconstruction kernels.

Within this modeling, we propose to use the discrete
concave capacity defined, for any coalition of sampling points
A, by:

νπω (A) = CΠω (µ⊥A) (21)

The imprecise reconstruction operator is obtained from this
concave capacity constructed from the fuzzy partition and the
fuzzy (or possibilistic) reconstruction kernelπ by the Choquet
integral operator.

Definition 3 (Guaranteed reconstruction operator):Let
S = (Sn)n=1,...,N be a sampled signal. Letπ be a fuzzy
neighborhood modeling the ill-known reconstruction kernel
of S. Let µ be a fuzzy partition on the reconstruction domain.

[S̃π(ω), S̃π(ω)] = [Cνc
πω

(S),Cνπω (S)], (22)

is the guaranteed reconstructed signal ofS, where νπω is
defined by (21).

Our main result is that the imprecise reconstruction obtained
with a fuzzy reconstruction modelingπ that we propose is
guaranteed to include the set all the precise reconstruction
operators obtained with the set reconstuction models of the
family M(π) represented byπ.

Theorem 2 (Guaranteed reconstruction theorem):Let
µ be a fuzzy partition on the reconstruction domain. Let
π be a fuzzy subset representing a family of summative
reconstruction kernelsM(π). Then, for any summative
reconstruction kernelκ of M(π),

∀ω ∈ Ω, S̃κ(ω) ∈ [S̃π(ω), S̃π(ω)]. (23)

Proof: From the definitions ofS̃κ and [S̃π, S̃π] (respec-
tively (20) and (22)), from the measure constructions (19) and
(21) as well as from Proposition 1, it is directly proved.

Moreover, the smoothness of the set of reconstructed signals
is guaranteed to be at least the same as the fuzzy partition one.



C. Guaranteed back-projection

The usual back-projection can thus be extended to a guar-
anteed back-projection. The first step is the direct application
of the previous imprecise guaranteed reconstruction to allthe
LR signalsSk for the transformed sampling points:tk(ωm)
(cf. expression (9)). Thus, for anyk = 1, . . . ,K, we have

∀m = 1, . . . ,M, [Ŝk
m, Ŝk

m] = [S̃π(tk(ωm)), S̃π(tk(ωm))],
(24)

which contains all the HR reconstructed signals we would
have obtained with all the summative reconstruction kernels
of M(π).

The guaranteed back-projection is the fusion of these
guaranteed reconstructed HR signals with the same fusion
operator than in the precise case. Thus,

∀m = 1, . . . ,M, [Ŝm, Ŝm] = [
1

K

K
∑

k=1

Ŝk
m,

1

K

K
∑

k=1

Ŝk
m]. (25)

Theorem 3 (Guaranteed back-projection theorem):Let µ
be a fuzzy partition on the reconstruction domain. Letπ be a
fuzzy subset representing a family of summative reconstruction
kernels M(π). All the back-projection operators obtained
with the summative kernelsκ ∈ M(π) are included in the
guaranteed intervalist back-projection operator (25) obtained
with π.

Proof: Summing intervals does not alter the guaranty.
Therefore Theorem 3 is proved.

V. EXPERIMENTS

In this experimental section, we illustrate the propertiesof
this new back-projection operator that have been proved in
Section IV. This section is decomposed in three parts. In the
first part, we explain and illustrate how a sub-pixel projected
translation modifies the measured illumination distribution in
the acquired image. The second and third parts are respectively
dedicated to the illustration of Theorem 2 and Theorem 3.
In the second part, we consider reconstructing a single LR
image. In the third part, we perform a back-projection of a HR
image with20 LR images. The LR images are simulated by
subsampling a very-high resolution (22610× 22279) image of
the painting ”The Ambassadors” (1533) by Hans Holbein the
Younger, according to the projection model (8). To provide an
easier reading, the results are given in1D, i.e. the considered
signals are lines of the images. Extending this method in2D
can be achieved in two ways. The first way consists in defining
a 2D capacity as in [25]. A second and easier technique can
be used that consists in considering the family of separable
kernels. In this case, performing the2D reconstruction can be
simply performed by performing the reconstruction row-wise
then column-wise.

A. Translational sampling effects

As mentioned in the introduction, achieving super-
resolution involves LR input images which are related by sub-
pixel motions. The high resolution arises from the fact that
the LR images contain different information. The LR images
are obtained by sub-sampling a very high resolution image by
using the projection model (8) with different translation values.

(a) (b)

(c) (d) (e)

Figure 1: (a) HR image, (b) Zoom on a part of the HR image, (c), (d), (e)
zoom on parts of three LR images generated from the image (a) with different
translation values.

Figure 1(c)(d)(e) shows details of three LR images result-
ing from the HR image (Figure 1(a), detail on (b)). It clearly
appears in Figure 1 that the three low resolution images carry
different information related to the original image: have aclose
look, for example, at the white spot in the eye or the shadow
under the eyebrow.

B. Single-input reconstruction

This part aims at illustrating that any precise reconstructed
signal obtained with Expression (18) is included in the interval-
valued reconstructed signal obtained by considering the con-
cave capacityνπ defined by Expression 21, ifκ is included in
the core ofπ.

Within this experiment, we consider the triangular maxitive
kernel whose spread∆ equals five times the spread of the
sought after HR sampling in order to consider a wide range of
unimodal symmetric kernels [28]. The set of summative ker-
nels used in this experiment includes Epanechnikov, truncated
Gaussian, cubic splines, uniform, and randomly generated
kernels having a spread lower or equal to∆. The considered
LR image is obtained by down-sampling each line of the
original HR image by25, using a cubic spline kernel whose
spread equals25.

Figure 2 plots a part of one of the original image lines.
Figure 3 is the LR signal obtained by down-sampling the
original line. Figure 4 plots the imprecise reconstructed signal
obtained by using the concave capacityνπ (upper bound
in blue, lower bound in red) superimposed with ten precise
reconstructions (in light blue) obtained with summative kernels
constructed as proposed in Expression (9). Figure 4(b) clearly
shows that all the precise reconstructed signals belong to the
imprecise reconstructed signal.



Figure 2: Original HR signal.

Figure 3: LR generated signal.

C. Multiple-input reconstruction

The aim of this part is to illustrate that the interval-valued
reconstruction, obtained using several LR signals relatedby
sub-pixel translations (according to Expression (25)) andthe
concave capacityνπ, includes all precise reconstructions ob-
tained using the same LR signals (according to Expression
(10)) and by considering a summative kernel obtained by
convoluting a summative kernelκ (included in the core of
π) with a fuzzy partition of the LR space.

20 LR signals have been generated according to the
translational projection equation (8). The translation values
are integers in the original image space but not in the low
resolution space. The other settings remain the same as the
settings of Section V-B.

For each of the 20 LR signals, an interval-valued recon-
struction is computed taking into account the known translation
values and using the same maxitive kernelπ than in the
previous experiment. These20 interval-valued recontructions
are fused using a mean operator, i.e. the lower (resp. upper)
boundary is the mean of all lower (resp. upper) boundaries
according to Expression (25). The upper (resp. lower) bound
of this interval-valued signal is plotted in blue (resp. in red)
on Figure 5(a) As in the previous experiment, we have consid-
ered10 different reconstructions according to Expression (10)
by considering10 different summative reconstruction kernels

(a)

(b)

Figure 4: (a): 10 precise-reconstruction signals with a single LR input signal
(light blue) and upper (resp. lower) bound of the imprecise reconstruction in
red (resp. blue). (b): enlargement of the portion framed in black in (a)

generated by convoluting a fuzzy partition in the LR space
with 10 summative kernels belonging to the core ofπ.

On Figure 5(a), those10 precise reconstructed signals
are plotted in light blue. Figure 5(b) clearly shows that the
interval-valued reconstructed signal includes every precise re-
constructed signals. This property is true on the whole domain
of the signal.

VI. CONCLUSION

In this paper, we proposed an original non-additive interval-
valued reconstruction operator in a super resolution scheme.
This solution allows coping with an a priori choice of recon-
struction kernels which is a crucial point in super resolution
techniques.

Our approach consists on shifting from a precise to an
imprecise representation of the reconstruction kernel. This
imprecise representation is based on constructing a concave
capacity, whose core contains a wide range of usual recon-
struction kernels, by exploiting the nice properties of fuzzy
partitions. The obtained reconstructed image (here lines of
the image) is interval-valued. We prove that this interval
contains every precise reconstructions obtained by using a
reconstruction kernel belonging to the core of the considered
capacity.



(a)

(b)

Figure 5: (a): 10 precise-reconstruction signals with 20 LRinput signals in
light blue and upper (resp. lower) bound of the intervallistic reconstruction in
red (resp. blue). (b): enlargement of the portion framed in black in (a)

Future work will study the specificity of the obtained
interval-valued reconstructed signal (is it the most specific
interval having this property), the extension of this approach
in two dimension and its use in an interval valued super-
resolution reconstruction of the original image. This lastpart
will need an interval-valued extension of the reconstruction
procedures described in Section II-A.
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