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Abstract. Relational Concept Analysis (RCA) is an extension of Formal Concept
Analysis (FCA) to the processing of relational datasets, i.e., made of (objects ×
properties) contexts and (objects× objects) relations. RCA constructs a set of fix-
point concept lattices by iteratively expanding the lattices of the initial contexts.
To that end, at each iteration a scaling mechanism translates the inter-object links
into relational attributes that reflect the available conceptual structures. The out-
put of a RCA task has so far only been described operationally. We propose here
an analytic characterization thereof, i.e., a completeness and consistence result
connecting fixpoint extents to particular relational structures in the input data.

1 Introduction

Formal Concept Analysis (FCA) [7] is a mathematical method that turns a set of in-
dividuals described by properties, called formal context, into a hierarchy of concepts
(clusters of individuals and properties) that is a complete lattice. The concept lattice,
the set of concepts provided with a specialization order, emphasizes commonalities in
descriptions (by property sets). FCA has been successfully exploited as a framework
for both data mining and knowledge discovery [6]. However, when realistic datasets
are considered, the complex information available within the data, e.g., relational links,
exceeds the computational power of classical FCA.

The processing of datasets described with a relational formalism (logic, graph-
based, etc.) in FCA is an actively researched topic with many approaches reported in
the literature [12, 15, 17]. Relational Concept Analysis (RCA) [8] has been proposed as
an approach for mining potentially useful abstractions from relational data, e.g., roles
that link concepts in ontology models. RCA input compares to multi-relational datasets
whereas output is compatible with popular knowledge representation formalisms, the
description logics (DL), a.k.a. DL-based languages [3].

The input data in RCA comprises a set of formal contexts, each corresponding to a
sort of individuals, and a set of binary relations, each connecting the respective sets of
individuals from two contexts. An RCA analysis task extracts a set of concept lattices,
one per formal context, in a simultaneous and iterative way. Starting with the standard
lattices of the initial contexts, the underlying construction method, called Multi-FCA,
gradually translates the inter-object links into synthetic attributes, called relational, that
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John × × × × × × × ×
Carol × × × × × × ×
Alex × × × × × × × ×
Mary × × × × ×

Table 1. Context Kp encoding AIDS patients with their adverse reactions (ADR).

also reflect the available concepts at the links’ destination objects. As adding new at-
tributes to contexts typically extends the concept set, the processing is repeated until
a fix-point of maximally extended contexts, with respective lattices, is reached. The
output lattices highlighting all the cases of property sharing between objects, inclusive
properties that are not owned by the objects themselves but by sets of other objects that
are “connected” to the former ones through path-like structures of relational links.

The present paper sheds some light on the genesis of relational attributes. It inves-
tigates the way they encompass and extend one-valued FCA attributes and provide a
necessary and sufficient condition for their formation. To that end, graph reasoning is
applied to the network of objects and links induced by an RCA dataset.

The remainder of the paper is organized as follows: First, RCA is motivated against
core FCA and a summary of the current knowledge about RCA is provided (Sec. 2). The
analytical description of the RCA output is presented next (Sec. 3) followed by a survey
of related work (Sec. 4) and concluding remarks (Sec. 5).

2 FCA on relational data

Key RCA structures and major results are summarized below (see details in [16]).

2.1 Basics of FCA

FCA is an order-theoretic approach suitable for knowledge discovery tasks as it ab-
stracts concepts and conceptual hierarchies out of a collection of individuals described
by properties. Core FCA encodes data in a formal context K = (O,A, I), where O is
set of (formal) objects, A is set of (formal) attributes, and I ⊆ O ×A is an incidence
relation (comparable to a set of ground expressions a(o), a ∈ A, o ∈ O). Its output is
a complete lattice L made of all (formal) concepts, i.e., pairs of sets (X,Y ) – a set of
objects X (extent) and a set of attributes Y (intent) – such that all attributes in Y are
shared by all objects in X and both sets are maximal w.r.t. this property. Henceforth,
we shall use as a running example a medical dataset representing AIDS patients and the
observed adverse reactions (ADR) to medication: Table 1 illustrates a formal contextKp
while Figure 1 shows its concept lattice Lp.



Beside the above one-valued attributes, FCA admits many-valued ones (e.g., the age
of patients). Before processing such datasets, a.k.a. many-valued contexts, many-valued
attributes are translated into one-valued by various scaling mechanisms.

Fig. 1. The concept lattice Lp of the context shown in Table 1.

2.2 RCA, an approach for FCA of relational datasets

Relational datasets stem from eponymous databases and comply to the Entity-Relationship
formalism. Thus, they are typically composed of several relational tables representing
independent objects sorts (drugs, therapies, hospitals, etc.) or the relationships between
those (e.g., patient-takes-drug). In FCA terms, each object sort can be hosted in a ded-
icated formal context. For instance, a HIV-centered pharmacovigilance4 dataset would
include, beside patient collection, a set of drugs. Moreover, like patients, these could be
described by the underlying active agents as well as by their known ADR (see Tab. 2).

To express the relational information, i.e., the relationships among objects of the
dataset, a collection of (objects× objects) binary relations5 are added. In FCA, they can
be conveniently represented as cross-tables: Tab. 3 shows the patient-takes-drug (left)
and drug-to-drug interaction (right) relations.

4 Pharmacovigilance is a bio-medical field monitoring the ADR to newly introduced drugs.
5 Thus, higher-arity relations are excluded.
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Aluvia × ×× × ××××
Vicriviroc × × ×
Truvada × × ×× ×
Cosmegen × × ××
Isentress × × × ×
Stocrin × ×× ××

Table 2. Context KD of anti-HIV drugs with the expected ADR and active agents.

Hereafter, a set of mathematical notations will be used. First, the relations RCA
admits are defined over pairs of object sets: i.e., each relation r is r ⊆ A×B, where A
andB are some predefined object sets (e.g., corresponding to the setO from a particular
context). The latter are called the domain and the range of r, respectively (denoted
dom(r) and ran(r)). Next, for such a r, the set of r-successors of an object o ∈ dom(r)
w.r.t. r is r(o) = {ō | (o, ō) ∈ r}.

As an input data format for RCA, a unique structure, called relational context family
(RCF), holds all the contexts and relations together.

Definition 1 (Relational Context Family, RCF)
An RCF is a pair (K,R) where:

– K = {Ki}i=1,...,n is a set of contexts Ki = (Oi, Ai, Ii) and
– R = {rk}k=1,...,m is a set of relations rk (rk ⊆ Oj×Ol for some j, l ∈ {1, . . . , n}).

Associated with an RCF, a function rel maps a context K = (O,A, I) ∈ K to the
set of all relations r starting at its object set O: rel(K) = {r ∈ R | dom(r) = O}.

Our running example RCF is made of the contexts KP (Tab. 1) and KD (Tab. 2) and
the relations takes, its inverse is taken by (itb) and interacts with (iw), shown in Tab. 3.

2.3 Turning relational links into first-class attributes

In dealing with relations from a RCF, i.e., the directed links between objects, RCA fol-
lows an approach which amounts to “propositionalizing” [9] them. In short, the links
are translated into one-valued attributes that are further assigned to the objects at their
origins. Since the mechanism compares to FCA scaling, we called it relational scaling6.

The syntax and the semantics of the resulting relational attributes have been in-
spired by role restrictions of the DL formalism [3]: given a relation r ⊆ Oi ×Oj and
object o ∈ Oi, to assign a relational attribute to o, the set of its r-successors r(o) is
matched against a set of objects from Oj . The latter is typically the extent of a concept

6 The term was first used in [15], with substantially different meaning.
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Aluvia × ×
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Table 3. Left: Binary relation takes linking AIDS patients to anti-HIV drugs. The relation
is taken by (henceforth referred to as itb) is the inverse of takes, i.e. (takes−1). Right: The
binary relation interacts with (iw) models interactions among drugs.

c over Oj , but could be any named set of objects. The overall pattern for naming the
attributes is q r : c where q is a quantifier, r is the relation and c the identifier (here a
concept name) of an object set X ⊆ Oj .

The exact matching discipline for r(o) and X depends on q which, for the current
study, is chosen within the set Q = {∀,∃,∀∃,≥,≥q,≤,≤q}. The possible disciplines
are schematized by a generic function, κ, whose effect is to filter the objects from Oi to
get an attribute q r : c. Formally, given a relation r and a quantifier q, κ maps an object
set from ran(r) to an object set from dom(r):

κ : Q×R×
⋃

i=1,...,n

℘(Oi)→
⋃

i=1,...,n

℘(Oi).

Its instanciations w.r.t. to the quantifiers q are provided in Tab. 4 (columns three and
four). For instance, consider the concept lattice in Fig. 1 and its concept c9. The extent
is X = {Alex, John}. With the existential quantification operator, κ(∃, itb, X) is the set
of drugs taken by at least one patient from X ({Aluvia, Cosmegen, Isentress, Truvada}).

Operator name Notation Attribute template κ(q, r, Ext(c)) calculation
Universal (wide) S(r,∀),B ∀ r : c r(o) ⊆ Ext(c)
Existential S(r,∃),B ∃ r : c r(o) ∩ Ext(c) 6= ∅
Universal strict S(r,∀∃),B ∀∃ r : c r(o) ⊆ Ext(c), r(o) 6= ∅
Cardinality restriction (max) S(r,≥),B ≥ n r : >L |r(o)| ≥ n

Cardinality restriction (min) S(r,≤),B ≤ n r : >L |r(o)| ≤ n

Qualified card. restriction (max) S(r,≥q),B ≥ n r : c r(o) ⊆ Ext(c), |r(o)| ≥ n

Qualified card. restriction (min) S(r,≤q),B ≤ n r : c r(o) ⊆ Ext(c), |r(o)| ≤ n
Table 4. Relational scaling operators in RCA: names, notations, and produced attributes with
incident object sets (Ext(c) is the extent of a concept c).





 
 



 
 



 
 



 
 



 
 



 
 



 
  

 
 



 
 



 
 



 
 



 
 



 
 



 
 



 
 



 
 

Fig. 2. The concept lattice LD of the context shown in Table 2.

Obviously, the κ can be applied to a family of sets B over ran(r), in particular, the
entire set of concept extents from a given concept lattice L. This is the motivation be-
hind the definition of context-level scaling operators S(r,q),B (column two from Tab. 4).
The following definition provides a general pattern for such operators specifying the
way the generated attributes expand the basic attribute set of the argument context:

Definition 2 (Scaling operator S(r,q),L)
Given a context Ki = (Oi, Ai, Ii) and a relation r ∈ rel(Ki), with ran(r) = Oj ,
let Lj be a concept lattice over Oj . The scaling operator S(r,q),Lj

over Ki yields the
derived context (O+, A+, I+) = S(r,q),Lj

(Ki), where:

– O+ = O,
– A+ = {‘q r : c′ | c ∈ Lj},
– I+ =

⋃
c∈Lj

(κ(q, r, Ext(c))× {‘q r : c′}).

Tab. 5 illustrates S(itb,∃),LP
(KD), the result of scaling the drug contextKD (Tab. 2)

along itb with an existential operator upon the lattice LP (Fig. 1).
The next step in transforming the relational information about the objects from Ki

is to scale upon every relation in rel(Ki) and then to append the results to Ki. To that
end, we define a function ρ : R→ Q that maps7 relations to scaling operators from Q.

7 A non functional ρ, albeit plausible, was willingly excluded for simplicity reasons.
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Aluvia × × × × × × ×
Vicriviroc × × × × × × ×
Truvada × × × × × × ×
Cosmegen × × × × ×
Isentress × × × × ×
Stocrin × × × × × × ×

Table 5. The existential scaling of the drug context KD along the relation itb using the lattice of
AIDS patients. Observe that ∃ itb:c1 is skipped as c1 is the bottom concept whose extent is void.

Let L be the set of lattices corresponding to contexts from K. Assume now K ∈ K
with rel(K) = {rl}l=1,...,mK and, let for each rl Ojl = ran(rl) with Ljl ∈ L being
the lattice on Oil . Now, the complete relational extension of K with respect to ρ and L,
denoted Eρ,L, is the apposition [7] of K with the respective derived context yielded by
scaling upon each rl with its ρ(rl):

Definition 3 (Complete relational extension of a context)
Given a RCF (K,R), with a set of lattices L, a scaling operator mapping ρ, and a
context K ∈ K with rel(K) = {rl}l=1,...,mK , the complete relational extension of K
w.r.t. ρ and L is

Eρ,L(K) = K | S(r1,ρ(r1)),Li1
(K) | . . . | S(rmk

,ρ(rmk
)),Limk

(K)

Let now Ke = Eρ,L(K) is the complete relational extension for some K ∈ K. Both
the original and the extended context share the same object set, yet Ke has a larger set
of attributes hence a larger lattice. Indeed, following Lemma 2 from [16], its lattice Le
comprises all the extents from the lattice L of K, plus possibly some additional ones (a
general rule with apposed contexts [19]).

Now the application of the complete relational extension operator Eρ,L to all con-
texts from K yields a set operator E∗ρ,L over K: The resulting Ke = E∗ρ,L(K) is made
of all the Ke and, correspondingly, its lattice set Le comprises all Le. The immedi-
ate consequence thereof is that Le, while preserving the concepts from L, may include
some additional ones, hence it represents a finer conceptualization of the RCF data. This
in turn warrants a new scaling step E∗ρ,Le(Ke) that may, in turn, effectively extend the
set of available attributes and hence, once more, generate previously unseen concepts.

In summary, the overall process of analyzing an RCF can be schematized as an
iterative application of E∗ρ,Le to the initial set of contexts from the RCF. The underlying
analysis method is presented below.

2.4 Iterative lattice construction

RCA constructs a concept lattice for each Ki starting with the lattice Li built with the
original attribute set Ai. At subsequent steps, it alternates (i) generation of relational



Fig. 3. The final lattice of patients (L∞P ). Quantifiers are omitted in relational attributes because
of visualization limitations of GALICIA.

attributes by relational scaling with concepts discovered at the previous iteration, and
(ii) lattice maintenance, i.e., the expansion of the current concept lattice with the newly
synthesized attributes. As shown in [16], the process converges, i.e., from a particular
iteration onward, no new concepts emerge in Le, hence the scaling step yields no new
attributes and the whole process halts. Algorithm 1 puts that into pseudo-code.

Spelled differently, the computation stabilizes at a global fixpoint represented by
the set of contexts and their lattices. Yet no analytical description has been provided so
far for the fixpoint lattice family w.r.t. the initial data in the RCF.

To study the fixpoint structures, we capture the way MULTI-FCA operates in the
definition of a sequence of non contracting contexts. By non contracting it is meant
contexts whose respective components either grow or remain stable. Indeed, in our case,
each relationally-extended version of a context has the same object set, yet potentially
bigger attribute set and hence incidence relation. The respective lattices follow the same
trend: each extended version has the same extent family plus potentially some new
object sets as extents. Yet the size of the lattice is bounded by 2|O|, hence new concepts
cannot be created ad infinitum.

Formally, each context Ki ∈ K from the input RCF yields a sequence Kpi whose
zero member K0

i = (O0
i , A

0
i , I

0
i ) is the input context Ki itself. From there on, each

subsequent member is the complete relational expansion of the previous one w.r.t. ρ
and the lattices of the previous iteration. This yields a global sequence of context sets
Kp and the corresponding sequence of lattice sets Lp.



1: proc MULTI-FCA(
2: In: (K,R) an RCF, ρ an operator mapping
3: Out: L a set of lattices)
4: p← 0 ; halt← false
5: for i from 1 to n do
6: K0

i ← SCALE(Ki)
7: L0

i ← BUILD-LATTICE(K0
i )

8: while not halt do
9: p = p+ 1

10: for i from 1 to n do
11: Kp

i ← EXTEND-CONTEXT(Kp−1
i , ρ, Lp−1)

12: Lp
i ← UPDATE-LATTICE(Kp

i ,Lp−1
i )

13: halt← ∀i ∈ {1, . . . , n}, ISOMORPHIC(Lp
i ,L

p−1
i )

Algorithm 1: Producing a lattice for each context in an RCF.

Definition 4 Given a RCF (K,R) and a scaling operator mapping ρ, the sequence of
context sets (Kj)j∈N is recursively defined as

K0 = K ; Kp+1 = E∗ρ,Lp(Kp)

In [16] it is shown that each Kpi as well as the entire Kp are non-contracting while
naturally bounded from above (by the bounded sizes of the lattices in Lp). Hence, all
sequences converge toward their respective limits.

Theorem 1 Given a RCF (K,R) and a scaling operator mapping ρ, the sequence (Kp)
converges towards a well-defined set of maximally extended contexts K∞.

As shown in Algorithm 1, the test for K∞ succeeds whenever a p is reached s.t.
E∗ρ,Lp produces no new concepts at any of the contexts. The fixpoint lattices of our
pharmacovigilance dataset are given in Fig. 4 and Fig. 3. Obviously, the fixpoint de-
pends on ρ: it is conceivable that the same RCF yields a different outcome for another
combination of quantifiers.

RCA has been implemented in GALICIA [18, 1] and is currently operational for var-
ious applications, such as reengineering of software models [4], refactoring of object-
oriented code [13], etc.

3 Soundness and completeness of the MULTI-FCA method

3.1 Observations on the iterative analysis process

The iterative analysis process ends up with a collection of lattices whose concept in-
tents mix attributes from the input RCF and relational ones created by scaling. While
the former admit straightforward interpretation, the latter have more complex seman-
tics and may prove hard to interpret, especially in large concept intents. We there-
fore need to clarify the semantics of the expressions found in fixpoint intents, e.g.,
{Rash, itb:c2, itb:c5, iw:c12, itb:c7} in concept c8 of L∞D (Fig. 4). The question to ask
is: What exactly do these expressions say about the initial RCF data?



Intuitively, the relational attributes in a fixpoint contexts K∞i are all rooted in the
initial set A0

i . However, the exact connection is blurred by a number of iterations, using
scaling and arbitrary combinations to form intents. Therefore, to successfully ground
the interpretation of the RCA output, we need formally established results on:

– the nature of configurations in the data (e.g., graphs, trees, sequences of inter-linked
objects) that are reflected in each fixpoint concept,

– the correctness of the iterative method: only concepts mirroring that sort of struc-
tures are generated (absence of spurious concepts in the output),

– the completeness of the method: no relevant structure in the data is left unrepre-
sented in the final result (exhaustiveness of the set of generated concepts).

In short, we face a language whose expressions must be provided with clear se-
mantics. They can only be denotational semantics: As we observed above, Oi remain
unchanged all along the analysis process whereas the discovered concept extents never
vanish in the iterative process which means the concept refinement is monotonic.

Fig. 4. The final lattice of drugs (L∞D ). Quantifiers are omitted in relational attributes due to
visualization limitation of GALICIA.

As a first step toward a more comprehensive answer to the semantic question, we
define below a graph-like structure on families of object sets. Its immediate goal is to



“explain” the genesis of attributes and intents in the fixpoint contexts by tracing their
links back to A0

i . The structures reflect two types of relationships:

– scaling: a concept extent yields an attribute extent,
– generation: set of attribute extents combine into a concept extent (through ∩).

Clearly, the target structures in the input data depend on the ρ function.

3.2 Basic definitions and notations

To focus on the extents of a contextKi while ignoring the remaining object sets that are
irrelevant, we introduce the notion of image. Images differ by the nature of the gener-
ating attribute set (single attributes vs. multiple ones) and order (depth in the structure
induced by the links of the above two types).

Definition 5 (Images, atomic and compound)
Given a context Ki = (Oi, Ai, Ii), a set X ⊆ Oi is:

atomic image (AI) if ∃a ∈ Ai s.t. X = a′,
compound image (CI) if ∃JX ⊆ N and AIs {Xj}j∈JX s.t. X =

⋂
j∈JX Xj .

For instance, the set {John} is an AI (and thus a CI) whereas {Carol} is a CI but not an
AI. Clearly, CIs correspond to concept extents in the initial contexts K0

i .
To distinguish the images generated by the initial attribute sets A0

i that are the basis
of the entire generation process from those in the scaled contexts, we split the overall
set into orders. Thus, the images in K0

i are qualified as 0-order AI/CI, shortened to 0-
AI/0-CI. Images from scaled contexts at different steps of the iterative process typically
have higher orders. These are defined recursively:

Definition 6 (k-order images, atomic and compound)
Given RCF (K,R), ρ and Ki = (Oi, Ai, Ii) from K, a set X ⊆ Oi is:

k+1-order atomic image (k+1-AI) if
1. X is not a p-CI for any p ≤ k, and
2. ∃r ∈ rel(Ki) and ∃Z ⊆ ran(r) which is a k-CI s.t. X = κe(ρ(r), r, Z),

k+1-order compound image (k+1-CI) if
1. ∃JX ⊆ N and {Zj}j∈JX where each Zj is a pj-AI for some pj ≤ k+1 s.t.
X =

⋂
j∈JX Zj , and

2. k+1 is minimal for that property, i.e., no such index set JX for smaller values
(k, k-1, etc.).

For instance, the patient set {Alex, John, Mary} is a 1-AI, whereas {John, Mary} is a 1-
CI that is not a 1-AI. Indeed, {Alex, John, Mary} = κe(∃, takes, {Aluvia, Isentress})
whereas the the latter set of drugs is a 0-AI since {Aluvia, Isentress} = {Headaches}′.
Moreover, {Alex, John, Mary} together with {Carol, John, Mary} = {Adult}′ contribute to
the canonical generation of {John, Mary}. This situation is illustrated in Fig. 5 where
both types of links are clearly distinguished.

The above definition basically says that in the global graph where CIs/AIs of various
orders are connected by generation and scaling links, k-CIs require a minimal chain of



{Alex, John, Mary}

{Carol, John, Mary}

{John, Mary}

{Aluvia, Isentress}

1-CI

1-AI

O-AI

O-AI

gen

gen

κ(∃, takes)

Fig. 5. An illustration of the genesis of the 1-CI {Mary, John}.

k + 1 generation/scaling links in order to emerge from the level-0 CIs/AIs. The graph
structure is easily shown to be a DAG. Moreover, observe that for X to be k-CI, at least
one Zj must be a k-AI.

Property 1 If X is k-CI, then ∀JX ⊆ N, {Zj}j∈JX s.t. X =
⋂
j∈JX Zj , ∃j

∗ ∈ JX
with Zj∗ being a p-AI where p ≥ k.

In the following we shall provide a one-to-one mapping of fixpoint concept extents
to k-CI for k ∈ {0, . . . , t} where t is the number of steps before termination in the
iterative analysis process.

3.3 Correctness

Below, we show that with t steps before termination, every extent of a concept that is
first created at step p, p ≤ t is in fact a p-CI. We start by providing some auxiliary
definitions.

First, as we reason about the process output, w.n.l.g. we can assume that each
attribute is assigned a unique rank. The rank is an integer number corresponding to
the order of creation (by scaling) within the total set of fixpoint attributes: rank :⋂n
i=1A

∞
i → N. For the ranks of the initial attributes –that predate any scaling– we

assume they are assigned in a way consistent with the above condition: their ranks rep-
resent a commencing segment of N. For instance, in our RCF, we may assume that ini-
tial attribute ranks follow the left-to-right column order from the context tables (Tab. 1
and 2) with patient attributes coming before drug ones. Furthermore, the relational
attributes follow the natural order of their names8. Thus, itb:c0 has the lowest-rank
among (31) them and takes:c23 the highest (84).

Furthermore, based on attribute ranks, we assume a total order on arbitrary attribute
sets which is the opposite of the standard string order –highest ranks are compared first–
hence it is called anti-alphabetic (denoted ≤a2). Formally, assume Y1, Y2 ⊆ A∞i :

Y1 ≤a2 Y2 iff argmax({rank(a) | a ∈ Y1 4 Y2}) ∈ Y2.

Thus, {Adult, Fatigue, takes:c10, takes:c14}≤a2 {takes:2, takes:21, takes:c10, takes:c14}
(the intents of patient concepts c7 and c14, respectively). It is readily shown that ≤a2

8 This only makes sense since the fixpoint is reached after a single scaling step.



is compatible with set-theoretic inclusion: For any Y1, Y2 ⊆ A∞i , Y1 ⊆ Y2 entails
Y1 ≤a2 Y2.

We also extend the notion of generator for a set of attributes to object sets X ∈ Oi:
Y ⊆ A∞i is a generator ofX wheneverX =

⋂
a∈Y a

′. Now the canonical generator of
X , can(X) is the unique minimal one w.r.t.≤a2. It is readily shown that can(X) is also
minimal for set-theoretic inclusion. For instance, can({John, Mary}) = {Adult, takes:2}.

Finally, attribute ranks are also expanded to sets of attributes and sets of objects.
For a set Y ⊆ A∞i , the ranks is the maximal of all member ranks: rank(Y ) =
max({rank(a) | a ∈ Y }). In contrast, for X ∈ Oi, its rank is the canonical gen-
erator rank: ranko(X) = rank(can(X)). Thus, ranko({John, Mary}) = 63. We can
now formulate our first key result:

Theorem 2 Given an RCF (K,R), a function ρ and a context K∞i from K∞, let X ⊆
Oi. In order for X to be generated as concept extent at step p ≤ t of the analysis
process, it is necessary that X be a p-CI.

Sketch of a proof Induction upon ranko(): First, all extentsX whose ranks ranko(X)
are less or equal the highest rank of an initial attribute say sa, clearly possess a gener-
ating set made exclusively of initial attributes. Hence X can be represented as an inter-
section of 0-AI and therefore X is a 0-CI. For X of ranks above sa, say ranko(X) =
v+1, we assume that for all extents Z of ranks vZ ≤ v, the conditions of the theo-
rem are met (being created at step pZ , a Z is a pZ-CI). Using the attributes a from the
canonical generator can(X), X is further decomposed as an intersection of Zj = a′

for j ∈ JX , all of whom are created at steps pj ≤ p. By the inductive hypothesis, each
Zj is a pj-CI and this provides the demonstration of X being a p-CI. As a special case,
consider can(X) = {a} with a := ‘ρ(r)r : c′ for some r ∈ rel(Ki) and some concept
c = (T, Y ) over the objects in ran(r). In this case X = κ(ρ(r), r, T ). Since T should
already exist at step p, forX to be generated, its rank is at most v. Moreover, T can only
be created at step p-1, hence by the inductive hypothesis it is a p-1-CI, which makes X
a p-AI and hence p-CI. �

3.4 Completeness

We now tackle the opposite direction of the mapping, i.e., the proof of each p-CI being
a concept extent in a fixpoint context.

Theorem 3 Given an RCF (K,R), a function ρ and a context K∞i from K∞, let X ⊆
Oi. In order for X to be generated as concept extent by the analysis process, it is
sufficient that there be a p ∈ N s.t. X is a p-CI.

Sketch of a proof We use complete induction on p. In the base case p = 0, the proof
is immediate following the Definition 5 (0-AI and 0-CI). Whether 0-AI or not, X is a
0-CI and as such is a concept intent.

Now the inductive hypothesis is for all p ≤ k, X is k-CI entails X is a concept
extent formed at the k-th step of the global iterative process In the inductive step, let
p = k+1 and observe that by Definition 6, X is not p-CI for any p ≤ k (*). The
reasoning now splits into complementary cases:



case 1 X is a k+1-AI. Thus, ∃r ∈ rel(K) and ∃X̄ ⊆ ran(r), X̄ being a k-CI s.t. X =
κ(ρ(r), r, X̄). By the inductive hypothesis, X̄ is an extent of a concept c = (X̄, Ȳ )
over the set ran(r) generated at the k-th step of the process. From Definition 2,
there will be an attribute aX := ‘ρ(r)r : c′ in the scaled set Ak+1 such that X
is the image of aX in O (a′X = X). Consequently, there will be a concept cX =
(X,Y ) overO at that step. Now assuming cX (henceX) was generated at an earlier
step p ≤ k we show a contradiction: by Theorem 2, X is a p-CI, yet this is a
contradiction with (*).

case 2 X is a k+1-CI. Thus, ∃JX ⊆ N and {Zj}j∈JX s.t. X =
⋂
j∈JX Zj and each Zj

is a p-AI with p ≤ k+1 and no such set JX for smaller values exists. From Prop-
erty 1 we know ∃j∗ ∈ JX s.t. Zj∗ is a k+1-AI. Furthermore, from the above case
1 of this proof, it follows that all such Zj∗ are the extents of relational attributes a
created at step k+1. Now, from the inductive hypothesis, we know that the remain-
ing Zj are attribute extents created at earlier steps. However, this only says that X
is generated –at latest– at step k+1. Thus, to formally demonstrate that X could not
be generated at a step p ≤ k, we assume the opposite and prove the contradiction:
Assume now X , albeit a k+1-CI, is an extent generated at step s ≤ k. Following
Theorem 2, we deduce that X is also a s-CI. Hence ∃Js ⊆ N and {Zj}j∈Js s.t.
X =

⋂
j∈Js Zj and each Zj is a p-AI with p ≤ s. Yet this formally contradicts the

fact that the above set JX does not exist for values strictly less than k + 1. �

In summary, all concept extents in the fixpoint lattices are related to the original
attribute extents by chains of links having one of the above two types. The critical
chains that “explain” the genesis of a fixpoint extentX clearly pass trough its canonical
generator or, more precisely, the extents of the member attributes. Furthermore, all such
extents can be connected to their own canonical generators and so forth, all the way
down to 0-AIs. While we focused here on establishing the links between any such X
and its multiple generating sets, additional work will be necessary to determine whether
a single path in the overall graph can be associated to X . Beside providing a canonical
path for an extent, this would also enable a more satisfactory answer to the natural
question termination question, i.e., how many steps would MULI-FCA need to reach
its fixpoint for a particular RCF.

4 Related work

RCA relates to approaches for extending the output of FCA towards relational expres-
sions such as logical formulae, graphs, etc. For instance, in [14], the many-valued at-
tributes are scaled upon a fixed hierarchy of concepts (the terms in the TBox of a DL
knowledge base). In RCA terms, the method employs a single-step static relational scal-
ing. Moreover, the approach critically depends on the availability of a suitable TBox.
Simultaneously, the relations in FCA have been formalized as power context families
(PCF) [15] where inter-object links (object pairs) are first-class formal objects of ded-
icated contexts. Yet the use of the corresponding concepts on links as descriptors for
concepts on true objects, i.e., entities, remains unclear.

Independently, FCA has been explored as a tool for structuring DL knowledge bases.
In [2], an FCA-based method constructs the hierarchy of all conjunctions of concepts



from a TBox. As it is centered on human-guided attribute exploration, the possible
references between concepts are ignored. The relational exploration [17] expands the
former method towards a full set of DL constructors, i.e., a target language closer to the
one in RCA. As the method explores the syntactic structure of the DL formulae it fails
to capture the existing references between the underlying DL concepts (e.g., via a sub-
formula). For similar reasons, the generation of DL expressions needs to be restricted
by some syntactic criteria (e.g., the depth of constructor nesting) since otherwise un-
bounded. A comparable generation mechanism for a richer DL language (e.g., inclusive
disjunction), albeit without the closedness requirement on the produced descriptions,
was explored in the machine learning system DL-LEARNER [11]. While producing
concept descriptions structurally richer than the RCA output (strictly conjunctive), the
system presents the same shortages as above, in particular, no recognition of the ref-
erences between the discovered concepts. Back to FCA, in [5] a larger set of relational
structures have been explored for concept construction yet with the same syntax-based
techniques. Again, the generation of concept descriptions is controlled by limiting the
nesting depth.

In a parallel trend, graph-based descriptions of the formal objects are assumed [10,
12]). Despite the broad coverage of the graph-based formats, e.g., chemical compound
models or social networks, the proposed methods are not suitable for generating DL-like
concept descriptions. Indeed, such methods are inherently limited to graph-like concept
descriptions (e.g., no quantifiers) with only intra-object relations, i.e., relations among
the parts of whole (as in chemical models).

5 Conclusion

RCA is an analysis framework that extends core FCA to the processing of relational
datasets, i.e., with multiple sorts of objects and relational links between them. It thus
constructs a set of lattices, one per object sort. The associated method performs a special
kind of propositionalization on the links, a relational scaling, that yields standard FCA
attributes with various semantics borrowed from the DL formalisms. It iterates upon the
initial data, swapping at each iteration, the scaling with the maintenance of the current
lattices until a fixpoint is reached.

Here we presented the framework and analyzed its modus operandi in order to pro-
vide an analytic characterization of the fixpoint lattice set. To that end, we defined
images, the equivalent of concept extents, without the ambiguity of the multiple gen-
erations. A major advantage thereof is that they can be easily traced back to the initial
data. We demonstrated the equivalence between fixpoint extents and higher-order im-
ages in two separate theorems that establish the correctness and completeness of our
method, respectively.

Having established the theoretical foundations of RCA, our next major concern will
be to make it a practical tool. To that end we shall focus on performances and study
alternative techniques for speeding up the computing of updated lattices at subsequent
iterations. In this respect, challenging, and still open, question is how to properly esti-
mate the number of iterations RCA would require on a particular dataset.
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ing. In S. Džeroski and N. Lavrač, editors, Relational Data Mining, pages 262–291. Springer,
2001.

10. S. Kuznetsov. Learning of Simple Conceptual Graphs from Positive and Negative Examples.
In Proc. of the 3rd European Conf. on Principles of KDD (PKDD’99), volume 1704 of LNCS,
pages 384–391. Springer, 1999.

11. J. Lehmann and P. Hitzler. Concept learning in description logics using refinement operators.
Mach. Learn., 78:203–250, January 2010.

12. M. Liquière and J. Sallantin. Structural Machine Learning with Galois Lattice and Graphs.
In Proc. of the 15th Intl. Conf. on Machine Learning (ICML’98), pages 305–313, 1998.

13. N. Moha, N. Rouane-Hacene, P. Valtchev, and Y.-G. Guéhéneuc. Refactorings of Design
Defects using Relational Concept Analysis. In Proc. of the 6th Intl. Conf. on Formal Concept
Analysis (ICFCA’08), volume 4933 of LNCS, pages 289–304. Springer, 2008.

14. S. Prediger and G. Stumme. Theory-driven logical scaling. In Proc. 6th Intl. WS Knowledge
Representation Meets Databases, CEUR WS Proc., pages 46–49, 1999.

15. S. Prediger and R. Wille. The Lattice of Concept Graphs of a Relationally Scaled Context.
In Proc. of the 7th Intl. Conf. on Conceptual Structures (ICCS’99), pages 401–414. Springer,
1999.

16. M. Rouane-Hacene, M. Huchard, A. Napoli, and P. Valtchev. Relational Concept Analy-
sis: Mining Concept Lattices From Multi-Relational Data (26 p.). to appear in Annals of
Mathematics and Artificial Intelligence, 2013.

17. S. Rudolph. Exploring Relational Structures via FLE. In Proc. of the 12th Intl. Conf. on
Conceptual Structures (ICCS’04), Huntsville (AL), volume 3127 of LNAI, pages 196–212.
Springer, 2004.

18. P. Valtchev, D. Grosser, C. Roume, and M. Rouane-Hacene. GALICIA: an open platform
for lattices. In Using Conceptual Structures: Contrib. to 11th Intl. Conf. ICCS’03, pages
241–254. Shaker Verlag, 2003.

19. P. Valtchev, R. Missaoui, and P. Lebrun. A partition-based approach towards building Galois
(concept) lattices. Discrete Mathematics, 256(3):801–829, 2002.


