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Dynamic Whole-Body Motion Generation
under Rigid Contacts and other Unilateral Constraints

Layale Saab, Oscar E. Ramos, François Keith, Nicolas Mansard, Philippe Soùeres, Jean-Yves Fourquet

Abstract—The most widely-used technique to generate whole-
body motions on a humanoid robot accounting for various tasks
and constraints is the inverse kinematics. Based on the task-
function approach, this class of methods makes possible the
coordination of the robot movements to execute several tasks in
parallel and account for the sensor feedback, in real-time thanks
to the low computation cost. To some extent, it also enables
dealing with some of the robot constraints (e.g. joint limits or
visibility) and managing the quasi-static balance of the robot. In
order to fully use the whole range of possible motions, this paper
proposes to extend the task-function approach to handle the
full dynamics of the robot multi-body along with any constraint
written as equality or inequality of the state and control variables.
The definition of multiple objectives is made possible by ordering
them inside a strict hierarchy. Several models of contact with the
environment can be implemented in the framework. We propose
a reduced formulation of the multiple rigid planar contact that
keeps a low computation cost. The efficiency of this approach is
illustrated by presenting several multi-contact dynamic motions
in simulation and on the real HRP-2 robot.

Index Terms—Humanoid robotics, redundant robots, dynam-
ics, force control, contact modeling.

I. I NTRODUCTION

T HE GENERATION of motion for humanoid robots is
a challenging problem, due to the complexity of their

tree-like structure and the instability of their bipedal posture
[3]. Typical examples are shown in Fig. 1, with the HRP-
2 robot using multiple non-coplanar contacts to perform a
dynamic motion. These robots own a large number of degrees
of freedom (DOF), typically more than 30. In return, they are
subject to various sets of constraints (balance, contact, actuator
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Fig. 1. Dynamic multi-contact motion with the HRP-2 model.

limits), that reduce the space of possible motions. These
constraints can typically be formulated as equalities (e.g. zero
velocity at rigid-contact points [4]), and inequalities (e.g.
joint position [5], velocity or torques bounds, obstacles [6]).
Moreover, they are of relative importance (e.g. balance has
to be considered more important than visibility [7]). In total,
the motion has to be designed in a set that lives in the
high-dimensional configuration space but is implicitly limited
to a much smaller submanifold by the set of constraints.
This makes the classical sampling methods [8], [9] more
difficult to use than for a classical manipulator. The motion
manifold cannot be sampled directly but by projection [10].
The connection process in high-dimension is costly [11] and
and often fails due to the number of constraints.

Rather than designing the motion at the whole-body level
(configuration space), the task function approach [12], [13]
proposes to design the motion in a space dedicated to the
task to be performed. It is then easier to design the reference
motion in the task space, and transcripting this reference from
the task space to the whole-body level is only a numerical
problem. This approach is versatile, since the same task is
generally transposable from one robot or situation to another.
It also eases the use of sensory feedback, since the sensory
space is often a good task-space candidate [14], [15].

A task is a basic brick of motion, which can be combined
sequentially [16] or simultaneously to a complex motion.
Simultaneous execution can be achieved in two ways: by
weighting, or by imposing a strict hierarchy. Coming from nu-
merical optimization [17], this second solution was introduced
in robotics by [18] and formalized for any number of tasks
in [19], [20]. This approach is well fitted to cope with equality
constraints. However, inequality constraints cannot be taken
into account explicitly. Therefore, approximate solutions, such
as potential field approaches [21], [7] or damping functions
[5], [22] have been proposed to consider inequalities.

The transcription of the motion reference from the task
space to the whole-body control is naturally written as a
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quadratic program (QP) [23]. A QP is composed of two layers,
namely the constraint and the cost. It can be seen as a hierarchy
of two levels, the constraint having priority over the cost.If
only equality constraints are considered, the QP resolution
corresponds to the inversion schemes [20], in the particular
case of two levels. Inequalities can also be taken into account
directly, as constraints, or in the cost function [24]. In [25], a
method to extend the QP formulation to any number of priority
levels is given. The solution of such a hierarchical problemis
computed by solving a cascade of QP (or hierarchical QP).
In [26], a dedicated solver has been proposed to obtain the
solution at lower cost (in one step instead of a cascade).

All these works only consider the kinematics of the robot.
On a humanoid robot, many constraints arise from the dynam-
ics of the multi-body system. The formulation by task can be
extended to compute the torque at the whole-body level from
the reference motion expressed in the dedicated task space,
also calledoperational space[27]. For a humanoid in contact,
the motion is constrained to the submanifold of configurations
that respects the contact model [28] as illustrated by Fig. 1. A
review of the work in modeling and control of the dynamics
of a set of bodies in contact is proposed in [29], [30]. The
connection with inverse dynamics has been done in [31], [32].
Using these approaches, it is possible to take into account
a hierarchy of tasks and constraints (orstack of tasks [33]),
all written as equalities [34], [35]. In [36], a first solution to
handle inequalities in the stack of tasks was proposed, but
cannot set any inequality constraint on the contact forces.
In [37], [38], the inverse-dynamics problem has been written
as a QP, where the unilateral contact constraints, along with
classical unilateral constraints (joint limits, etc) are explicitly
considered. In that case, several tasks can be composed by
setting relative weights, but a hierarchy of tasks is not possible.

In this paper, we propose a generic solution to take into
account equalities and inequalities in a strict hierarchy to
generate a dynamic motion. This solution is based on the sim-
ilarities between inverse kinematics and inverse dynamics. In
Section II, the inverse-kinematics scheme is recalled, written
into a general form; the possibility of taking into account
inequalities is then introduced using the solver [25], [26].
Then, putting the operational-space inverse dynamics under
the same generic form, Section III uses the same hierarchical
solver to take into account both dynamics and inequalities.
This first solution deals with the robot in free space. In
Section IV, contacts are introduced in the model and used in
the resolution scheme. The contact model is generic and can be
adapted to various situations (rigid contact, friction cone [39],
elastic contact [40]). A solution is proposed in Section V to
implement a reduced form of multiple plane/plane slidingless
rigid contacts. In Section VI the connection is made with the
zero-moment point (ZMP) contact criterion [41] classically
used in humanoid robotics [42]. The generation is close to the
real time (around 20ms per control cycle on a typical 30DOF
robot). Some examples of complex motions involving non-
coplanar contacts and their execution on the real robot are
presented in Section VII.

II. I NVERSEK INEMATICS

A. The task-function approach

The task-function approach [13], or operational-space ap-
proach [27], [43], provides a mathematical framework to
describe tasks in terms of specific output functions. The task
function is a function from the configuration space to an
arbitrary task space, chosen to ease the observation and the
control of the motion with respect to the task to perform.

A task is defined by a triplet(e, ė∗, Q), wheree is the task
function that maps the configuration space to the task space,
ė∗ is the reference behavior expressed in the tangent space to
the task space ate. Q is the differential mapping between the
task space and the control space of the robot which verifies
the relation:

ė + µ = Qu (1)

whereu is the control in the configuration space andµ is the
drift of the task. To compute a specific robot controlu∗ that
performs the referencėe∗, any numerical inverse ofQ can be
used. The generic expression of the control law is then :

u∗ = Q#(ė∗ + µ) + Pu2 (2)

In this expression, the first part performs the task, and the
second part, modulated by the secondary control inputu2,
expresses the redundancy of the task [18]. In the first term,
Q# is any reflexive generalized inverse ofQ, often chosen to
be the (Moore-Penrose) pseudoinverseQ+ [44] or a weighted
inverseQ#W [45] (see App. A). In the second term of (2),
P = I − Q#Q is the projector onto the null space ofQ
corresponding toQ#.

B. Hierarchy of tasks

The projectorP is intrinsically related to the redundancy
of the robot with respect to the taske. A secondary task
(e2, ė

∗
2, Q2) can be executed usingu2 as a new control input.

Introducing (2) inė2 + µ2 = Q2u gives:

ė2 + µ̃2 = Q̃2u2 (3)

with µ̃2 = µ2 − Q2Q
#(ė∗ + µ) and Q̃2 = Q2P. This last

equation fits the template (1), and can be solved using the
generic expression (2) [20]:

u2
∗ = Q̃2

#
(ė∗ + µ̃2) + P2u3 (4)

whereP2 enables the propagation of the redundancy to a third
task using the inputu3. By recurrence, this generic scheme can
be extended to any arbitrary hierarchy of tasks.

C. Inverse kinematics formulation

In the inverse-kinematics problem, the control inputu is
simply the robot joint velocityq̇. The differential mapQ
between the task and the control is the task JacobianJ. In
that case, the driftµ = ∂e

∂t
is often null, and (1) is written:

ė = Jq̇ (5)
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The simplest and most-often used solution is to chooseQ# to
be the pseudoinverseQ+, that gives the least Euclidean norm
of both q̇ and ė∗ − Jq̇ [46], [47]. The control law is then:

q̇∗ = q̇∗1 + Pq̇2 (6)

where q̇∗1 = J+ė∗. A typical reference behavior is an expo-
nential decay ofe to zero: ė∗ = −λe, λ > 0.

It may happen thatJ becomes singular, i.e.rank(J) < r0,
wherer0 is the nominal rank ofJ out of the singular config-
uration. Numerical problems can occur during the transition
from the nominal situation to the singular one. To avoid these
problems, the pseudoinverse is often approximated by the
damped least-squareJ† defined by [48], [49]:

J† =

[
J
ηI

]+ [
I
0

]
(7)

where I is the identity matrix of proper size andη is a
damping factor, chosen as an additional parameter of the
control (typically,η = 10−2 for a humanoid robot).

D. Projected inverse kinematics

Consider a secondary task(e2, ė∗2, J2). The template (3) is:

ė2 − J2q̇
∗
1 = J2Pq̇2 (8)

In this case, the differential map is the projected Jacobian
Q = J2P, and the drift isµ = −J2q̇∗1 . The control inputq̇∗2
is obtained once more by numerical inversion [20], [50]:

q̇∗2 = (J2P)
+(ė2 − J2q̇

∗) + P2q̇3 (9)

whereP2 is the projector into the null space ofJ2P . The same
scheme can be reproduced iteratively to take into account any
number of tasks untilPi is null.

In generalrank(J2P) ≤ rank(J2) ≤ r2, wherer2 is the
nominal rank ofJ2. When the second inequality is strict, the
singularity is said to bekinematic; when the first inequality is
strict, the singularity is said to bealgorithmic [51]1. To avoid
any numerical problem in the neighborhood of the singularity,
a damped inverse can be used to invertJ2P.

E. Hierarchical quadratic program resolution

1) Generic formulation:When considering a single task,
the solution obtained with the pseudoinverse (2) is known tobe
the optimal solution of the QPmin

u
||Qu− ė∗−µ||2. The great

advantage of the QP formulation is that both linear equalities
and inequalities can be considered, while the pseudoinverse-
based schemes presented above cannot explicitly deal with
inequalities. A quadratic program is composed of a quadratic
cost function to be minimized while satisfying the set of
constraints [52]. It can be seen as a two-level hierarchy, where
the set of constraints has priority over the cost. Inequalities are
set as the top-priority. The introduction of slack variables is a
classical solution to handle an inequality at the second priority
level [53]. In [25], it was proposed to use the slack variables
to generalize the QP to more than two levels of hierarchy and

1Both cases are similar in the sense that

[

J1
J2

]

is singular.

thus to build a hierarchical quadratic problem (HQP) handling
inequalities.

The HQP formulation is first recalled in a generic frame.
A generic constraintk is defined by the linear mapAk and
the two inequality bounds(b

k
, bk), where b

k
and bk are

respectively the lower and upper bounds on the reference
behavior2. At level k, the cascade algorithm solving the
hierarchy(Ak, bk) is expressed by the following QP:

min
uk,wk

||wk||2

s.t. b
k−1

≤ Ak−1uk +w
∗
k−1

≤ bk−1

b
k

≤ Akuk + wk ≤ bk

(10)

where Ak−1, (b
k−1

,bk−1) are the constraints at all the
previous levels from 1 tok − 1 (Ak−1 = (A1, ..., Ak−1)),
andAk, (b

k
, bk) is the constraint at levelk.

The slack variable3 wk is used to add some freedom to
the solver if no solution can be found when the constraintk is
introduced under thek−1 previous constraints:wk is variable
and can be used by the solver to relax the last constraintAk.
On the other hand,w∗

k−1
is constant and set to the result

of the previous optimization of thek − 1 first QP (at each
of the iterations of the cascade,w∗

k−1
is augmented with the

optimalw∗
k by w

∗
k−1

:= (w∗
k−1

, w∗
k)). A solution to thestrict

k − 1 constraintAk−1 is then always reached, even if the
slack constraintAk is not feasible: this corresponds to the
definition of the hierarchy.

A classical method to compute the solution of a QP or HQP
relies on an active-search algorithm [52], [26] (see App. B),
which implies iterative computations of the pseudoinverseof
a subproblem of the initial QP. Since pseudoinverses are used,
the classical numerical problems can occur in the neighbor-
hood of singularities. Regularization methods that extendthe
damping inverse [49] used in robotics can be applied [54].

The method proposed above is generic and can be applied
to any numerical problem written with a linear hierarchical
structure. In that case, it is referred to as HQP (or cascade of
QP) and denoted with the lexicographic order:(i) ≺ (ii) ≺
(iii) ≺ ... which means that the constraint(i) has the highest
priority. In the following, we propose a solution to apply this
formulation to invert kinematics and dynamics. The constraints
are then the tasks defined above and the hierarchical solver is
called a stack of tasks (SOT) or hierarchy of tasks.

2) Application to inverse kinematics:When considering a
single task, inversion (6) corresponds to the optimal solution
to the problem:

min
q̇

||Jq̇ − ė∗||2 (11)

By applying the QP resolution scheme, both equalities and
inequalities can be considered. Replacingb by ė, the reference
part is then rewritten:

ė∗ ≤ ė ≤ ė
∗

(12)

2Specific cases can be immediately implemented:b
k
= bk in the case of

equalities andb
k
= −∞ or bk = +∞ to handle single-bounded constraints.

3w is an implicit optimization variable whose explicit computation can be
avoided when formulating the problem as a cascade. It does notappear in the
vector of optimization variablesu. See [26] for details.
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For instance, in the case of two tasks with priority ordere1 ≺
e2, the expression of the QP is given by:

min
q̇,w2

||w2||2

s.t. ė∗1 ≤ J1q̇ + w∗
1 ≤ ė

∗
1

ė∗2 ≤ J2q̇ + w2 ≤ ė
∗
2

(13)

In robotics, when a constraint is expressed as an inequality,
it is very likely to be put as the top priority: typically, joint
limits and obstacle avoidance. Using this framework, it is also
possible to handle inequalities at the second priority level
(i.e. in the cost function). A typical case is to prevent visual
occlusion when possible, or to keep a low velocity if possible,
without disturbing the robot behavior when it is not necessary.

In the sequel, the HQP considering linear equalities and
inequalities is extended from inverse kinematics to inverse
dynamics.

III. I NVERSEDYNAMICS

In this section the case of a contact-free dynamical multi-
body system without free-floating root is considered.

A. Task-space formulation

As previously stated, a task is defined by a task functione, a
reference behavior and a differential mapping. At the dynamic
level, the reference behavior is specified by the expected task
acceleration̈e∗, while the control input is typically the joint
torquesτ . The operational-space inverse dynamics then refers
to the problem of finding the torque control inputτ that
produces the task referencëe∗, using any necessary joint
accelerationq̈. The acceleration̈q is then a side variable,
that does not require to be explicitly computed during the
resolution. Contrary to the case of kinematics, the mapping
between the control inputτ and the task space is obtained
in two stages. First, the map between accelerations in the
configuration space and in the task space is obtained by
differentiating (5):

ë = Jq̈ + J̇q̇ (14)

Then, the dynamic equation of the system expressed in the
joint coordinates is deduced from the mechanical laws of
motion [55].

Aq̈ + b = τ (15)

where A = A(q) is the generalized inertia matrix of the
system,q̈ is the joint acceleration,b = b(q, q̇) includes all the
nonlinear effects including Coriolis, centrifugal and gravity
forces andτ are the joint torques. The generic form (1) is
obtained by replacing̈q in (15) with (14) [27]:

ë − J̇q̇ + JA−1b = JA−1τ (16)

This equation follows the template (1) withQ = JA−1, µ =
−J̇q̇ + JA−1b andu = τ .

The torqueτ∗ that ensures̈e∗ is solved using the generic
form (2). It is generally proposed to weight the inverse by
the inertia matrixA. This weight ensures that the process
is consistent with Gauss’ principle [56], i.e. that the torques
and accelerations corresponding to the redundancy of the task

are the closest to the acceleration of the unconstrained multi-
body system. This principle can be intuitively understood by
considering the weight like a minimization of the acceleration
pseudo energÿqTAq̈ [57], [31].

The redundancy can also be explicitly formulated during
the inversion, using the form (3). A SOT can be iteratively
built, with the lower-priority tasks being executed in the best
possible way without disturbing the higher priority tasks [58],
[59]:

τ∗ = τ∗1 + Pτ2 (17)

whereP =I−JT (JA−1JT )+JA−1 is the projector in the null
space ofJA−1 andτ∗1 =(JA−1)#A(ë∗−J̇q̇+JA−1b).

B. Projected inverse dynamics

As before, the differential map for the projected secondary
taske2 is obtained by replacing (17) into the robot dynamics
equation in the task spacëe2 − J̇2q̇ + J2A

−1b = J2A
−1τ :

ë2 + µ2 = Q2τ2 (18)

with µ2 = −J̇2q̇ + J2A
−1b− J2A

−1τ∗1 , andQ2 = J2A
−1P.

The same weighted inverse is used to invertQ2 [58], [59].
Accordingly, any number of tasks can be added iteratively
until the projector becomes null.

The same singularities as in inverse kinematics may appear
(the dynamics in itself does not bring any new singular case,
sinceA is always full rank). To avoid any numerical problem,
the damped weighted inverse is generally used. As for the
kinematics, only tasks defined by equality constraints can be
taken into account using this pseudoinverse-based resolution.
To take into account inequalities, we propose to extend to the
dynamics the HQP [25] that was previously introduced for the
kinematics.

C. Application of the QP solver to the inverse dynamics

When resolving a given taske while taking into account the
dynamics, both (14) and (15) must be fulfilled. There are two
ways of formulating the QP. First,̈q can be substituted from
(14) into (15), to obtain the single reduced equation (16). In
that case, the QP only requires to solveτ , the variablëq being
not explicitly computed:

min
τ

||JA−1τ − ë∗ − µ||2 (19)

Alternatively, (14) can be solved under the constraint (15).
Using the hierarchy notation, the HQP is thus (15)≺ (14), or
using the standard QP notation:

min
τ,q̈,w

||w||2

s.t. Aq̈ + b = τ

ë∗ + w = Jq̈ + J̇q̇

(20)

In that case, bothτ and q̈ are explicitly computed. They
constitute the vector of optimization variablesu = (τ, q̈).

QP (19) has a reduced form, but QP (20) allows any explicit
formulation using the dynamics variables. In the following,
such an exhaustive formulation is necessary to deal with the
contact.
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IV. I NVERSE DYNAMICS UNDER CONTACT CONSTRAINTS

A. Insertion of the contact forces

In the previous section, the considered multi-body system
was in free space (no contact forces) and fully actuated (no
free-floating body, for example). The model of the humanoid
robot includes both the contact forces and a zero-torque
constraint on the six first DOF. First, the case of a single
contact point denoted byxc is considered:

Aq̈ + b+ J⊤
c f = ST τ (21)

where A and b are defined as before,̈q is the vector of
generalized joint accelerations4, f is the 3D contact force
applied at the contact pointxc, Jc = ∂xc

∂q
is the Jacobian

matrix of xc 5 andS = [0 I] is a matrix that allows to select
the actuated joints.

The rigid-contact condition implies that there is no motion
of the robot contact bodyxc i.e. ẋc = 0, ẍc = 0. For a given
state, it implies the linear equality constraint:

Jcq̈ = −J̇cq̇ (22)

If multiplying (21) by JcA−1 and substituting the expression
of Jcq̈ given by (22), a constraint is obtained, that constrains
the torque with respect to the contact force:

JcA
−1J⊤

c f = JcA
−1(ST τ − b) + J̇cq̇ (23)

In this expression, the acceleration does not appear explicitly
anymore. In the basic case,JcA−1J⊤

c is invertible, andf can
be deduced [35]:

f = (J⊤
c )A

−1#(ST τ − b) + (JcA
−1J⊤

c )−1J̇cq̇ (24)

This expression off can be re-injected in (21), to obtain a
reformulated dynamic equation where the force variable does
not appear explicitly anymore.

Aq̈ + bc = PcS
T τ (25)

wherePc = (I − Jc
#A−1

Jc)
T = (I − (JcA

−1)#AJcA
−1)

is the projection operator of the contact6, and bc = Pcb +
J⊤
c (JcA

−1J⊤
c )−1J̇cq̇. As above, the differential map between

the task and the torque input is expressed through the inter-
mediate variablëq by inserting (25) in (14):

ë + µ = Qτ (26)

with µ = −J̇q̇ + JA−1bc andQ = JA−1PcS
T . By inverting

(26) and choosing a proper weighted inverse, the obtained for-
mulation is equivalent to the operational-space inverse dynam-
ics developed in [61] (see Appendix C). When inverting (26),
it is possible to explicitly handle the redundancy using the
inversion template (3). The scheme can be propagated to
any levels of hierarchy. The general form of the inverse for
the second level of the hierarchy isJ2P1A

−1PcS
T , where

4To be exact,̈q should be written

[

v̇f
q̈A

]

, wherevf is the 6D velocity of the

robot root andqA the position of the actuated joints. For the ease of notation
q, q̇ and q̈ are used in the article.

5The coordinates ofxc, f andJc have to be expressed in the same frame,
for example the one attached to the corresponding robot body

6The exact same form can be obtained ifJc is rank deficient [60].

P1 is the projector into the null space of the main task.
In general,rank(J2P1A

−1PcS
T ) ≤ rank(J2A

−1PcS
T ) ≤

rank(J2) ≤ r2. If the first inequality is strict, this is the
algorithmic singularity encountered in inverse kinematics. If
the last inequality is strict, it is akinematic singularity. If
the intermediate inequality is strict, the singularity is due
to the dynamic configuration of the multi-body system in
contact, and could be called adynamicsingularity7. As above,
a damped inverse is used in practice to avoid the numerical
problems in the neighborhood of the singularity.

As before, (26) follows the template (2) and can be directly
formulated as a QP. The QP can be expressed under a reduced
form as proposed in [2]. Or more simply, the HQP (20) can
be reformulated to consider the dynamics in contact. Using
the HQP notation, the program for one task is (21)≺ (22)
≺ (14). The variablesf and q̈ are then explicitly computed:
u = (τ, q̈, f). This HQP was proved to be equivalent to the
reduced inversion in [1].

B. Rigid-point-contact condition

For a single point in rigid contact with a surface, there are
two complementary possibilities: either the force along the
normal to the contact surface is positive (the robot pushes
against the surface and does not move), or the acceleration
along the normal is positive (the robot contact point is taking
off, and does not exert any force on the surface). Both
possibilities are said to be complementary since one and only
one of them is fulfilled. This is mathematically written:

ẍ ≥ 0 (27)

f⊥ ≥ 0 (28)

ẍf⊥ = 0 (29)

wheref⊥ is the component off corresponding to the normal
direction. The complementary condition is a direct expression
of d’Alembert-Lagrange Virtual Work principle, in the simple
case of rigid contact. By writing (21) and (22), it is implicitly
considered that the robot is in the first case: no movement
(22) and positive normal force. In consequence, the generated
control must also fulfill the second condition (28).

Very often, only the zero-motion condition constraint (22)
is considered [35]. As a consequence, an unfeasible dynamic
motion can be generated since the second contact condi-
tion (28) is not explicitly verified. A first solution can be
to saturate the part of the control that does not correspond
to gravity compensation when the positivity condition is not
satisfied [59]. However, such a solution is very restrictive
compared to the motions that the robot can actually perform.

It is straightforward to take into account the two conditions
above in a HQP. In that case, the contact forces have to be
explicitly computed as one of the QP variables:u = (τ, q̈, f).
The HQP is then (21)≺ (22) ≺ (28) ≺ (14).

7The three cases are similar in the sense that the matrix





J1 0 0
J2 0 0
A Jc −ST





is singular.
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The two first levels (21), (22) are always feasible. However,
it may happen that (28) is not. This case is sometimes referred
to asstrong contact instability[62]: whatever the motions of
the multi-body system are, the contact cannot be maintained.
In practice, the solver finds an optimalu, but with nonzero
slack variables corresponding to (28). The solutionu is then
meaningless, since it is dynamically inconsistent. To obtain a
consistent control in that case, a change of behavior should
be triggered, with the robot removing one of its contacts from
(22) and trying to find another solution without this contact.
However, the nonzero slack on (28) only appears in extreme
cases, for example when the robot is already falling, and in
general it is already too late to do anything to restore the
balance.

The typical situation with a humanoid robot requires more
than one contact point: for example, when one rectangular foot
is in contact with the ground, at least four contacts points are
needed, with as many force variables and contact constraints.
It is then very costly to handle several bodies in contact. In
the following, we focus on the case of planar rigid contact,
and propose a reduced formulation such that the cost of the
HQP does not increase linearly with the number of points in
contact.

V. REDUCED FORMULATION OF RIGID PLANAR CONTACTS

Instead of considering one variable per contact forcef , the
contact forces are summarized by the generalized 6D (spatial)
force exerted by the body contacting the environment.

Aq̈ + b+ J⊤
c φ = ST τ (30)

whereJc is now the Jacobian of the contacting body expressed
on any arbitrary fixed pointc of the body, andφ is the 6D force
(linear and angular components) expressed atc. The contact is
supposed to occur between two rigid planar surfaces, one of
them being a face of one robot body, the other one belonging
to the environment. If the robot is in contact with two or more
planar surfaces at the same time, several planar contacts are to
be considered. The pointc denotes the arbitrary origin of the
reference frame attached to the robot body in contact (c can
be on the contact surface as before or anywhere on the contact
body, e.g. on the last joint). A rigid planar contact is defined
by at least three unaligned points of the bodypi, i = 1..l
(l ≥ 3), that define the boundaries of the contact polygon. For
i = 1..l, fi denotes the contact force applied topi. The vector
f of the contact forcesfi is related toφ by:

φ =

[ ∑
i fi∑

i pi × fi

]
= X



f1
...
fl


 = Xf (31)

with

X =

[
I I ... I

[p1]× [p2]× ... [pl]×

]

where the first three components ofφ are the linear part
of the force vector, the second three components are the
angular part and[pi]× is the cross-product matrix defined
by [pi]×z = pi × z for any vectorz. Using this notation,

the necessary and sufficient condition to ensure the contact
stability (in the sense that the contact remains in the same
phase of the complementary condition, i.e. no take off) is that
all the normal componentsf⊥i of the contact forcesfi are
positive, expressing the fact that the reaction forces of the
surface are directed toward the robot:

f⊥ ≥ 0 (32)

with f⊥ = Snf = (f⊥1 , f
⊥
2 , . . . , f

⊥
l ) the vector of the normal

components of the forces at the contact points andSn the
matrix selecting the normal components.

A. Including the contact forces within the QP Solver

Condition (32) must now be introduced in the HQP pro-
posed at the end of Section IV-B

1) A first way of modeling the problem:The constraints
should be written with respect to the optimization variables,
while (32) depends onf . A first way of writing (32) with
respect to the optimization variables is to use the linear map
X betweenφ and f given by (31). In order to compute
f , (31) should be inverted by using a particular generalized
inverseX#:

f = X#φ (33)

The normal componentf⊥ is then given by:

f⊥ = SnX#φ = Fφ (34)

The condition of positivity off⊥ is then written with respect
to the optimization variables:

Fφ ≥ 0 (35)

The resulting HQP is (30)≺ (22) ≺ (35) ≺ (14), with the
vector of optimization variables beingu = (q̈, τ, φ).

However, it is possible to show that (35) is only a sufficient
condition of (32), that is too restrictive. In fact, the mapX
is not invertible. Thus, by choosing a specific inversion.#,
an unnecessary assumption is made, and it may happen that
an admissibleφ produces a negativef⊥ = S⊥X#φ. Fig. 2
displays the domain reached by the center of pressure: for a
necessary and sufficient condition, the whole support polygon
should be reached. Using the 2-norm, only the included
diamond is reached, as presented in Fig. 2. Various included
quadrilaterals are reached when using other norms for the
inversion operator#.

2) Using contact forces as variables:The problem is that
the forcesfi cannot be uniquely determined fromφ, while it
is possible to determineφ from fi. To cope with this problem
we propose to include the contact forcesf in the optimization
variables of the QP resolution. Condition (32) is then directly
written with respect to the variablesu = (τ, q̈, φ, f), with the
HQP: (30)≺ (22) ≺ (31) ≺ (32) ≺ (14).

Compared to the HQP formulated at the end of Sec-
tion IV-B, this new formulation considerably reduces the size
of Jc, and thus the whole complexity of the resolution scheme.
Adding φ inside the variables acts as a proxy on the bigger-
dimension variablef . The contact forces only appear for the
positivity condition (32) and in the relation withφ (31). The
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Fig. 2. Random sampling of the reached support region. The actual support
polygon is the encompassing rectangle. The point clouds display the ZMP
of random forces admissible in the sense of (35). Random forces φ are
shot and the correspondingf = X#φ are computed. Ifφ respects (35),
the corresponding center of pressure is drawn. Each sub-figure displays the
admissible forces for a different weighted inversion (the Euclidean norm is
used on the top left, and random norms for the three others). Only a sub-
region of the support polygon can be reached, experimentallyillustrating the
fact that (35) is a too-restrictive sufficient condition.

HQP is now sparse on the column corresponding tof , which
could be optimally exploited only if the solver is sparse. Inthe
following, we rather propose to reduce the formulation while
making the constraint matrix dense.

3) Reducing the size of the variablef : It is possible to
decouple in (31) the relation betweenφ and the tangent
components off . φ was previously expressed at an arbitrary
point c of the contact body (φ = cφ). Consider the pointo
chosen at the interface of contact (e.g.o is the projection
of c on the contact surface).oφ denotes the 6D forces ato,
expressed in terms ofoφ as follows:

oφ =

[
fo
τo

]
=

[
I3 03

[oc]× I3

]
cφ = oXc

cφ (36)

with ox the coordinates of any quantityx in the frame
Fo centered ato, having its z-axis normal to the contact
surface. From (31) and (36), it comes:




ofx =
∑

i f
x
i = cfx

ofy =
∑

i f
y
i = cfy

ofz =
∑

i f
z
i = cfz

oτx =
∑

i −opzi f
y
i +

∑
i
opyi f

z
i = −czcfy + cτx

oτy =
∑

i −opxi f
z
i +

∑
i
opzi f

x
i = czcfx + cτy

oτz =
∑

i −opyi f
x
i +

∑
i
opxi f

y
i = cτz

(37)
Sinceo is coplanar with thepi, theopzi are null. The previous
expression reveals a decoupling incφ: the forcesofx,y and
the torqueoτz are expressed in terms offx,yi . The forceofz

and the torquesoτx,y are a function offzi . In the QP,ofx,y

andoτz are unconstrained and can be removed along with the
associated constraints (37.1), (37.2) and (37.6). The reduced
rigid-contact constraint can be expressed as follows:

Qc

[
φ
f⊥

]
= 0

f⊥ ≥ 0

(38)

with

Qc =




0 0 −1 0 0 0 1 1 . . . 1
0 cz 0 −1 0 0 py1 py2 . . . pyl

−cz 0 0 0 −1 0−px1−px2 . . .−pxl




The HQP is then (30)≺ (22) ≺ (38) ≺ (14) with the
optimization variables:u = (τ, q̈, φ, f⊥).

B. Generalization to multiple contacts

Eq. (30) considers one single body in contact. If several bod-
ies are in contact or one body is in contact with several planes,
a forceφi is introduced for each couple plane-body in contact:

Aq̈ + b+
∑

i

J⊤
i φi = ST τ (39)

For each body in contact, the same reasoning can be applied
separately. Support polygons and normal forcesf⊥i have to
be introduced. For each contact,f⊥i is constrained to be
positive and can be mapped toφi using (36). The zero-motion
constraint corresponding to contacti is denoted by (22.i) and
the positivity constraint by (38.i), wherei refers to the index.

C. Multiple tasks and final norm

Similarly for several tasks, (14.j) denotes the constraint for
each taskj (using the same notation wherej refers to the
index). After adding all the tasks, some DOF may remain
unconstrained. In that case, it is desirable to comply with
Gauss’ principle. This is possible by imposingq̈ = a0 as the
least priority, wherea0 is the acceleration of the unconstrained
system8. This has strictly the same effect as weighting all the
pseudoinverses byA−1, as done in (17) [56]. However no
damping mechanism acts in the corresponding DOF that would
reduce the motion energy and stabilize the system. The task-
function formalism requires the system to be fully constrained
to ensure its stability in terms of automatic control (Lyapunov
stability, [13]). On a physical robot, damping is always present.
For perfect systems like simulations, where damping is absent
or is perfectly compensated, it is better to introduce, at the very
last level, a task to cope with the case of an insufficient number
of tasks and constraints to fulfill the full-rank condition:

q̈ = −Kq̇ (40)

Various full-rank constraints could have been considered (min-
imum acceleration, distance to a reference posture, etc). The
choice of using the minimum velocity constraint is arbitrary.

Finally, the complete HQP forn contacts andk tasks is
written: (39) ≺ (22.1) ≺ (38.1) ≺ ... ≺ (22.n) ≺ (38.n) ≺
(14.1)≺ ... ≺ (14.k) ≺ (40), with the optimization variables
u = (τ, q̈, φ1, f

⊥
1 , ..., φn, f

⊥
n ).

D. Opening to other classes of contacts

The model (22)-(38) is built on the rigid point contact.
From the basic point model, many other variations can be
built. In particular, it is straightforward to obtain edge contact.
Elastic contact can be defined by modifying the equation

8Similarly, the constraint can be imposed on a least-squareτ .
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of motion (22) [40]. Linearized friction cones can also be
considered, by replacingJ⊤

c f by J⊤
c Gλ and f⊥ ≥ 0 by

λ ≥ 0, whereG is a family of generators of the linearized
cone, andλ are the multipliers of these generators [37],
[38]. Motions with slips are made possible by removing the
motion constraint (22) in the tangent directions, and setting a
constraint on the tangent force to be outside the friction cone.

However, the limitation in the viewpoint of real-time control
is the size of the obtained QP formulation: typically, a good
cone approximation is obtained with twelve generators, which
introduce twelve new variables per point of contact. The
prospectives of this work for humanoid robot control are to
find reduced formulations to handle these situations. In the
remaining of the paper, the reduced rigid planar formulation
is used, since it keeps a relatively low computational cost while
covering many possible situations with the humanoid robot.

VI. CONTROL LAW ROBUSTNESS

A. Comparison of(38) with the ZMP condition

A classical situation is to have one or two feet of the
humanoid robot in contact with a flat horizontal floor. In this
case, a classical condition to enforce the contact stability is
to check that the ZMP stays inside the support polygon [63],
[64]. In this section, this condition is proved to be equivalent
to (32).

Proposition VI.1. In the case of contact with a horizontal
floor, the rigid contact condition(32) is equivalent to the well-
known contact stability condition which requires that the ZMP
belongs to the support polygon.

1) Sufficient implication:As above, the robot is supposed
to be in single support9. The contact surface is supposed to
be horizontal. The ZMP (also called center of pressure –
COP [65]) can be defined as the barycenter of the contact
points pi delimiting the contact surface of the foot with a
horizontal floor, weighted by the normal componentf⊥i of
the contact forcesfi at these points10:

z =
1

Σif⊥i
Σipif

⊥
i (41)

In affine geometry, it is well known that the convex hull of
a polygon can be written as the set of all positive-weight
barycenters of the vertices [66]. The rigid contact condition
defined by (32) ensures that eachf⊥i is positive. Consequently,
(32) together with (41) ensures that the ZMP belongs to the
convex hull of the contact pointspi which, by definition, is
equal to the support polygon.

2) Necessary implication:On the other hand, if the ZMP
belongs to the support polygon, there always exists a distri-
bution of contact forcesfi at the pointspi, having positive
componentsf⊥i , and such that the ZMP is the barycenter of
the pi weighted by thef⊥i . This is sometimes referred to as
weak contactstability [62] for which the ZMP is known to be

9The same reasoning holds with several bodies in contact with the same
horizontal plane.

10The foot is usually a rectangle but any shape delimited by three or more
contact points can be considered as well.

a reduced condition [67]. When the support polygon is defined
by more than three contact points (l > 3), an infinite number
of possible barycenter weightsf⊥i can be found to define the
ZMP. For given weights, one of thef⊥i can be negative (this
is typically what happens in Fig. 2). However, since the ZMP
is inside the convex hull, there is at least one combination of
non-negative weights that reaches it.

B. Brief stability analysis

The inverse dynamics schemes are known to be sensitive to
modeling errors [68]. In particular, if the inertia parameters are
not perfectly known, the application of the reference torques
leads to different accelerations. The estimated value ofX is
denoted byX̂. The solution of the QP is equivalent to the
solution given by the pseudoinverse if none of the positive-
force constraints are active; otherwise, it has a similar form
with an additional projection and can be written for one task:

τ = (ĴÂ−1P̂fS
T )+(ë∗ + µ̂) (42)

where Pf is the projection operator onto the contact zero-
motion constraint (22) and onto the set of contact positive-
force constraints (38) that are active. Using (26), the observed
task acceleration when applying this control law, also denoted
by .̂, is:

̂̈e = JA−1PcS
T (ĴÂ−1P̂fS

T )+(ë∗ + µ)− µ (43)

SincePcPf = Pf , ̂̈e = ë∗ if all the estimations are perfect.
If the estimations are biased, applying the control (42) in
closed-loop at the whole-body level is known to keep the
stability properties of the control laẅe∗ in the task space
iff JA−1PcS

T (ĴÂ−1P̂fS
T )+ is definite positive [13]. When

the estimation error is due to an inaccurate dynamic model, a
classical solution to reduce the estimation error is to relyon a
time-delay estimation, i.e reporting the biases observed at one
iteration of the control on the next iteration [69]. However, this
technique cannot perfectly cancel the errors of estimation, thus
(43) still holds.

The referencëe∗ is not perfectly tracked. It is also true
for the contact forces computed by the solver. Indeed, the
observed forces are:

φ̂ = (Jc
T )#AĴT

c φ
∗ + (JcA

−1Jc
T )−1JcA

−1Âq̈∗ (44)

where φ∗ and q̈∗ are the reference force and acceleration
computed by the HQP anḋJcq̇ is neglected. The second term
is close to0 when Â is not too far fromA. Similarly, the
first term is nearly the identity matrix when the estimation is
correct. The previous equation can be summarized by:

φ̂ = (I + ǫ1)φ
∗ + ǫ2q̈

∗ (45)

with ǫ1 and ǫ2 two matrices that tend to zero when the
estimation tends to perfection. When theǫi are not null,
the observed forcêφ is biased with respect to the solver
predictions. If the bias is too great, there is no guarantee that
the observed forcêφ maintains the contact; then the property
of stability can be lost.

In conclusion, applying the computed torques in closed-loop
ensures the stability of the control as long as the observed
forces respect the contact positivity-force constraint.
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C. The contact condition as a qualitative robustness indicator

The previous stability analysis is not very instructive in
practice, since it is barely possible to predict when the
observedφ̂ keeps the contact stability. The robustness of the
control scheme thus relies on the behavior ofφ̂. It is interesting
to provide an indicator of how easy it is for̂φ to leave
the acceptable domain. When considering one single point in
contact as in Section IV, this indicator is straightforwardto
choose: consider the normal force valuef⊥∗ computed by
the solver. Iff⊥∗ is large, then for smallǫ1, ǫ2, we can be
very confident that̂f⊥ is positive and keeps the contact stable.
Then, for one single contact point, the positivity off⊥∗ is a
good indicator of the robustness of the control.

For more than one single contact point, it is not possible to
use a direct combination of the normal forces as an indicator.
Indeed there is an infinite number of possible force values,
all of them being equivalent in terms of the robot behavior.
Once more, this is connected to the results displayed in Fig.2:
the computed solution may include one zero normal force,
while another solution exists with strictly positive values.
When considering a single planar contact, the ZMP is a good
indicator of robustness: when the predicted ZMPz∗ is far
inside the support polygon, then we can be very confident
that the observed ZMP̂z stays inside the support polygon,
which means in return that all thêf⊥ are positive.

If the contacts are not coplanar, the ZMP is not defined.
In that case, the generalized zero-moment point (GZMP) [70]
has been proposed. Contrary to the ZMP or to (38), the GZMP
is not a constructive criterion, i.e. it has not been used to
generate a motion or a control law. The idea of the GZMP
is to find from the 3D contact points a plane that acts like
the floor plane for the ZMP. On this plane, all the force
boundaries are projected, defining a 2D polygon. The GZMP
exists in this same plane. The contact-stability criterionsays
that the GZMP should remain inside the 2D polygon. The
GZMP is easy to display. It is easy to visualize the distance
to the boundaries and thus to have a qualitative evaluation
of the motion robustness with respect to the contact stability.
The GZMP needs some implementation work in order to be
calculated, since the 2D projection plane is deduced from ge-
ometrical computations. Moreover, it is only an approximated
criterion, since the friction forces are neglected. To copewith
these limitations and obtain a generative criterion, the GZMP
was augmented in [67]. However, this last criterion, like (38),
cannot be easily plotted, and is thus not relevant to judge the
robustness of the obtained motion.

Consider the six first rows of the dynamic equation. The
dependency onτ disappears:

Āq̈ + b̄ = J̄cf (46)

whereĀ, b̄ and J̄c are the first six rows of respectivelyA, b
andJc

T . For a givenq̈∗, the left term is constant, denoted by
ψ∗. It corresponds to the actuation of the free-floating body
that cannot be accomplished by the motors. The variablef can
be partitioned in two partsf = (f♥, f♠): f♥ is unconstrained,
while f♠ is subject to the positivity constraint.̄Jc is similarly
partitioned intoJ̄♥ andJ̄♠. The setK♠ := {ψ = J̄♠f, f > 0}

is a 6D cone, that can be expressed by its facets. The motion
is robust to the parameter error if the pointψ∗ − J̄♥f♥ =
(I − J̄♥J̄♥

+)ψ∗ is deep inside the cone. The distance from
this point to the closest facet ofK♠ can be used as a measure
of the robustness of the motion. The scaling between torques
and forces is done using a characteristic length of the system
(1m for a human-size robot). In the following, this criterion
is referred to as robustness criterion VI-C.

VII. E XPERIMENTS

Three sets of experiments are presented in this section. The
first one presents a simple oscillatory motion that illustrates
the saturation of the contact-stability constraints. The second
one presents a complex sequence of tasks to make the robot sit
in an armchair using several successive contacts. This motion
is also executed by the real robot. The last experiment presents
a dynamic transition of contacts. First, the setup is detailed.

A. Experimental setup

The inverse formulation of the dynamic equation of mo-
tion (30) is given to the HQP solver. However, since it
computes explicitly bothτ and q̈, it solves simultaneously
the forward and inverse dynamics of the robot. Both values
can then be used as control input. The accelerationq̈ can
be integrated in simulation, or provided as control input
to the robot servo control; or the torques can be given as
the robot control, or provided to a dynamics simulator. On
current humanoid robots, such as HRP-2, only the first solution
is possible11. However, this solution has the drawback that
the servo is on the position variables, while, as explained
in the previous section, the robustness mainly relies on the
accuracy of the force variables. In simulation, both solutions
are possible. The second solution is more beneficial, since it
makes it possible to double-check the dynamic computations.

In practice, we have used this last solution. The dynamic
simulator AMELIF [73] was used to resolve the forward
dynamics from the computed torquesτ∗. The simulator checks
the collision, computes the acceleration from the collision set
and the torque input using a linear solver and numerically
integrates̈q using a classical Runge-Kutta of the fourth order.
The current set of contacts is then provided to the control
solver, along with the current position and velocity of the
robot. The control is updated every1ms. It is computed using
the control framework SOT [33] and the dedicated solver [26].
The result of this simulation is a joint trajectory of the robot,
that complies to the multi-body dynamics. This trajectory is
replayed on the real robot using a position-control mode.

The task set used in the three presented motions is the
following. A first task function is used to control the position
and orientation of one operational point of the robot (e.g.
grippers, head, chest). The task error is the positionp and
angle-vector orientationrθ [74] of the operational point with
respect to a referencep∗, rθ∗ expressed in the world frame:

eop =

[
p− p∗

rθ ⊖ uθ∗

]
(47)

11The second solution will be possible with the next humanoid robot
generation, e.g. Romeo [71] or DLR [72].
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The reference acceleration is computed from this error as a
proportional-derivative (PD) control law:

ë⋆op = −λpeop − λdėop (48)

where ėop = Jopq̇ is the velocity in the task space and the
gainsλp, λd are used to tune the convergence velocity (usually,
λd = 2

√
λp). For tracking a moving target, a fixed high gain

is used forλp. When reaching a fixed target, an adaptive gain
is typically used:

λp : ||e|| → (λ0 − λ∞)eβ||e|| + λ∞ (49)

whereλ0 is the gain when the error is null,λ∞ is the gain far
from the target, andβ adjusts the switching behavior between
the gains. A typical setting is(λ0, λ∞, β) = (450, 15, 100). A
second taskegaze is used to servo the projections of one point
of the environment on the right camera plane to a reference
positions∗ [14]:

egaze = s− s∗ (50)

The reference acceleration̈e∗ is also defined by (48). The
torque magnitude is also bounded. Since the torques are
included in the vector of optimization variables, it is trivial to
express the torque limits by a simple bound on these variables:

τ ≤ τ ≤ τ (51)

with τ = −τ the maximum torque value.
Similarly, bounds have to be set on the joint positions. Since

the positions are not variables of the solver, the constraint is
set on the joint accelerations:

q ≤ q + TS q̇ +
TS

2

2
q̈ ≤ q (52)

whereq andq denote the lower and upper joint-limits respec-
tively, andTS is the length of the preview windows. In theory,
the control sampling time∆T = 1ms should be used forTS .
In practice, a smoother behavior can be obtained by adjusting
this valueTS := ∆T

λs

whereλs can be tuned as the gain of the
task. We usedλs = 0.1 to generate the following motions.

B. Experiment A: Swing posture

1) Description: The objective of this experiment is to
validate the contact stability constraint. It is inspired by a
biomechanics experiment which aims at testing the human
swinging posture behavior with respect to the same con-
straints [75]. A tracking task is imposed to the robot head
to make it oscillate. Depending on the frequency and the
amplitude of the oscillation, forces are obtained at the contact
points, that may saturate the contact constraint. The task
ehead given by (47) is imposed to the head operational point,
where only the translation on the forward axis is selected.
The reference position is given by a time-varying sinusoid,
around a central pointxc = 0.02 and with amplitude of
5cm and frequency0.3Hz (low frequency),0.56Hz (medium
frequency) or0.9Hz (high frequency). The gain is set to
λp := 250 to ensure good tracking. The complete SOT is:
(39) ≺ (22) ≺ (38) ≺ (51) ≺ (52) ≺ ehead ≺ (40).

In theory, the contact points are defined from the 3D model
of the robot. However, in practice, we never consider the real

support polygon, but a smaller one. This simple trick ensures
increased robustness of the motion when trying to replay it
on the robot. For example, on the feet, the support polygon is
often defined as a square of 4cm centered below the ankle
axis [76], [77]. The obtained robustness can be evaluated
afterward with respect to the real support polygon.

The motion is played four times. In the first two executions,
both feet are flat on the ground and the reference is oscillating
at low and medium frequencies respectively. For the next two
executions, the right gripper contact is added and the motion
is played at medium and high frequencies. In the following,
the four motions are referred to as2pt-low, 2pt-medium, 3pt-
mediumand3pt-high respectively.

2) Results:The experiment is summed up by Figures 3 to
6. The motion is displayed in Fig. 3. The robot is oscillating
forward and backward to follow the head reference. The
two motions2pt-low and 2pt-mediumwere already detailed
in [1] where the plots of joint positions and torques can be
found. When only the feet are contacting, the stability of the
motion can be evaluated by displaying the ZMP, plotted in
Fig. 4. At low frequency, the ZMP does not saturate because
the demanded accelerations are small enough. At medium
frequency, the accelerations are larger and the ZMP saturates.
Since the real support polygon is about 20cm wide, there is
a large offset that ensures a good robustness when executing
this motion on the real robot.

The robustness can be evaluated using the criterion proposed
in Section VI-C. The contact constraints of the solver are
projected into the space of the spatial forces expressed at the
waist point. Then the distance of the pointψ∗ (46) to this
constraint set is computed. The result is plotted in Fig. 5. First,
the distance is computed to the constraint set of the solver (the
4cm-wide support polygon). As expected, the distance is null
when the ZMP saturates. More interestingly, the distance can
be computed to the real constraints by taking into account the
true polygon as well as the linearized friction cones at the
contact points. The friction coefficient was set toK = 0.5. In
that case, the robustness criterion is always strictly positive,
showing that the motion is robust to small perturbations or
model uncertainties.

Using only the feet as contacts, it is not possible to follow
the reference at high velocity. A third contact point is added to
increase the stability domain. The contact polygon is a square
of 5cm centered at the gripper terminal point. Contrary to
the ZMP, the robustness criterion VI-C is still valid with non-
coplanar contacts. When the friction cones are not considered
(slidingless contact), it is always possible to find a set of
contact forces following a given CoM acceleration (the system
is said to be inforce closure[78]). In that case, the distance to
the constraint set is always infinite. The robustness criterion
is finite when the friction cones are considered. The friction
coefficient at the gripper is set toK = 0.1. At medium
frequency, the motion can be considered as very robust since
the criterion is always very far from 0. If the frequency is in-
creasing, the criterion remains smaller. It then jumps fromone
constraint edge to another, which explains the discontinuities.
The computation time depends on the number of contacts,
tasks and active constraints as shown in Fig. 6.
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t=1.2s t=1.7s t=2.1s

Fig. 3. Experiment A: Top: Snapshots of the oscillatory movement 2pt-
medium. Bottom: Feet and ZMP positions at the corresponding instants. The
ZMP saturates on the front when the robot is reaching its top amplitude and
decelerates to go backward. Similarly, the ZMP saturates on the back.
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Fig. 4. Experiment A: ZMP position along the forward (x) axis for the
two motions with only the feet contacts. The support polygon is a4cm-wide
square centered on the ankle joint. The ZMP does not saturatewhen the
motion oscillates at low frequency. It saturates at medium frequency.
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Fig. 6. Experiment A: Computation time. For the motion2pt-medium,
the saturation of the force constraints clearly induces an increase of the
computation cost, whereas for2pt-low the cost remains constant. For3pt-
medium, the cost is constant (no saturation) but higher in average due to the
additional contact. Finally, the cost of3pt-high is higher and varies when the
constraints are saturated.

C. Experiment B: sitting in the armchair

1) Description: The second experiment illustrates the pos-
sibilities of multiple non-coplanar contacts during a more
complex sequence of motion. The robot sits in an armchair
(see Fig. 7). First, contacts of the left then right grippers
are found with the armrests to increase the contact stability
domain. Then, the pelvis is brought in contact with the seat.

At the highest priority of the stack, the limits (51) and (52)
ensure that the joints and actuator limits are respected. Two
tasks erh and elh, defined by (47), are set on each robot
gripper to control the position and orientation toward the
corresponding armrest. To prevent a collision when grasping,
an intermediate point is first reached, above the grasping
position. The contact of each gripper with the armrest is
realized by the rear part of the opened gripper. The support
polygon is then a5cm-wide square. To improve the naturalness
of the motion, a taskegaze defined by (50) is set to constrain
the gaze toward the armrest to be grasped. After each grasp,
the gaze is brought back in front of the robot. Finally, the waist
is controlled by a taskewaist also defined by (47) where only
the vertical position and sagittal rotation are active: thewaist
is constrained to remain vertical and to move down to the seat.
The complete SOT is defined by: (39)≺ (22)≺ (38)≺ (51)≺
(52) ≺ ehand ≺ egaze ≺ ewaist ≺ (40), with ehand being the
right or left hand task, when active. The temporal sequence of
tasks is given in Fig. 8. Essentially, the robot looks left and
bends to grasp the left handle; then it looks right and bends
to grasp the right handle; finally, using both handle supports,
it moves the pelvis down to sit.

2) Results:The experiment is summarized in Figures 7 to
13. The key frames of the motion executed by the robot are
given in Fig. 7. The sequence of tasks is summarized in Fig. 8.
On each of the following figures, the chronological sequence
is recalled by vertical stems at the transition instants. During
the motion, the joint range is extensively used. The most
representative joint trajectories are plotted in Fig. 9. The neck
joint reaches its limit while looking left. In reaction, allthe
other aligned joints move to overrun the neck limitation (chest
joint of course, but also hip and ankle joints). The right hip
then reaches its limit. In consequence, all the motions of both
legs are stopped, due to a lack of DOF to compensate this limit.
The chest joint absorbs all the subsequent overrun to fulfill
the task. Again, the neck joint reaches its limit when looking
right. This time, the velocity of the joint when it reaches its
limit is higher, which leads to a strong acceleration of the
chest, and consequently brings the neck out of its limit. This
behavior could be damped if necessary by tuningλs in (52).
The chest joint finally reaches its limit at the end of the right-
grasp task, which produces a limited overrun on the other
joints. All the joints are properly stopped at the limit, andcan
leave the neighborhood of the limit without being stuck as it
may appear with some avoidance techniques.

The contact with the two armrests is very useful to control
the descent of the waist. The vertical forces on each support
are plotted in Fig. 10. In the beginning, the weight is fully
supported by the two feet, as shown on Fig. 11. Aftert = 8s,
the left arm is used to sustain the robot. However, the robot
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t=0s t=7s t=15s t=19s

Fig. 7. Experiment B: Snapshots of the motion executed on the real HRP-2 robot. The robot is standing on both feet (t = 0s). It first looks left and grasps
the left armrestt = 7s. It then looks right, grasps the right armrest (t = 15s) and finally sits (t = 19s).
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Fig. 8. Experiment B: Sequence of tasks and contacts. The gazetask focuses
sequentially on the left and right armrests and on a virtual point in front of
the robot. The pre-grasp tasks are set at the vertical10cm above the grasp
position.
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joints move in reaction to overcome the saturation.
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Fig. 10. Experiment B: Vertical forces distribution.
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Fig. 11. Experiment B: Position of COM. The three phases correspond to
changes in the number of contacts (first the two feet, then the left gripper and
finally both feet and grippers). Firstly, the COM stays forward, but is finally
moved backward to reach the second armrest and move the pelvis down to
the seat.
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Fig. 12. Experiment B: Robustness criterion VI-C. The distance is computed
with respect to the friction cones. The friction coefficientat the armrests is
roughly estimated to be 5 times less than at the sole. The less robust part
occurs during the final phase, where the waist moves down.
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Fig. 13. Experiment B: Computation time.
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upper body is still in front of the chair, and this contact is not
fully used yet. In order to reach the second armrest, the robot
has to move its weight back (see Fig. 11) and use the left-arm
contact to ensure its balance: nearly half of the weight is then
supported by the arm. Finally, the right armrest is grasped,and
the robot distributes its weight on the four contacts equally.

Neither the center of mass (COM) nor the ZMP can give a
proper estimation of the stability, since the motion is neither
quasi-static nor supported by planar contacts. The robustness
estimator presented in Section VI-C is plotted in Fig. 12
with respect to the linearized friction cones at both feet and
grippers. The motion is very stable, except at the end of the
motion, when the waist moves down. At that time, the robot is
using the tangent forces of the grippers on the armrest, which
nearly saturates the friction cone. In consequence, this part of
the motion is the less robust when executed by the real robot.
Indeed, since the armrests do not respect the hypothesis of
rigid contact and due to this lack of robustness, it can be
observed that the toes nearly leave the ground during this
phase of the motion. This effect is very interesting, since it
confirms the relevance of the robustness criterion. Of course,
this undesirable effect could be avoided by setting a more
accurate model of the environment or adding a safety limit to
the positivity constraint in the solver.

Finally, the computation times are plotted in Fig. 13. The
SOT is nearly full. In that case, the computation cost is around
20ms per iteration, i.e. five times the real-time if controlling
the robot at200Hz. The computation cost depends on the
number of tasks and even more on the number of contacts, as
shown by the computation increase att = 8s and t = 18s.

D. Experiment C: Dynamic contact transition

1) Description: At the beginning of the motion, the robot
is standing on both feet and its COM is artificially pushed
forward using a task on its chest. The robot is then out of its
domain of quasi-static stability: the only solution to restore
the balance is to change the set of supports. The two grippers
(first the left, then the right) are then sent forward to establish
a contact with the wall, in order to increase the set of support
contacts and to restore the balance. An overview of the motion
is given in Fig. 14. Three tasks of type (47) are used: one task
on the chest, that controls only the translation; another one
on each gripper controls both the translation and the rotation.
The COM is not explicitly controlled. The sequence of tasks
and contacts is given in Fig. 15.

2) Results:The experiment is summarized in Fig. 14 to 18.
If using only quasi-static movements (i.e. reaching while keep-
ing the COM inside the feet support polygon), the maximal
reaching distance of HRP-2 is around85cm. In this motion,
the wall is positioned1m in front of the robot, as shown in
Fig. 14. The motions of the COM along with the forward
direction are plotted in Fig. 16. The COM quickly leaves the
support polygon in the beginning of the motion, due to the
artificial motion of the chest. Fromt = 0.7s, the COM is
out of the support polygon with a positive velocity: it is then
impossible to bring it back to stability without changing the
supports. The balance is restored aftert = 2.5s, with the COM

coming back to zero velocity. The stability is evaluated using
the robustness criterion presented in Section VI-C. When only
the feet are in contact, the ZMP is at the forward limit of the
support polygon, which corresponds to a low robustness. The
robustness increases when the first gripper enters into contact.
However, at that time, the tangent forces of the gripper on
the wall are high. The robot can then lose its balance by
rotating on one of the gripper-foot edges, as already observed
in [70]. The second gripper helps to improve the stability
by decreasing the tangent forces at each contact point. The
vertical forces are plotted in Fig. 18. On the grippers, the
vertical direction corresponds to the tangent to the contact.
Betweent = 1.9s and t = 2.5s, the tangent forces at the
left gripper are high, at the limit of the friction cones, which
corresponds to a weaker robustness of the motion (the gripper
is close to slide).

VIII. C ONCLUSION

This paper proposes a complete solution to perform task-
space (operational-space) inverse dynamics while taking into
account various tasks, unilateral constraints such as joint
position or torque limits and preserving the contact stability.
Complex motions can be composed from several tasks, con-
straints and contacts, by ensuring a strict hierarchy between
conflicting references. Several models of unilateral contacts
can be considered. The most usual one is the rigid point
contact. We have also proposed a reduced formulation to
express rigid planar contacts. The contact condition has been
shown to be equivalent to theZMP-inside-the-support-polygon
constraint in the particular case of the humanoid robot standing
on a flat floor. To quantify the quality of the generated motion
in terms of distance to the contact-stability constraints,a
generic criterion has been proposed, that can handle the rigid
slidingless point contact, the rigid planar contact, but also
friction cones.

The effectiveness of the approach has been demonstrated by
generating different motions for the humanoid HRP-2. These
motions have been generated off-line because the motion-
generation algorithm is close to but still not real-time. They are
fully consistent with the robot dynamics and can be replayed
directly by the robot, as it was shown by making the real
HRP-2 sit down in an armchair.

The future of this approach would be to apply the algorithm
directly on the robot as a closed-loop control. This would
require technical contributions to accelerate the solver compu-
tation cost, but also to consider an effective dynamic sensor-
based control.

APPENDIX A
GENERALIZED INVERSE

The notationQ# denotes any reflexive generalized inverse
of Q [46], i.e. that respects the two first conditions of Moore-
Penrose:

QQ#Q = Q

Q#QQ# = Q#
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t=0.0s t=1s t=2s t=4s

Fig. 14. Experiment C: Snapshots of the dynamic contact transition.
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Fig. 15. Experiment C: Sequence of tasks and contacts. On eachgripper, an
intermediate point is used to ensure that the final contact motion is performed
along the normal to the wall. The contact polygons of the feet and grippers
are the same as previously.
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Fig. 16. Experiment C: Trajectory of the COM along the X-axis (forward
direction). The grey rectangle marks the limit of the foot support. The COM
starts inside the support polygon, quickly leaves it when the chest is thrown
forward and finally converges to a fixed position when the grippers contact
the wall and stabilize the motion.
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Fig. 17. Experiment C: Robustness criterion VI-C. The distance is computed
with respect to the friction cones. The friction coefficientof the gripper with
the wall is set to the same value than at the sole contact.
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Fig. 18. Experiment C: Vertical forces (normal forces for the feet, tangent
forces for the gripper).

In general,Q# is chosen among the possible inverses as the
one which minimizes the norm in both the task space and
the control parameter (referred to as the pseudoinverse in
the paper, and denoted by.+); i.e. it verifies the two second
conditions of Moore-Penrose:

QQ# is symmetrical.

Q#Q is symmetrical.

Alternatively, one of these two (or both) conditions can be
relaxed to impose a different metric in the task space or on
the control parameter. In particular, a weighted generalized
inverse [45] can be chosen to impose a given minimumR-
norm in the control space||u||2R = uTRu, whereR is a
given symmetric positive definite matrix; in that case, the
inverse is given byQ#R =

√
R(Q

√
R)+ = RQT (QRQT )+,

where
√
R is any decomposition such that

√
R

T√
R = R, for

example the Choleski decomposition. A weighted generalized
inverse can also impose a minimumL-norm in the task
space ||ė∗ − Qu||2L = (ė∗ − Qu)TL(ė∗ − Qu); in that
case, it isQL# = (

√
LQ)+

√
L = (QTLQ)+QTL. Of

course, bothR and L norms can be imposed byQL#R =√
R(

√
LQ

√
R)+

√
L.

APPENDIX B
HQP COMPLEXITY

Consider a HQP whose variablex is of dimensionn and
whose constraints have the following form:Ax ≤ b. The
choice of an active setA defines an equality-only HQP
(eHQP), with fewer constraints whose form areAix = bi,
whereAi (resp.bi) are the rows ofA (resp.b) selected by
A. The eHQP solution can be computed by a set of pseudoin-
verses following (2). The active-search algorithm [52], [26]
uses a heuristic to find the optimal active set, for which the
eHQP computes the optimalx. The algorithm is presented in
Alg. 1, see [26] for more details.

Basically, the eHQP routine costso(mn2) where m is
the number of rows of the problem, which is approximately
o(n3) when the eHQP is nearly square. Ifp is the number
of iterations in the loop Row#3, then the complexity12 is
roughly o(pn3).

In the case presented in this paper, the HQP is called at
each iteration of the robot. Between two iterations, the HQP
values vary slightly. Because the HQP is a continuous function
of the constraints, the active set also varies slightly. If using
the optimal active set of the previous robot time to initialize
the current active search, then the number of HQP iterationsp
remains small (experimentally,p is null 99% of the time, and
is never more than10).

Consider now the robotics HQP presented in the paper. The
number of DOF is denoted byn. In the inverse-kinematics
HQP, the size of the variable is the number of DOF of
the systemn, and the robot is generally nearly completely
constrained. The cost of the inverse kinematics by HQP is
thuso(pn3), with experimentallyp < 10.

12In fact, only the first eHQP call is ino(n3), the following ones can be
updated foro(n2).
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Algorithm 1 HQP active search
1: Input: A, b,A0

2: A := A0

3: repeat
4: Ai := AA, bi := bA
5: x∗, w := eHQP (Ai, bi)
6: if ∃k /∈ A, wk > 0, then
7: A+ = k
8: continue
9: end if

10: if ∃k ∈ A, wk < 0, then
11: A− = k
12: continue
13: end if
14: until never
15: return x∗

For inverse dynamics withq the size of the contact variable,
the cost iso(p(2n + q − 6)3). For the reduced planar model
when only the feet are in contact,q = 20, which makesN =
36 + 30 + 20 for the HQP variable.

APPENDIX C
PROOF OF EQUIVALENCE

The equivalence is proved between the scheme proposed in
Section IV and the control law proposed in [59].

a) Control scheme:The development of [59] are first
recalled. The task Jacobian subject to a contact is defined by:

Jt|c = JPc
T (53)

where the subscriptt|c indicates that the task quantities are
projected in a contact consistent space. Left-multiplying(25)
by (Jt|c

#A−1

)T =
(
A−1Jt|c

T (Jt|cA
−1Jt|c

T )−1
)T

, the task-
space dynamic evolution is obtained:

Λt|cë + µt|c = Qt|cS
T τ (54)

with Λt|c = (Jt|cA
−1Jt|c

T )−1, Qt|c = (Jt|c
#A−1

)TPc and

µt|c = Qt|cb + (Jt|c
#A−1T

Jc
T (JcA

−1Jc
T )−1J̇c − Λt|cJ̇)q̇.

The reference torques are obtained by inverting (54):

τ∗ = ((Jt|c
#A−1

)TPcS
T )#f∗

= J⋆T f∗
(55)

where J⋆ = Jt|c(SPc
T )# and F = Λt|cë + µt|c. This

final equation corresponds to the standard map from the end-
effector forcesf∗ to the joint torques by the transpose of the
Jacobian of the robot.

b) Proof of equivalence:Control law (55) can be shown
to be equivalent to the control law proposed in Section IV.
On the one hand, sinceSPT

c is full row rank, (55) can be
rewritten:

τ
∗ = (SPT

c A
−1

PcS
T )−1

SP
T
c A

−1
PcJ

T (JPT
c A

−1
PcJ

T )−1
ë
∗

(56)
On the other hand, the scheme proposed in Section IV can

be written:
τ = (JA−1PcS

T )#W ë∗ (57)

with W a user-defined weight matrix. Developing the weighted
inverse gives [45]:

τ =WSPT
c A

−1JT (JA−1PcS
TWSPT

c A
−1JT )−1ë∗

The weight is chosen asW = (SA−1PcS
T )−1 =

(SPT
c A

−1PcS
T )−1 [57]. Since A−1Pc = PT

c A
−1 =

PT
c A

−1Pc [59], the equivalence between (56) and (57) is
brought to prove that:

JA−1PcS
T (SA−1PcS

T )−1SPT
c A

−1JT = (JPT
c A

−1PcJ
T )

We can recognize the term (SPT
c )#A−1

=
A−1PcS

T (SA−1PcS
T )−1 in the previous equality. It

thus reduces to:

J(SPT
c )#A−1

SPT
c A

−1JT = (JPT
c A

−1PcJ
T ) (58)

In [59], it is proved that(SPT
c )#SPT

c = PT
c , which concludes

the proof.
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