
HAL Id: lirmm-00834143
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00834143

Submitted on 14 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Novel definition and algorithm for chaining fragments
with proportional overlaps

Raluca Uricaru, Alban Mancheron, Eric Rivals

To cite this version:
Raluca Uricaru, Alban Mancheron, Eric Rivals. Novel definition and algorithm for chaining frag-
ments with proportional overlaps. Journal of Computational Biology, 2011, 18 (9), pp.1141-1154.
�10.1089/cmb.2011.0126�. �lirmm-00834143�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00834143
https://hal.archives-ouvertes.fr

Novel definition and algorithm for chaining fragments with

proportional overlaps

Raluca Uricaru∗ Alban Mancheron∗ Eric Rivals∗

8th May 2011

Abstract

Chaining fragments is a crucial step in genome alignment. Existing chaining algorithms compute a

maximum weighted chain with no overlaps allowed between adjacent fragments. In practice, using local

alignments as fragments, instead of MEMs, i.e. Maximal Exact Matches [6], generates frequent overlaps

between fragments, due to combinatorial reasons and biological factors, i.e. variable tandem repeat

structures that differ in number of copies between genomic sequences. In this paper, in order to raise this

limitation, we formulate a novel definition of a chain, allowing overlaps proportional to the fragments

lengths, and exhibit an efficient algorithm for computing such a maximum weighted chain. We tested

our algorithm on a dataset composed of 694 genome pairs and accounted for significant improvements

in terms of coverage, while keeping the running times below reasonable limits. Moreover, experiments

with different ratios of allowed overlaps showed the robustness of the chains with respect to these ratios.

1 Introduction

In biology, genome comparison is used for gene annotation, phylogenetic studies, and even vaccine design

[13, 2, 7]. Many bioinformatics programs for whole genome comparison involve a fragment chaining step,

which seeks to maximize the total length of the chained fragments, eg [6]. Given the set of n shared genomic

intervals, i.e. fragments, the Maximum Weighted Chain problem (MWC) is solved in O(n logn) time by

dynamic programming when overlaps between adjacent fragments are forbidden [11, 1]. Alternatively,

Felsner et al. showed that this problem is a special case of the Maximum Weighted Independent Set

problem in a trapezoid graph, which they solve by a sweep line algorithm over an equivalent box order

representation of the graph [5]. These algorithms [1, 5] can be extended to handle fixed length overlap

between adjacent fragments, but this is not sufficient to deal with the large differences in fragment length

obtained even with small bacterial genomes [15]. An O(n logn) time algorithm for the MWC with Fixed

Length Overlaps problem was designed and used for mapping spliced RNAs on a genome [14], but the fixed

bound on overlaps remains a limitation. To raise this limitation, we formulate the MWC with Proportional

Length Overlaps problem (MWC-PLO) and exhibit the first chaining algorithms allowing for overlaps that

are proportional to the fragment lengths, and whose chain weight function accounts for overlap. Following

Felsner et al., we use the box representation of a trapezoid graph and adapt the sweep line paradigm to this

problem.

Small overlaps are often caused by equality over a few base pairs of fragment ends due to randomness,

since the alphabet has only four letters. To handle such cases, one could set a constant, large enough,

maximal allowed overlap threshold. However, biological structures like tandem repeats (TR) that vary in

number of copy units generate overlaps that are large relatively to the fragments involved. To illustrate this

case, let u,v,w be words and assume the sequences of two genomes Ga,Gb are Ga = uvvw and Gb = uvvvw,

i.e. contain a variable TR of motif v. Then, uvv generates a local alignment between Ga and Gb, as well as

vvw, but both fragments overlap each other over v in both Ga and Gb. Since v can be arbitrarily large, the

fragment overlap can be as large as v itself. Such cases cannot be circumvented with fixed length overlaps:

only proportional overlaps can handle these. As variable-number tandem repeats occur in genomes of

∗LIRMM, CNRS and Université de Montpellier 2, Montpellier, France

1

numerous species coming from all kingdoms of life, the problem of dealing with proportional overlaps is

of great importance.

The paper is organised as follows. Section 2 presents the chaining problem without overlaps, while

Section 3 defines chaining with proportional overlaps and sets the dynamic programming framework and

algorithm that solves it. In Section 4 we exhibit a sweep line algorithm for this question, prove its correct-

ness and discuss the complexities. In Section 5, we study the performance of our algorithm, implemented

in a tool called OverlapChainer (OC), we investigate the robustness of the results with respect to different

overlap ratios and compare the results obtained with proportional overlaps to those obtained with fixed

overlap thresholds. We conclude in Section 6.

2 Preliminaries

Boxes are axis parallel hyper-rectangles in R
k, where each genome is associated with one axis. For sim-

plicity, we consider the two dimensional case where k = 2, i.e. comparing two genomes. The length on a

genome of the fragment associated with a box is the projection of that box on the corresponding axis.

Let α ∈ {1,2} index the axis, and for any point x ∈ R
2 let Pα(x) denote its projection on axis α. Let I

be an interval of R and I be a set of disjoint intervals of R; we denote by |I| the length of I and by |I | the

sum of the lengths of intervals in I . Let B be a box of R2. The upper right, resp. lower left, corner of B

is denoted by u(B), resp. l(B). By extension, the interval corresponding to the projection of B on axis α is

denoted Pα(B). Let < denote the classical dominance order between points of R2.

Definition 1 (Overlap free box dominance order). Let Bx,By be two boxes of R2. We say that By dominates

Bx, denoted Bx ≪ By, if l(By) dominates u(Bx) in R
2. If neither Bx dominates By, nor By dominates Bx,

then Bx and By are incomparable.

Felsner et al. showed how to transform a trapezoid graph into a box order, i.e. a set of boxes equipped

with the dominance order≪ such that pairs of incomparable boxes are in one-to-one correspondence with

trapezoid pairs linked by edges of the graph. Hence, the Maximum Weighted Independent Set problem in

a trapezoid graph is equivalent to the MWC problem in the corresponding box order [5]. Given an order,

recall that a chain is a set of mutually comparable elements, and a maximal element in a set is one with

no other element dominating it. Each chain has exactly one maximal element.

3 A novel tolerance definition for the Maximum Weighted Chain

problem in a box order

To formulate a MWC with Proportional Length Overlaps problem (MWC-PLO) in our framework, we need

to redefine the dominance order to accept overlaps that are proportional to the boxes’ projection lengths,

and to propose a weight function that truly measures the coverage on each genome. By coverage, it is

generally meant the total length of the genomic intervals covered by the selected fragments [10] . This

requires that the chain weight counts only once a subinterval covered by several overlapping fragments.

Let r ∈ [0,1[represent the maximal allowed overlap ratio between any two boxes.

Definition 2 (r tolerant dominance order). Let Bu and Bv be two boxes. Bv dominates Bu on axis α in this

tolerant dominance order, denoted by Bu≪r,αBv, if and only if

Pα(u(Bu))−Pα(l(Bv))≤ r min(|Pα(Bu)| , |Pα(Bv)|).

Now, we denote by Bu≪r Bv the fact that Bv dominates Bu if and only if for each α ∈ {1,2} Bu≪r,α Bv.

It can be easily shown that the dominance between boxes implies the dominance between their upper,

resp. lower, corners. Moreover, this tolerant dominance order is transitive.

Property 1. Let Bt ,Bu two boxes such that Bt≪rBu. Then l(Bt)< l(Bu) and u(Bt)< u(Bu).

Property 2. The dominance order≪r is transitive.

2

Proof of Property 2 (transitivity of≪r). Let Bt ,Bu,Bv be three boxes such that Bt ≪r Bu and Bu ≪r Bv.

We will show that Bt ≪r Bv. Let α ∈ {1,2}. By hypothesis and from Property 1, we obtain both l(Bt) <
l(Bu)< l(Bv) and u(Bt)< u(Bu)< u(Bv). From these we get both

Pα(u(Bt))−Pα(l(Bv))< Pα(u(Bt))−Pα(l(Bu))≤ r min(|Pα(Bt)| , |Pα(Bu)|), (1)

and

Pα(u(Bt))−Pα(l(Bv))< Pα(u(Bu))−Pα(l(Bv))≤ r min(|Pα(Bu)| , |Pα(Bv)|) . (2)

When combined, these equations imply

Pα(u(Bt))−Pα(l(Bv)) ≤ r min(|Pα(Bt)| , |Pα(Bu)| , |Pα(Bv)|)

≤ r min(|Pα(Bt)| , |Pα(Bv)|)),

and hence Bt≪rBv.

From Property 1, one deduces the following corollary, which will help to compute efficiently the weight

of overlapping boxes in a chain.

Corollary 1. Let Bt ,Bu,Bv be three boxes such that Bt ≪r Bu≪r Bv. Then: (Bt ∩Bv)⊂ (Bu∩Bv).

We define the weight of a box as the sum of lengths of its projections on all axis, and the weight of a

chain of boxes as the sum of the coverages on each axis.

Definition 3 (Weight of a box, of a chain). Let B be a box and α ∈ [1,2]. Its weight on axis α is wα(B) :=
|Pα(B)|, and its weight is w(B) := ∑

2
α=1 wα(B). Let m ∈ N and C := (B1≪r . . .≪rBm) be a chain of m

boxes. The weight of C on axis α, denoted Wα(C), is

Wα(C) :=

∣

∣

∣

∣

∣

m⋃

i=1

Pα(Bi)

∣

∣

∣

∣

∣

,

while its weight is W (C) := ∑
2
α=1 Wα(C).

Note also that the weight of a box only depends on the endpoints of its projection on each axis, and

hence, can be computed in constant time.

Clearly, it can be easily seen that

Wα(C) = wα(Bm)+
m−1

∑
j=1

∣

∣

∣

∣

∣

Pα(B j)\
m⋃

l= j+1

Pα(Bl)

∣

∣

∣

∣

∣

= wα(Bm)+
m−1

∑
j=1

∣

∣Pα(B j)\Pα(B j+1)
∣

∣ by Corollary 1. (3)

The following easy property will also prove useful.

Property 3. Let Bt ,Bu two boxes such that Bt≪rBu. Then

• Bt ∩Bu is an, eventually empty, axis parallel rectangle of R2, and

• for α ∈ [1,2], |Pα(Bt)\Pα(Bu)|= |Pα(Bt)\Pα(Bt ∩Bu)|= wα(Bt)−wα(Bt ∩Bu).

Now, we can define the MWC-PLO problem. Let B ′ := {B2, . . .Bn−1} be the set of input boxes. For

convenience, we add two dummy boxes, B1,Bn, such that for all 1 < i < n: B1≪rBi≪rBn. Additionally,

we set w(B1) = w(Bn) := 0. Now, the input consists in B := {B1, . . . ,Bn}.

Definition 4 (MWC with Proportional Length Overlaps). Let r ∈ [0,1[and B := {B1, . . . ,Bn} a set of

boxes. The MWC with Proportional Length Overlaps problem is to find in B , according to the dominance

order≪r, the chain C that starts with B1 and ends at Bn and whose weight W (C) is maximal.

The notation of r, B , and W (C) are valid throughout the paper. For any 1 ≤ i ≤ n, let us denote by

Ci the set of chains ending at Bi, and by W (Bi) the weight of the maximal weighted chain in Ci (not to be

confounded with w(Bi)). From now on, all the considered boxes belong to B unless otherwise specified.

3

3.1 A dynamic programming framework

Let us show that MWC-PLO can be solved by a dynamic programming algorithm. Equation 3 suggests a

recurrence equation to compute W (Bi), with W (B1) = 0 and for all 1 < i≤ n:

W (Bi) = max
B j : B j≪rBi

W (B j)+
2

∑
α=1

∣

∣Pα(Bi)\Pα(B j)
∣

∣ . (4)

Obviously, this implies that for all 1 ≤ j < n the value of W (B j) will be reused for computing W (Bi) for

every box Bi such that B j≪rBi. Thus, MWC-PLO consists of overlapping subproblems, which suits to

the framework of dynamic programming [4, chap. 15]. However, it is correct to use Equation 4 only if

our problem satisfies the condition of optimal substructures [4, chap. 15]. In Theorem 1, we show this is

true.

Theorem 1 (Optimality of substructures). Let m, i1, . . . , im be integers belonging to [1,n], and let D :=
(Bi1 , . . . ,Bim) be an optimal weighted chain among the chains in Cim . Thus, D′ := (Bi1 , . . . ,Bim−1

) is an

optimal weighted chain among those in Cim−1
.

Proof of Theorem 1 (Optimality of substructures). By hypothesis, Equation 3 and Property 3, one has

W (D) = W (Bim)

= w(Bim)+
im−1

∑
j=i1

∑
α

∣

∣Pα(B j)\Pα(B j+1)
∣

∣

= w(Bim)−w(Bim ∩Bim−1
)+w(Bim−1

)+
im−2

∑
j=i1

∑
α

∣

∣Pα(B j)\Pα(B j+1)
∣

∣

= w(Bim)−w(Bim ∩Bim−1
)+W (D′) .

We proceed by contradiction and assume that E ′, rather than D′, is an optimal weighted chain ending at

Bim−1
, i.e. W (E ′)>W (D′). Consider the chain E := D′∪{Bim}. By the same reasoning as above, one has

W (E) = w(Bim)−w(Bim ∩Bim−1
)+W (E ′),

and hence, W (E) > W (Bim), contradicting the hypothesis that D is an optimal weighted chain ending at

Bim . MWC-PLO satisfies the condition of substructures’ optimality.

The MWC with Proportional Length Overlaps can thus be solved by a dynamic programming algo-

rithm, which uses two n-element arrays: W [.] and Pred[.] to store for all 1≤ i≤ n resp. the values of W (Bi)
and the predecessor of Bi in an optimal weighted chain ending at Bi. This algorithm takes O(n2) time and

O(n) space; in Section 4 we prove an algorithm for MWC-PLO, more efficient in practice.

Theorem 2. A dynamic programming algorithm (Algorithm DP) solves the MWC with Proportional Length

Overlaps problem in O(n2) time and O(n) space.

4 A sweep line algorithm for MWC with Proportional Length Over-

laps

Here, we exhibit a sweep line algorithm for the MWC with Proportional Length Overlaps problem (see

Algorithm 1), prove it and study its complexity. Even though we were not able to prove a time complexity

below quadratic, we show that in practice, Algorithm 1 is much more efficient than Algorithm DP.

4

p
closed boxes

open boxes

B1

B2

B3

future boxes

(a)

Bi
r%

Bj
Bk

Ab(Bi) Ao(Bi)
Bl

(b)

Figure 1: (a) E.g. of boxes in each disjoint set forming a partition of B , when sweeping a point p. (b)

Partition of the search space of possible predecessors of Bi in two areas, Ab(Bi) and Ao(Bi), according to

the location of their upper corners: Ab(Bi) at left from the dashed line, and Ao(Bi) at its right.

4.1 Outline of the algorithm

Following Felsner et al., we give a sweep line algorithm in which a vertical line sweeps the boxes in the

plane by increasing x-coordinates of their corners, stopping at the lower left and upper right corners of

each box. To avoid visiting, as in Algorithm DP, all possible predecessors when computing the best chain

ending at Bx, we maintain a set, A , of active boxes that can compete for being the optimal predecessor in

that chain. But as predecessors can overlap Bx, this computation involves several steps, meaning that W [Bx]
and Pred[Bx] can be updated several times before getting their final value; this differs from Algorithm DP.

Let P be an array containing the 2n points corresponding to l() and u() corners of the n boxes in B .

Points in P are ordered on their x-coordinates; among the points having identical x-coordinates, lower

corners are placed before upper corners. For each point, we store to which box and to which corner it

corresponds to. In Algorithm 1, the main loop sweeps the points of P and processes in a different manner

lower (lines 5-8) and upper corners (lines 9-21). We say a box Bx is open when the sweep line is located

between l(Bx) and u(Bx) inclusive, closed when the line has passed u(Bx), and future when it lies before

l(Bx). These states are exclusive of each other, and partition at each moment B in three disjoint sets (see

Figure 1a). All open boxes at each point are kept in a set O (lines 6, 10). The weight of a chain ending at,

say Bi, and passing by a predecessor of Bi, Bx, can only be computed when Bx is closed (when W [Bx] has

reached its final value). If P1(u(Bx)) < P1(l(Bi)) then this can be done when stopping at l(Bi) (lines 7-8),

while if Bx overlaps Bi on x-axis, then this is done when stopping at u(Bx), and at the same time for all

open boxes having Bx as predecessor (lines 11-15). These two cases partition the possible predecessors of

Bi according to the location of their upper corners in two areas Ab(Bi) and Ao(Bi) (see Figure 1b).

As above mentioned, we maintain in A the set of interesting predecessors for all future boxes. Boxes in

A are active boxes. Hence, once closing a box (stopping at its upper corner), we test whether it should be

turned active and inserted in A (lines 16-18). The current box, Bi, is inserted only if we cannot find a better

predecessor in A . Afterwards, if Bi has been added, currently active boxes are investigated to determine

if they are less interesting than Bi, in which case they are deleted from A (lines 19-21). Active boxes are

consulted when opening a box Bi, for computing the best chain ending at Bi with a predecessor in Ab(Bi)
(lines 7-8).

4.2 Correctness of the Algorithm

For 1 ≤ i ≤ n, we show that W [Bi] and Pred[Bi] store the weight and the predecessor of Bi in a maximum

weighted chain ending at Bi. First, several simple invariants emerge from Algorithm 1. I1: At any point,

5

Algorithm 1: MWC_Tolerance_Box_Order (P)

Data: r ∈ [0,1[, B a set of n boxes, P an array with the 2n box corners

Result: W a vector of weights, with W [Bn] the weight of the best chain in B , Pred a vector containing

the previous boxes in the chain

begin1

sort_on_x_coordinate(P);2

A ←− B1; W [B1]←− 0; Pred[B1]←− null; O←− /0;3

foreach p ∈ P in ascending order on x-coordinate do4

if p is a lower corner (i.e. ∃Bi : p = l(Bi)) then5

O←− O ∪{Bi};6

Pred[Bi]←− argmax
B j≪rBi,B j∈A

(W [B j]+
2

∑
α=1

∣

∣Pα(Bi)\Pα(B j)
∣

∣);
7

W [Bi]←−W [Pred[Bi]]+
2

∑
α=1

|Pα(Bi)\Pα(Pred[Bi])|;
8

else /* p is an upper corner, i.e. ∃Bi : p = u(Bi) */9

O←− O \{Bi};10

foreach Bk ∈ O with Bi≪rBk do11

wk←−W [Bi]+
2

∑
α=1

|Pα(Bk)\Pα(Bi)|);
12

if wk >W [Bk] then13

W [Bk]←− wk;14

Pred[Bk]←− Bi;15

B←− argmax
u(B j)<u(Bi),B j∈A

(W [B j]);
16

if W [Bi]≥W [B] or |P2(Bi)|> |P2(B)| then17

A ←− A ∪{Bi};18

foreach Bk ∈ A with P2(u(Bk))> P2(u(Bi)) do19

if W [Bk]<W [Bi] and (|P2(Bk)|< |P2(Bi)| or P2(l(Bk))> P2(u(Bi))) then20

A ←− A \{Bk};21

traceback(Pred[Bn]);22

end23

6

the set O contains all open boxes. I2: Both W [Bi] and Pred[Bi] store their final values once u(Bi) has been

processed, since they are not altered after that point. I3: Hence, at any point all active boxes (i.e. boxes in

A), which are closed boxes, satisfy I2. For conciseness, as W [Bi] and Pred[Bi] are computed jointly, from

now on we deal only with W [Bi]. Since potential predecessors of Bi are partitioned in Ab(Bi) (Figure 2a)

and Ao(Bi) (Figure 2b), we will prove two invariants: I4: partial optimality over Ab(Bi) at lower corners,

and I5: optimality at upper corners.

I4: partial optimality over Ab(Bi) at lower corners. We show that after processing l(Bi), W [Bi] stores

the weight of a maximum weighted chain ending at Bi with predecessor in Ab(Bi). Given line 7, this is

equivalent to showing that no better chain ending at Bi passes through a potential predecessor that does not

belong to A at that point, which we prove by contradiction. While processing l(Bi), A contains a subset

of boxes in Ab(Bi), but obviously none from Ao(Bi). Let B be a closed box of B \A such that B≪rBi and

w(Bi)−w(B∩Bi)+W [B] > W [Bi], in other words, B makes a better predecessor for Bi than those in A .

From B≪rBi, we get

P2(u(B))−P2(l(Bi))≤ r min(|P2(B)| , |P2(Bi)|) . (5)

As only two possibilities exist for B not belonging to A , we distinguish two exclusive cases.

B was not turned active when sweeping u(B) (lines 16-18). B did not satisfy the condition on line 17.

Let B′ := argmax
B j∈A :u(B j)<u(B)

(W [B j]). Our hypothesis means that u(B′)< u(B) and

W [B] < W [B′] (6)

|P2(B)| ≤
∣

∣P2(B
′)
∣

∣ . (7)

For B does not overlap Bi and u(B′) < u(B), we have B′ does not overlap Bi on the x-axis. From u(B′) <
u(B), we get P2(u(B

′))< P2(u(B)); this with equations 5 and 7 yields

P2(u(B
′))−P2(l(Bi)) < P2(u(B))−P2(l(Bi))

≤ r min(|P2(B)| , |P2(Bi)|)

≤ r min(
∣

∣P2(B
′)
∣

∣ , |P2(Bi)|) . (8)

Equation 8 and B′ not overlapping Bi on the x-axis imply B′≪rBi. Finally, from equations 6, 7, and

u(B′)< u(B) we obtain:

W [B]+
2

∑
α=1

(wα(Bi)−wα(Bi∩B)) < W [B′]+
2

∑
α=1

(wα(Bi)−wα(Bi∩B′)),

and thus B′ makes a better predecessor for Bi than B, a contradiction.

B was inactivated when sweeping u(Bk) for some box Bk ending before l(Bi) (lines 19-21). The

hypothesis means that B was deleted from A for it satisfied P2(u(Bk)) < P2(u(B)), W [B] < W [Bk], and at

least one of the conditions (a) |P2(B)|< |P2(Bk)| or (b) P2(u(Bk))< P2(l(B)).

a) As above (see Eq. 8), from Equation 6, from |P2(B)|< |P2(Bk)|, and P2(u(Bk))< P2(u(B)), we get

P2(u(Bk))−P2(l(Bi)) < r min(|P2(Bk)| , |P2(Bi)|) . (9)

Moreover, as Bk does not overlap Bi on the x-axis, we obtain Bk≪rBi. As P2(u(Bk))< P2(u(B)), Bk

and B do not overlap Bi on x-axis, and W [B]<W [Bk], we finally derive

W [B]+
2

∑
α=1

|Pα(Bi)\Pα(B)|)<W [Bk]+
2

∑
α=1

|Pα(Bi)\Pα(Bk)|) . (10)

7

Bi
r%

B2

B3Ab(Bi)

B1
(a)

Bi
r%Bk

B'
B

(b)

Figure 2: (a) When passing l(Bi), Pred[Bi] is a partial optimum on the set of possible predecessors of Bi

lying in Ab(Bi) (in the example, B3). (b) When passing u(Bk), Pred[Bi] is a partial optimum on the set of

possible predecessors of Bi from Ab(Bi)∪{B ∈ Ao(Bi)/P1(u(B))< P1(u(Bk))}.

b) By hypothesis, we know that P2(u(Bk))< P2(l(B))< P2(l(Bi)), and since neither Bk nor B overlap Bi

on the x-axis, we directly obtain Bk≪Bi (Bi∩Bk = /0). Thus, W [B]<W [Bk] also implies Equation 10.

With either condition (a) or (b), Bk makes a better predecessor for Bi than B, a contradiction.

Finally, after processing l(Bi), W [Bi] stores the weight of a maximum weighted chain ending at Bi with

predecessor in Ab(Bi), which concludes the proof of I4.

I5: optimality at upper corners. We show that after processing u(Bi), W [Bi] stores W (Bi) (a Maximum

Weighted Chain with a predecessor in Ab(Bi)∪Ao(Bi)). As all predecessors of Bi are closed, let us denote

by B, the right most predecessor of Bi on the x-axis: B := argmaxB j≪rBi
(P1(u(B j))).

1. If u(B) ∈ Ab(Bi) then all predecessors of Bi are contained in Ab(Bi). Hence, this situation was

handled when processing l(Bi), and Invariant I4 regarding the partial optimality at lower corners,

ensures that W [Bi] stores W (Bi).

2. If u(B) ∈ Ao(Bi), W [Bi] has been correctly updated (lines 11-15), while Bi was open, when sweeping

u(Bk) for each box Bk ∈ B such that Bk≪rBi and u(Bk) ∈ Ao(Bi).

Hence, all predecessors of Bi have been taken into account, and W [Bi] stores W (Bi). This concludes the

proof of I5, and closes the correctness proof.

4.3 Time and space analysis

Here, we detail the complexities of our sweep-line algorithm (Algorithm 1) and compare it to the dynamic

programming algorithm (Algorithm DP) in term of running time.

Obviously, the sets O and A contain at most n boxes, and thus require together with arrays Pred[.] and

W [.], O(n) space. We use balanced binary search trees (BST) to store A and O, with boxes at the leaves

ordered on P2(u(.)), resp. P1(l(.)). Hence, the amortised time needed for all insertions, deletions, and

rebalancing is O(n logn) [9, chap. 6]. However, looking for the active boxes that can be deleted at each

execution of the outer loop (lines 19-21) may force us to examine all boxes in A . As this is the more

complex operation in the outer loop, we obtain in the worst case an O(n2) time and O(n) space complexity.

Algorithm 1 maintains the subset of potential predecessors in A instead of searching through the whole

box set as in Algorithm DP, which makes the practical difference.

8

The experimental running times observed when performing 694 whole genome pairwise comparisons

(see Section 5) show that this optimisation yields significant improvements: Algorithm 1 needed ≈ 8hours

to compute the 694 chains, while Algorithm DP took 3.5 days for the same computation. The improvement

increases with the number of input fragments, and becomes considerable above 50,000 fragments. In

fact, below 50,000 fragments, both Algorithm 1 and Algorithm DP take seconds, i.e. less than 1 minute.

However, for n ranging from 50,000 to 100,000 Algorithm 1 still takes less than a minute, while Algorithm

DP needs between 1 and 6 minutes to compute the chain. Moreover, the gap between the two algorithms

is widening beyond the threshold of 100,000 fragments. The following examples illustrate this statement:

for n = 144,685, Algorithm DP takes ≈ 16 minutes, while Algorithm 1 only needs < 1 minute; for n =
197,310, Algorithm DP takes 34 minutes and Algorithm 1 less than 3 minutes; for n = 307,852, Algorithm

DP needs 57 minutes and Algorithm 1 only 7 minutes. Finally, for 1,000,000 fragments, Algorithm 1 needs

≈ 1 hour, while Algorithm DP ended after 12 hours. More details on the running times of Algorithm 1 can

be found in Figure 3b.

5 Results

A first issue to examine is in which measure allowing for overlaps improves the chain weight (here, the

genome coverage) when comparing genomes, and at which computational cost. To investigate this, we

compared the running times and coverages (for a definition of the coverage see page 2) on 694 pairwise

genome comparisons, obtained with Chainer [1] when overlaps are not allowed, and with Algorithm 1,

implemented in our tool OC, when proportional overlaps are taken into account. As OC is not yet made

publicly available, should anyone need to use it, please contact the authors.

Our comparison set consists in all pairwise genome comparisons of strains of the same bacteria (intra-

species comparisons) as of Jan 2010: it comprises 346 different genomes from 88 species retrieved from

Genome Reviews database [8]. First, we searched for local alignments between genome pairs using YASS

with default parameters [12]. The output local alignments are the fragments given as input to the chaining

step.

For this first experiment, we ran in parallel Chainer and Algorithm 1, with the weight of a fragment

on each genome being the length of the aligned sequence. We authorised overlaps measuring up to 10%

of the fragments’ lengths (r = 0.1). Hence, the total chain weight, i.e. the sum of the chained fragments

lengths minus the overlaps, computed by the chaining step gives the genome coverage, which we report

as a percentage of the genome length. It is straightforward that, as both chaining algorithms provide an

optimal solution in their setup, the coverage with overlaps is always larger than without overlaps.

Figure 3a plots for each genome pair the difference of coverage percentages between both algorithms:

(Algorithm 1 coverage% - Chainer coverage%); a value of 10 means that chaining with overlaps covers

10% more of the genome than chaining without overlaps. The box-and-whiskers plot shows that, for this

collection of bacterial genome pairs, the improvement has a median of 15% and reaches values up to 60%.

Since bacterial genomes have a median length of 2.8 Mbp, a difference of one percent means at least 28

Kbp of additionally aligned sequences. Thus, one can make the following basic estimation. Knowing that

in average 87% of these genomes are coding and bacterial genes are 1 Kbp long [16], 15% more coverage

should involve 365 additional genes compared to a solution without overlaps; this is important from the

biological perspective. Chainer takes < 1 s. in average and at most 17 s. We plot the running times of

Algorithm 1 in Figure 3b: it stays below 10 seconds in 75% of the comparisons, and between 3 and 67

minutes in only 30 cases (those with a number of fragments ranging from > 200,000 to 1,000,000). Thus,

allowing for overlaps improves the coverage significantly at a reasonable cost.

A biological question regards the causes of overlaps. For example, when comparing the two strains

CP000046 and BA000018 of S. aureus, the classical chaining results in a coverage of 65%, where Algo-

rithm 1 yields a 94% coverage. In fact, the chain obtained without allowing overlaps is interrupted by 17

holes of more than 10 kbp each. For 14 of these holes, at least one large fragment (average size 37 kbp)

was not included in the chain, because of an overlap with an adjacent fragment on one or both genomes.

All overlaps measure between 1 bp and 1.8 kbp in length (average at 218 bp). This example shows that

overlaps’ lengths cannot be easily bounded by a constant, thus revealing the necessity of using proportional

overlaps. If short overlaps are mostly due to random equality between base pairs on fragment ends, we ob-

9

●
●

●
●
●
●

●
●

●
●

●
●

●
●

●

0
10

20
30

40
50

60

co
ve

ra
ge

%
 d

iff
er

en
ce

s

(a)

0
5

10
15

20

ru
nn

in
g

tim
es

 in
 s

ec
on

ds

(b)

Figure 3: (a) Differences in coverage obtained on 694 bacterial genome comparisons between our algo-

rithm and the classical chaining, presented as a box-and-whiskers plot: in 50% of the cases, allowing for

proportional overlaps increases the coverage% with more than 15%. (b) Running times in seconds of our

algorithm: in 75% of the cases the algorithm needs less than 10 seconds.

served that large overlaps are often caused by variable tandem repeat structures that differ in number of

copies between the strains (see a toy example in Introduction on page 1). Correctly aligning such structures

without breaking the region in two overlapping fragments requires a more general alignment model and

specific algorithms [3].

Another issue to investigate is the robustness of results with respect to the ratio of allowed overlaps. For

this, we examine the results obtained with three different overlap ratios: 5% of the fragments’ lengths (r =
0.05), 10% (r = 0.1), and 15% (r = 0.15) on the same set composed of 694 pairwise genome comparisons.

Finally, we study the advantage due to the use of proportional overlaps compared to fixed overlaps. For this

purpose, we modified our algorithm in order to allow a fixed maximal overlap between fragments, instead

of a ratio of their lengths. This means that an overlap between two fragments is allowed if it is below the

fixed maximal overlap size and does not entirely cover one of the fragments. We thus tested four maximal

overlap thresholds: 10 bp, 100 bp, 1 Kbp, and 10 Kbp.

The results for different overlap ratios, and fixed overlap thresholds are summarised in figures 4, 5,

and 6, as averages on each one of the 88 species, for eight configurations of our program OC. These

configurations correspond to a version without overlaps (OC 0%), a version with proportional overlaps for

three overlap ratios (OC 5%, OC 10%, and OC 15%) and a version with fixed overlaps configured with

four overlap thresholds (OC 10 bp, OC 100 bp, OC 1 Kbp, and OC 10 Kbp). In figures 4, 5, and 6, the

results for the 88 species are partitioned as follows: 30 species in the first figure, 28 in the second one, and

30 in the third one, for the sake of legibility. From the first figure to the third one, species are sorted on the

average coverage% given by the version of the algorithm without overlaps (OC 0%).

Figures 4a, 5a, and 6a show how the coverage percentages vary among the eight chaining configura-

tions. Here, we define the identity% as the ratio between the number of pairs of identical positions in the

covered regions and the genomes’ lengths. Thus, the identity% over the coverage% (also computed as a

ratio of the genomes’ lengths) gives a quality measure of the covered regions. As overlap chaining cov-

ers additional genomic regions compared to overlap free chaining, it is important to assess the alignment

quality of these regions. We use the following measure: assume an overlap chaining configuration yields

a coverage percentage of X% and an identity percentage of Y %, while the overlap free chaining obtains

X0% and Y0%, respectively, then we compute quality variation as (X/Y −X0/Y0). Figures 4b, 5b, and 6b

report the quality variation of each overlap chaining configuration compared to overlap free chaining. We

chose to include the results for the whole data set to illustrate the generality of our conclusions, at least for

10

bacterial genomes.

These figures must be considered as a whole, as it is important to understand that the following obser-

vations remain valid on all species, from lower to higher coverages.

• As already noticed in Figure 3a, overlaps improve significantly the coverages compared to overlap

free chaining (mostly for proportional overlaps). This can be observed when examining the plots

of the six configurations of OC compared to the version without overlaps, OC 0%. This trend is

perfectly depicted in the zoom for Burkholderia mallei species in Figure 4a.

• Different overlap ratios generate very small variation among coverages: OC 5%, OC 10%, and

OC 15% have very similar coverage values for all species. Thus, the total chain weight is robust

to changes in the overlap ratio. Moreover, in most of the cases, these three configurations with

proportional overlaps obtain coverages as high as the best of the other five configurations of OC.

Clearly, the higher the maximal overlap ratio, the better the coverages are. However, if for small

overlap ratios we observe a certain improvement, i.e. from 5 to 10, and below 5% (results not

presented in this paper), above 10% improvements are not significant. Therefore, 10% seems to be

a fair choice for the overlap ratio for bacterial comparisons, as overlaps in our dataset rarely reach

10% of fragments lengths.

• When dealing with fixed overlaps, one needs to set a relatively high threshold (10 Kbp) to get a

slightly better coverage, especially when compared to the results obtained with proportional over-

laps. OC 10 bp, OC 100 bp, and OC 1 Kbp systematically yield lower coverage than OC with

proportional overlaps. Indeed, overlap sizes are widely distributed. Large overlaps penalize most the

total coverage as they prevent from incorporating large fragments into the chain. Hence, fixed overlap

chaining can cope with such overlaps only if a high threshold is chosen, i.e. 10 Kbp. Moreover, the

performance of fixed overlap solutions vary among genome pairs, making them less robust. Thus,

fixed overlap thresholds are difficult to set. Comparatively, proportional overlap chaining proves

more robust because of proportionality to fragments lengths.

• Importantly, the quality variation compared to overlap free chaining (OC 0%) are quite small: be-

tween−2 and 2%, except for five cases that exhibit extremely low coverages (less than 5% coverage).

Moreover, regarding quality variation, proportional overlaps configurations never yield the worst re-

sult among overlap chaining solutions. Thus, the alignment quality of covered regions remains stable

when allowing proportional overlaps.

Finally Figure 7 reports, for each configuration of OC, the number of species whose computed chain

reaches that coverage value in average over all comparisons within that species. The red square at coordi-

nates (60,65) means that 65 species obtained a coverage of 60% with OC 100 bps threshold. All curves

are superimposed in the range [0,30] of coverage%. Beyond 30% coverage, the curves of proportional

overlaps configurations are superimposed, again illustrating the robustness with respect to the overlap ra-

tio. Moreover, above 30%, overlap free and fixed overlap chaining, except that with 10 Kbp threshold,

generally perform worse than proportional overlap solutions.

6 Conclusion

To fulfil new needs in computational biology, we extended the classical framework of Maximum Weighted

Chain by authorizing overlaps between fragments in the computed chain, and formalised the Maximum

Weighted Chain with Proportional Length Overlaps problem where overlaps are proportional to the frag-

ment lengths. Difficulties arise from the fact that the weights of overlaps are deduced from the chain weight.

We exhibited the first two algorithms for this problem, which both solve it in quadratic time in function

of the number of fragments. Experiments on real data sets show that our sweep line algorithm outper-

forms the truly quadratic dynamic programming solution in practice. However, the study of the average

time complexity of the sweep line algorithm remains open. By comparing the genome coverage obtained

by different configurations of our program, OverlapChainer (OC), when applied to intra-species, bacterial

comparisons, we observe that: i/ overlaps improve significantly the coverage of genomes (median of 15%),

11

while maintaining the same quality level, ii/ results obtained with proportional overlaps are robust with

respect to different overlap ratios, contrarily to fixed overlaps. This robustness may be explained by the

limited overlap size in bacterial genomes comparisons. In bacterial case, a ratio of 0.1 yield good results

on a wide panel of 694 pairwise genome comparisons.

Investigating the performance of OverlapChainer on eukaryotic genomes is an interesting perspective.

Our algorithms can be extended for multiple genome comparisons, however future researchs should also

consider this case in practice. Moreover, the optimal complexity of chaining with proportional overlaps

remains open.

Acknowledgements: This work, AM and RU, were supported by the French National Research Agency

(CoCoGen project) [BLAN07-1_185484]. AM and RU were also supported respectively by CNRS funding

and a grant from the Ministry of Higher Education and Research of France.

References

[1] Mohamed Ibrahim Abouelhoda and Enno Ohlebusch. Chaining algorithms for multiple genome com-

parison. J. of Discrete Algorithms, 3:321–341, 2005.

[2] Bastien Boussau and Vincent Daubin. Genomes as documents of evolutionary history. Trends in

Ecology & Evolution, 25(4):224 – 232, 2010.

[3] Sèverine Bérard and Eric Rivals. Comparison of minisatellites. J. Comp. Biol., 10(3-4):357–372,

2003.

[4] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to

Algorithms. MIT Press, 2nd edition, 2001.

[5] Stefan Felsner, Rudolf Muller, and Lorenz Wernisch. Trapezoid graphs and generalizations, geometry

and algorithms. Disc. App. Math., 74:13–32, 1995.

[6] Michael Hohl, Stefan Kurtz, and Enno Ohlebusch. Efficient multiple genome alignment. Bioinfor-

matics, 18(S1):S312–320, 2002.

[7] Andrew P. Jackson, John A. Gamble, Tim Yeomans, Gary P. Moran, David Saunders, David Harris,

Martin Aslett, Jamie F. Barrell, Geraldine Butler, Francesco Citiulo, David C. Coleman, Piet W.J.

de Groot, Tim J. Goodwin, Michael A. Quail, Jacqueline McQuillan, Carol A. Munro, Arnab Pain,

Russell T. Poulter, Marie-Adèle Rajandream, Hubert Renauld, Martin J. Spiering, Adrian Tivey,

Neil A.R. Gow, Barclay Barrell, Derek J. Sullivan, and Matthew Berriman. Comparative genomics of

the fungal pathogens Candida dubliniensis and Candida albicans. Genome Res., 19(12):2231–2244,

2009.

[8] Paul Kersey, Lawrence Bower, Lorna Morris, Alan Horne, Robert Petryszak, Carola Kanz, Alexander

Kanapin, Ujjwal Das, Karine Michoud, Isabelle Phan, Alexandre Gattiker, Tamara Kulikova, Nadeem

Faruque, Karyn Duggan, Peter Mclaren, Britt Reimholz, Laurent Duret, Simon Penel, Ingmar Reuter,

and Rolf Apweiler. Integr8 and Genome Reviews: integrated views of complete genomes and pro-

teomes. Nucleic Acids Res., 33(S1):D297–302, 2005.

[9] D.E. Knuth. The Art of Computer Programming, volume 3 / Sorting and Searching. Addison-Wesley,

1998.

[10] Claire Lemaitre and Marie-France Sagot. A small trip in the untranquil world of genomes. Theor.

Comp. Sci., 395:171–192, 2008.

[11] Gene Myers and Webb Miller. Chaining multiple-alignment fragments in sub-quadratic time. In Proc.

of the sixth annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 38–47, 1995.

[12] Laurent Noé and Gregory Kucherov. YASS: enhancing the sensitivity of DNA similarity search.

Nucleic Acids Res., 33(S2):W540–543, 2005.

12

[13] Davide Serruto and Rino Rappuoli. Post-genomic vaccine development. FEBS Letters, 580(12):2985

– 2992, 2006.

[14] Tetsuo Shibuya and Igor Kurochkin. Match chaining algorithms for cDNA mapping. In Proc. Work-

shop on Algorithms in Bioinformatics (WABI), volume 2812 of Lecture Notes in Computer Science,

pages 462–475. Springer, 2003.

[15] Raluca Uricaru, Célia Michotey, Laurent Noé, Hélène Chiapello, and Eric Rivals. Improved sensitiv-

ity and reliability of anchor based genome alignment. In Irena Rusu et Eric Rivals, editor, Actes des

Journées Ouvertes Biologie Informatique Mathématiques (JOBIM), pages 31–36, 2009.

[16] Lin Xu, Hong Chen, Xiaohua Hu, Rongmei Zhang, Ze Zhang, and Z. W. Luo. Average gene length is

highly conserved in prokaryotes and eukaryotes and diverges only between the two kingdoms. Mol.

Biol. Evol., 23(6):1107–8, 2006.

13

(a) (b)

Figure 4: Average results for each species among 30 species, given by eight configurations of our program

OC. (a) Variation of coverage%. Plots mainly show the robustness of results for different overlap ratios

compared to fixed overlaps. (b) Variation of the ratios between identity% and coverage% relatively to OC

0%, showing that allowing overlaps does not imply covering lower quality regions.

14

(a) (b)

Figure 5: Similar to Figure 4, average results for each species among another 28 species, given by the eight

configurations of our program, OC.

15

(a) (b)

Figure 6: Similar to Figure 4 and Figure 5, average results for each species among another 30 species,

given by the eight configurations of our program, OC.

16

Figure 7: The variation of the number of species for each coverage% threshold, for the eight configurations

of our program, OC.

17

