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Abstract. Multicasting in WDM core networks is an efficient way to
economize network resources for several multimedia applications. Due to
their complexity and cost, multicast capable switches are rare in the pro-
posed architectures. In practical routing cases, the state of the network is
given by a directed graph. The paper investigates the multicast routing
without splitters in directed asymmetric topologies. The objective is to
minimize the number of used wavelengths and if there are several solu-
tions, choose the best cost one. We show that the optimal solution is a
set of light-trails. The problem is NP-hard even in symmetric digraphs.
An efficient heuristic is proposed to minimize the conflict between the
light-trails, and so to minimize the number of used wavelengths. The
performance is compared to existing light-trail based heuristics and our
algorithm provides a good solution with a few wavelengths required and
a low cost.
Keywords: WDM network, multicast routing, multicast incapable node,
light-trail, wavelength minimization, heuristic

1 Introduction

All optical networks are serious candidates to become high speed backbone net-
works with huge capacity. In optical routing, the messages are transmitted by
light signal without electronic processing. Routes should satisfy the physical
(optical) constraints in static connection based networks and also in the case of
burst and packet switching.

Multicast communications presents in networks to efficiently perform data
transmission from a source to several destinations. Usually, multicast routes
corresponds to trees in the topology graph (there can be light-trees in WDM
networks). To realize, there must be multicast capable nodes (splitters) at all
the branching nodes of the tree. However, one of the most hard constraints
for optical multicasting is the constraint on the availability of light splitters
in the switches. Splitters are expensive and the light power can be decreased
considerably by splitting (inversely proportional with the number of outgoing
ports [2]).

In our paper, we investigate on the interesting question: how to perform
multicast without splitters. Trivially, a set of light-paths from the source to the
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destinations can be used as a solution, but this solution is expensive in term
of light-paths. Our objective is to perform the multicasting without splitters
and minimizing the number of used wavelengths. Solutions in symmetric net-
works (when one can suppose the availability of a wavelength in both directions
between the connected switches) are known, but we investigate the asymmet-
ric case when the network topology is an asymmetric directed graph (or mixed
graph). This case is very practical in reality. Even if the network is designed
to be undirected, when some demands arrive and hold some of the resources of
the network, the resulting network graph is now mixed, therefore the routing
for subsequent demands will be calculated on a mixed-graph network. Another
case where mixed-graph routing is required is when two arc-disjoint trees must
be found on a graph (e.g., for protection against a single-link failure scenario). If
the calculation of the primary and secondary trees is done sequentially, the sec-
ondary tree, after the removal of the primary one, will be calculated on a mixed
graph. The multicast routing in this case can also be well applicable in the dy-
namic routing when multiple requests are coming and leaving with arbitrary
period of time.

Some studies indicated that non simple light-trail (corresponding to non sim-
ple walks) can be used for multicasting [1] if the TaC option is employed in the
cross-connects (OXCs) and crossing an OXC several times by the same wave-
length is possible. In the paper, we show that the optimal route minimizing the
number of wavelength is a set of (non simple) light-trails. The computation of
the optimum in asymmetric graphs is hard. So, we propose some heuristic algo-
rithms, which try to minimize the number of wavelengths, taking into account
the availability of wavelengths, with a reasonable cost. We compare the perfor-
mance of the algorithm with two previously proposed light-trail based multicast
routing algorithms.

The structure of the paper is the following. Section 2 presents the considered
problem and some related ones. The most important related works are men-
tioned in Section 3. Some used concepts and properties are given in Section 4.
Our heuristic is described in Section 5 followed by the experimental results in
Section 6. We summary our work and discuss about the future works in the
Section 7.

2 Problem Formulation

The considered network is modeled by the topology graph G = (V,A) is an
arbitrary directed graph (or digraph) in which each arc represents the availability
of a fiber between the pair of nodes and there are at most two fibers between
any pair of nodes. This configuration is realistic in real networks. We suppose
that each fiber has the same set of available wavelengths and each arc e ∈
A is associated with the a positive value cost(e). Given the multicast request
r = (s,D), in which s ∈ V is the source node and D ⊆ V \ {s} is the set of
destinations, the routing problem is to compute the routes to perform multicast
for r.
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In this study, we work on the networks in which the nodes are not equipped
with any splitters but TaC-cross connects that allow signal to tap the local
station with a small power and forward the remaining to one of the output
ports. Besides, the nodes can be traversed by the same wavelength several times
as long as there are different incoming and outgoing ports for each pass. So, not
light-trees but light-trails from the source to the destinations can perform the
multicast. To ensure a feasible solution, we suppose that there is at least one
directed path from the source to each destination.

Let T be the set of computed light-trails ti, i = 1, . . . , k} for the request r,
we define the total cost as the summation of all the cost of them, given by:
TotalCost(T ) =

∑
i∈[1,k]

∑
e∈ti

cost(e).

To perform the routing respecting the distinct wavelength constraint1, each
fiber is assigned several wavelengths such that the number of assigned wave-
lengths is equal to the number of conflict trails passing it. The number of wave-
lengths needed to perform the routing is equal to the maximum number of
wavelengths that are assigned for one fiber.

Different objectives for the multicast routing can be formulated as follows.

Problem 1 (Routing using a minimum number of wavelengths).
Instance: a network G, a source node s and a set of the destination nodes D
Solution: a set of light-trails T rooted at s and covering all the destinations
Objective: minimize the number of wavelengths used by T

Problem 2 (Minimum cost routing).
Instance: a network G, a source node s and a set of the destination nodes D
Solution: a set of light-trails T rooted at s and covering all the destinations
Objective: minimize the total cost of T

In both cases (with the given constraints), the optimal solution is a set of
light-trails routed at the source and covering all of the destinations. Notice that
this set corresponds to a hierarchy obtained from a star (cf. [6] for the definition
of a hierarchy). The solution of Problem 1 can be composed from very long trails.
The optimum of Problem 2 can use a high number of wavelengths. Trade-off can
be interesting.

Problem 3 (Minimum cost multicast routing using a given number of wavelengths).
Instance: a network G, a source node s and a set of the destination nodes D,
the number of wavelengths W ∈ Z+

Solution:a set of light-trails T rooted at s and covering all the destinations and
using at most W wavelengths
Objective: minimize the total cost of T

Problem 4 (Length limited multicast route using a minimum number of wave-
lengths).

1 Distinct wavelength constraint: Different light-paths or light-trees sharing the com-
mon link must be allocated distinct wavelengths [11].
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Instance: a network G, a source node s and a set of the destination nodes D,
the number L ∈ Z+

Solution: a set of light-trails T rooted at s and covering all the destinations,
and its length (the number of hop counts from s to the terminal di) does not
excess L
Objective: minimize the number of wavelengths used by T

The solutions of the last two problems are also sets of light-trails.
The mentioned routing problems are hard optimization problems. Problem

1 corresponds to finding the solution with minimal number of colors to assign
the trails such that two trails shared a common arc must be assigned with
two different colors. Problem 2 is equivalent the Degree Constrained Directed
Minimum Spanning Tree Problem in the distance graph of the problem.

In our study, we focus on the Problem 1, but try to find a solution with
the lowest total cost. That is, we first try to minimize the number of used wave-
lengths, then try to minimize the cost among the solutions with the same minimal
wavelengths. Some results can be useful to solve Problem 3 and Problem 4.

2.1 Hardness of the problem

In this subsection we prove that the Problem 1 (P1) given above is NP-hard. We
first consider the following problem and prove that it is NP-complete.

Problem (One Spanning Trail - OST)
Instance: A directed graph G′ = (V,A) and a pair (s,D)
Question: Is there a spanning trail from s covering all the destinations in D?

We start with the problem of two arc-disjoint paths stated as follows:

Problem(Two Arc-Disjoint Paths - 2ADP)
Instance: A directed graph G and two pairs of vertices (x, x′) and (y, y′)
Question: Does exist a path between x and x′ and an other path between y
and y′ that are arc-disjoint?

Since problem 2ADP is a particular case of the NP-complete Subgraph Ho-
momorphism Problem with the pattern of two disjoint paths [4], so it is NP-
complete. In the following, we prove the NP-hardness of the Problem OST by
transforming from the Problem 2ADP.

Let G and two pairs of vertices (x, x′) and (y, y′) be any given instance I of
Problem 2ADP, we create a graph G′ and adding:

– three vertices: s, d′, d′′;
– the arcs (s, x), (x′, d′), (d′, y) and (y′, d′′)
– and we set D = {d′, d′′}

So G′ and a pair (s,D) form an instance I ′ of Problem OST.
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Fig. 1. Illustration of the two problems OST and 2ADP

It is easy to verify that the transformation is polynomial. We now prove that
there exists a solution S for the instance I of Problem 2ADP if and only if there
exists a solution S′ for the instance I ′ of Problem OST.

1. Suppose that two arc-disjoint paths P = (x0, x1, ..., xk), Q = (y0, y1, .., yl) in
which x0 = x, xk = x′, y0 = y, yl = y′, be a solution S for Problem 2ADP.
Let S′ be a trail of the form (s, x, x0, x1, ..., xk, d

′, y0, y1, .., yl, d
′′) (Figure 1).

Obviously, S′ needs only one color, so S′ is a solution for the Problem OST.
2. In contrast, suppose that there exists a solution (a trail) S′ for Problem

OST. S′ is of the form: (s, x, x0, x1, ..., xk, d
′, y0, y1, .., yl, d

′′), in which P =
(x0, x1, ..., xk), Q = (y0, y1, .., yl), x0 = x, xk = x′, y0 = y, yl = y′. Because
S′ needs just one color, all the arcs occur once, so the two paths P,Q are
arc-disjoint. Thus, P,Q form the solution S for the Problem 2ADP.

Because 2ADP is NP-complete, OST is NP-complete. The Problem OST is
the special case of the more general Problem P1 - What is the minimum number
of colors? - so Problem 1 is NP-hard, but not NP-complete because it is not a
decision problem.

3 Related Work

Due to its interest, WDM multicast routing has been investigated intensively
in the literature and several propositions exist to adapt multicast routing algo-
rithms to the optical constraints (cf. [9] for some basic algorithms and [11] for a
survey). The minimization of the number of used wavelengths was investigated
at first in [5] in which the wavelengths are supposed to unevenly distribute in the
networks. The considered network is assumed to be equipped with splitters and
wavelength converters. The multicast is based on a tree. The objective is to con-
struct a tree T meeting optical constraints such that the number of wavelengths
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used to cover T is minimized. The NP-hardness of the problem is proved and an
approximation algorithm has been proposed. An improved approximation can
be found in [8].

The case of switching without splitters in symmetric networks has been dis-
cussed in [1]. The problem is to find a Multiple-Destination Minimum Cost Trail
(MDMCT) that starts from a source and spans all the destinations with mini-
mizing the summation of costs of directed edges traversed (the total cost). To
ensure a feasible solution, a low-cost cross-connect architecture called Tap-and-
Continue (TaC) has been proposed to replace splitters. TaC cross-connects can
tap a signal with small power at the local station and forward it to one of its
output ports. Moreover, every link is assumed to have at least two fibers in order
to support bidirectional transmission on the same link. The solution is a route
corresponding to a light-trail that can be non simple.

At first, the authors proved that the MDMCT problem is NP-hard and then
developed a heuristic (called MDT) that finds a feasible trail in polynomial time.
The algorithm has two steps. The first step is finding an approximated Steiner
tree for a multicast request using the Minimum Cost Path Heuristic (MCPH)
proposed in [7]. A trail then is computed based on the backtracking method
following the tree.

The advantage of MDT heuristic is that it uses only one wavelength (and one
transmitter) for each multicast request (and thus, the wavelength is minimized).
However, because of multitude of round-trip traversing, a large number of links
in both directions is required, hence the total cost and the diameter of the light-
trail can be very high. To improve the total cost, it is necessary to reduce the
round-trip traversing. Moreover, it is worth noting that, the source can inject
the light signal by multiple transmitters independently. By taking this feature
into account, one can considerably reduce the reversal arcs (that reroutes to
the source), then the total cost and the diameter can also be reduced. This is
the idea to make a modified version of MDT, called MMDT that is detailed in
Section 5.

In [3], Der-Rong Din also posed the problem of finding the routing tree(s)
which minimizes the cost under WDM symmetric networks using only TaC cross-
connects. This problem is named Minimal Cost Routing Problem (MCRP). Un-
like the approach of [1] that based on light-trail, the approach of Der-Rong Din
is based on light-forest with multiple transmitters are implicitly employed. Fur-
thermore, to produce a trade-off between the total cost of the light-forest and
the number of wavelength, the cost is defined as a function which combines two
metrics: the actual total cost of the light-forest and the cost for using wave-
lengths, in which second component is calculated by a coefficient α times the
number of used wavelengths (cf. [3] for more details).

The author proposed two heuristic algorithms, namely Farthest-Greedy (FG)
and Nearest-Greedy (NG). The two algorithms are based on the shortest path
tree (SPT). The idea of these algorithms is: first construct the SPT from the
source to the destinations, then keep one path for each subtree of the source,
and finally reroute the other destinations that have not been reached (unreached
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destinations). The difference between the two algorithms is: FG keeps the far-
thest (maximal cost) destination routed by the computed shortest path, and
choose the farthest destination in the unreached set to reroute, whereas NDF
keeps the nearest (minimal cost) destination and choose the nearest destination
in unreached set to reroute in the rerouting phase. The rerouting phase of FG
and NG is performed by the shortest paths from the source or from the leaves of
computed trees to each unreached destination, that do not share any nodes and
edges with all the computed trees (each tree is computed in a different wave-
length graph that is initialized by the original graph). When there is no possible
path in the computed trees or the path exists but with larger cost than the path
found in the new wavelength graph, the unreached destination is routed by the
shortest path found in the new tree with a new wavelength. The author also
gave the comparison between FG, NG and MDT by simulations, and the results
show that FG outperforms NG and MDT.

Almost the solutions proposed in the literature (excluding MDT) are based
on simple routes in which cycles are not allowed. However, one can operate
multicasting by non simple routes which permit nodes to be visited several times,
as long as the routes using the same wavelength are arc-disjoint. MDT in [1]
gives a special structure which allow cycles, but with special cycles which are 2-
cycles2. In fact, one can construct structures that allow not only 2-cycles but also
arbitrary cycles. These structures correspond to a hierarchy that was proposed
in [6]. For multicast routing in WDM networks, the light-hierarchy concept has
been proposed in [10]. A light-hierarchy is a hierarchy using a single wavelength.
In this study, we create light-trails to multicast without the need of splitters.

4 Useful definitions and properties

In order to describe our algorithm, some concepts should be given in the follow-
ing.

Directed spanning tree (DST): A directed tree rooted at the multicast source
covering all the destinations. In our algorithm, we use two kinds of DST: Di-
rected shortest path tree (DSPT) and Directed Approximation Steiner tree
(DAST). A DSPT is a directed tree composed by the shortest paths from the
source to the destinations. To compute DSPT, any shortest path algorithms
can be employed (e.g., Dijkstra algorithm) ensuring that the shortest paths
are loop-free. In contrast, a DAST can be computed by employing the Min-
imum Path Heuristic proposed in [7]. In our algorithm, one of these DSTs is
computed in the first step, from it the light-trails are constructed.

Conflict graph: A graph used to represent the conflicts among the trails.
Formally, in our study, a conflict graph is GC = (T,E), in which T is a
set of nodes corresponding to the trails and E is a set of edges such that
e = {t, p} ∈ E if and only if there is a conflict between trail t and trail p, i.e.,

2 In graph theory, an n-cycle is a cycle with n vertices.
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two trails share a common arc. In this study, we just consider conflicts such
that shared arcs form the prefix of the concerned trails and this property is
preserved during the algorithm. For this condition, each of connected compo-
nents in the conflict graph corresponds to a subtree of the DSPT (Figure 2).

Property 1: Each connected component in the conflict graph composes a
(conflict) clique3.

Trivially, if the shared arcs of conflicting trails are the prefix of the trails,
then conflicts are transitive (if there is a conflict between T1 and T2 and be-
tween T2 and T3, then there is a conflict between T1 and T3). Indeed, all the
trails in the same connected component share the first arc from the source.
So the Property 1 follows.

Property 2: The number of colors needed to color all the nodes of a clique is
equal to the number of nodes of that clique.

Obviously, there is a (conflict) edge between every pair of nodes in each
clique. To avoid the conflict, the nodes must be colored with different colors.
So the Property 2 follows.

Property 3: The number of wavelengths needed to perform the routing re-
specting the distinct wavelength constraint in network fibers is equal to the
number of nodes (the size) of the maximal clique in the conflict graph in our
study case.

In deed, each clique corresponds to a subtree of the DSPT. These subtrees
are arc-disjoint, so the corresponding trails in each clique do not share any
arcs with the corresponding trails in the other ones. Thus, the minimal num-
ber of colors needed to color all the nodes in the conflict graph is equal to the
size of the maximal clique, because we can use some colors that have been
used in the maximal clique to re-color the other nodes in the other cliques.
Moreover, to guarantee the distinct wavelength constraint, the number of
colors needed in each clique is equal to the number of wavelengths needed
to assign the corresponding trails in that clique. So this property holds.

Thus, the problem of minimizing the number of used wavelengths reduces
to the problem of minimizing the number of nodes (trails) of the maximal
clique in the conflict graph.

Figure 2 illustrates a set of paths (trails) composing a DSPT for the multicast
request r = (s, {d1, d2, d3}) and the corresponding conflict graph. In Figure 2,
there are two cliques corresponding to two subtrees of the DSPT. The maximal
clique is composed from the paths T1, T2, T3 starting from the source to the
destinations d1, d2, d3, respectively. It needs three wavelengths to color the three
trails. The other clique composed from only the path T4 that can re-use one
wavelength that were assigned for the maximal clique.

3 A clique of a graph is a complete subgraph of that graph
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Fig. 2. Example of a DSPT and its conflict graph

5 Proposed Heuristics to Minimize the Wavelengths

5.1 The Algorithm Framework

The idea of the algorithm is to diminish the number of nodes (trails) in the
maximal clique of the conflict graph until it cannot be reduced. Informally, the
algorithm starts from a set of directed trails (at first, simple trails or paths in the
DST). Then it tries to iteratively diminish the number of trails in the maximal
clique, says Cmax. At each step, it chooses one trail from the maximal clique that
can be replaced by another trail, says T0. Some mechanism can be employed to
select this trail. When the trail was selected, the algorithm looks for all the other
trails in the set of trails and choose the one (say, Tk) such that the terminal of
it has the arc-disjoint shortest path to the first destination of the trail T0. Then
T0 is replaced by the corresponding trail Tk, and the cardinality of the Cmax

is reduced by 1. The algorithm iteratively until the maximal clique cannot be
reduced.

The framework of the algorithm consists of four main steps that can be de-
scribed as follows:

The Algorithm Framework

Step 1: Compute a directed shortest path tree (DSPT) from the source s
covering all destinations. If there is no branching node in the DSPT (except
the source), then DONE. Otherwise, do Step 2.

Step 2: Compute the conflict graph from the DSPT. Each conflict clique cor-
responds to a sub-tree rooted at the source of the DSPT.
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Step 3: Repeat Step (3.1) to Step (3.4) in the following until the cardinality
of the maximal clique Cmax cannot be reduced (is equal to 1 for the best
case).

Step 3.1: Find the maximal clique Cmax
4.

Step 3.2: Choose a trail T0 in Cmax with some mechanism that is mentioned below.
Calculate the terminal l0 of T0 and the first destination f0

5 of T0. For
example, in Figure 2 a), Cmax comprises the paths T1, T2, T3; the selected
trail T0 is T3, l0 is node d3 and f0 is also d3.

Step 3.3: For every terminal li of the remaining trails Ti in the set of trails (except
T0), compute the trail Tk such that the path (lk, f0) is arc-disjoint with
all the current trails, and it is the shortest path among the paths (li, f0).
If there is an arc-disjoint path from the source s to f0, then take the
shorter one between (lk, f0) and (s, f0). In Figure 2 a), Tk is T4, and lk
is node d4.

Step 3.4: Graft the path (lk, f0) and the path (f0, l0) to the trail Tk, set l0 as the
terminal of the new trail Tk, remove the trail T0, reduce the cardinality
of clique Cmax by 1. If the path (s, f0) exists and is selected, create a
new trail (s, l0) and remove the trail T0.

Step 4: Record the trails, the cardinality of clique Cmax as the minimum num-
ber of wavelengths required. Employ the trail-wavelength-assignment (TWA)
algorithm (described below) to assign wavelengths for the set of final trails.

Trail-wavelength-assignment (TWA) algorithm

The TWA algorithm mentioned in Step 4 works as follows. Let k be the
minimum number of wavelengths returned by the routing algorithm above, and
w1, w2, .., wk be the k wavelengths reserved for the multicast request. With each
wavelength wi, i = 1, .., k, assign wi for every clique in the set of the remaining
cliques, one trail for each clique. Repeat that until there is no trail in the set of
remaining cliques.

Two greedy variants

In step 3.2, two greedy mechanisms for selecting the first trail T0 in the
maximal clique Cmax, resulting in two variants of our algorithm, namely Farthest
First (FF) if T0 is the farthest trail (in term of cost, i.e. cost(T0) → max)
among all the other trails in Cmax; and Nearest First (NF) if T0 is the nearest
trail (cost(T0) → min). The descriptions of the two variants are shown in the
following.

4 To accelerate this step, Ci is organized in a priority queue in which the priority value
is the size of Ci, and only cliques Ci with the size larger than 1 are pushed into the
queue

5 f0 is the first destination on the path from the nearest branching node of l0 to l0



All-Optical Multicast Routing Algorithms without Splitters 11

5.2 Farthest First

Farthest First

Input: A directed weighted graph G, number of available wavelengths W , a
multicast request r = (s,D).
Output: A set of light-trails T satisfying r
Objective: Minimize number of wavelengths.

1: Step 1:
2: construct a DSPT from s covering all destinations in D.
3: add every path from s to each leaf of DSPT to T . If there is no branching

node in T , then DONE. Otherwise, do Step 2.
4: Step 2:
5: calculate cliques Ci, i = 1, 2, .., nc, nc is the number of sub-trees rooted at

the child-nodes of s in the DSPT.
6: put Ci with |Ci| > 1 into a priority queue PQ (PQ = {(Ci, |Ci|)})
7: Step 3:
8: G′ ← G \ T {G′ is the remaining graph by removing arcs corresponding to

all the trails in T}
9: while PQ 6= ∅ do

10: {Step 3.1:}
11: pop the maximal clique Cmax from PQ
12: sort the trails in Cmax descending of their costs
13: {Step 3.2:}
14: for each trail T0 in the sorted Cmax do
15: let l0 be the the terminal of T0, calculate the first destination f0
16: find the shortest arc-disjoint path from the source s to f0 in G′ (if any).
17: for every terminal li of trail Ti do
18: find the shortest arc-disjoint path from li to f0 in G′

19: end for
20: record the terminal lk of the found trail.
21: if either s or lk is found then go to Step 3.3
22: end for
23: {Step 3.3:}
24: if neither s nor lk is found for all trails in Cmax then
25: go to Step 4 to finish
26: else
27: if costP (s,f0) ≤ costP (lk,f0) then Tj ← (s, l0); T ← T ∪ {Tj}
28: else Tk ← Tk ∪ (lk, f0) ∪ (f0, l0); T ← T ∪ {Tk}
29: T ← T \ {T0}; |Cmax| = |Cmax| - 1.
30: if |Cmax| = 1 then go to Step 4 to finish
31: else update the new size |Cmax| for the Cmax in PQ
32: end if
33: end while
34: Step 4:
35: if |Cmax| > W , then return FALSE
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36: else record |Cmax| as the minimum number of wavelengths required.
37: employ the TWA algorithm to assign wavelengths for the set of final trails.

5.3 Nearest First

The description of NF is the same FF, except that in the Step 3.1, the trails in
the Cmax is sorted according to the ascending of their costs, in order to choose
the feasible trail as near as possible.

If we use DAST instead of DSPT in Step 1 of FF, we have another heuristic
call STFF. In the same way, if we use DAST for NF, we have STNF.

In summary, we have four heuristic variants of our algorithm: two are DSPT
based (FF, NF) and other two are DAST based (STFF, STNF). The four heuris-
tics produce a set of light-trails forming a special hierarchy (cf. [6]). Their perfor-
mances are evaluated and compared with other algorithms in the next section.

5.4 Algorithm Illustration

In order to demonstrate the algorithm, we use a network in Figure 3 as an
example. Moreover, due to the limited space, and because FF and NF have the
same principle, we just illustrate the heuristic FF in the Figure 4 below.

After the Step 1 and Step 2, the DSPT and the initial conflict graph are
shown in Figure 4 a). The maximal clique comprises three paths T10, T12, T13,
in which T12 is the farthest one, so it is selected first. The first destination f0 of
T12 is node 8, the shortest arc-disjoint path computed is the path passing the
nodes {10, 5, 8}. Thus T12 is replaced by T10, the new trail is T

′

12 (Figure 4 b)).
Similarly, T

′

12 is then replaced by T
′′

12 in the next run (Figure 4 c)). The final set
of trails are shown in (Figure 4 d)).

Fig. 3. A digraph to consider
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(a) The DSPT and the initial conflict
graph

(b) Replace T12 by T
′
12

(c) Replace T
′
12 by T

′′
12 (d) Replace T11 by T

′
11

Fig. 4. Illustration of the Farthest First heuristic

5.5 Complexity of the algorithm

In this section we analyse our algorithm in term of the computational complexity
(in the worst case), examining only FF heuristic, the others can be directly
deduced.
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It is easy to see that the active operation is to calculate the shortest arc-
disjoint paths from li to f0 (line 18 in Step 3.3), so we just focus on it and
examine the computational times for it from the inside to the outside. First, the
basic operation of it (compute the shortest path from a source to a single sink)
takes O(M ′ +N ′logN ′) times in the worst case, where N ′,M ′ is the number of
nodes and arcs of the remaining graphG′, respectively. The for loop (for li) in the
line 17 is repeated in maximal O(|D|) times. Then the for loop to find T0 in Cmax

(line 14), it takes O(|D|) in the worst case. Finally, the while loop (line 9) also
takes O(|D|) times. In total, it takes O(|D|)∗O(|D|)∗O(|D|)∗O(M ′+N ′logN ′) =
O(|D|3 ∗ (M ′ +N ′logN ′)) times.

Let N,M be the number of nodes and arcs of the original graph G, respec-
tively. We see that, N ′,M ′ is depended on N,M and D, the more D, the less
N ′,M ′ compared with N,M , respectively. The fact that most practical optical
core networks are sparse, with the degree of nodes on average of 3 or 4. Thus
in this study, we just generate the graphs in which M = k ∗ N, k = {3, 4}.
Hence, O(M) = O(N). Moreover, D is set such that |D| ≤ N/2. Thus, we can
assume that N ′,M ′ close to N,M , respectively. That means, the complexity can
be O(|D|3 ∗ (M ′ +N ′logN ′)) = O(|D|3 ∗ (M +NlogN)) = O(|D|3 ∗ (NlogN))
times at the worst case. However, in the general it is much better, because the
for loop to find T0 in Cmax (line 14) takes O(|D|) in the worst case, but T0 can
be rapidly found after c << |D| times.

6 Experimental Results

In this section, we show the performance of our algorithm and compare with the
other algorithms proposed in [1] (MDT) and [3] (Farthest Greedy and Nearest
Greedy). In order to fairly compare with MDT in [1], the modified version of it
is developed, namely Modified-MDT (MMDT for short) which is mentioned in
the following.

6.1 MDT and MMDT

As mentioned in Section 2, the MDT algorithm has two steps. The first step is
to compute an approximated Steiner tree (AST) for a multicast request using
the Minimum Cost Path Heuristic (MCPH) proposed in [7]. In the second step,
a trail is computed based on the backtracking method following the AST. The
backtracking phase starts from the root of the tree, and recursively repeats at
each non-leaf node in the tree, say, the current node. In the downstream direc-
tion, the algorithm tries to include all the downstream links between the current
node and all its children destinations. Backtracking is required when a leaf node
is reached and there are still some destination nodes not yet visited.

However, the total cost and the diameter of the MDT trail are high because of
multitude of round-trip traversing. Moreover, it is worth noting that, the source
can inject the light signal by multiple transmitters on the same wavelength
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independently. By taking advantage of this feature, we developed the algorithm
MMDT by modifying MDT in the backtracking phase, in such a way that it can
eliminate the round-trip traversing the source while using only one wavelength.

The MMDT works as follows. First, it generates an AST using the MCPH
just like the way of MDT. Then the backtracking method to each subtree of the
AST (the nodes 1, 2 and 3 in Figure 5) is evoked, with a greedy sequence such
that the trails growing to the nearest branch first (in term of cost of the branch).
Consequently, there is no reversal arcs needed in the farthest branch for each
sub-tree. Accordingly, the result is the set of trails rooted at the source, covering
all the destinations with only one wavelength, but with multiple transmitters,
one transmitter for each trail. Obviously, the diameter and the total cost of the
resultant trials are less than those resulted by MDT.

To demonstrate MDT and MMDT, we use the same topology as the one
shown in Figure 3 with a few changes: all the links are now bidirectional and
the destination set is D′ = {2, 5, 6, 7, 8, 9, 10, 11, 12, 13}. Figure 5 (a) demon-
strates the computation of the multiple-destination trail according to the MDT
algorithm and Figure 5 (b) demonstrates the MMDT for the same request r =
(s,D′). As we can see, MMDT can reduce seven arcs compared with MDT, while
both use only one wavelength.

(a) The MDT (b) The MMDT

Fig. 5. Illustration of MDT and MMDT

6.2 Two simulation settings and the performance metrics

Our algorithms can work in arbitrary directed graphs, meaning that unidirec-
tional arcs and edges corresponding to two arcs on opposite directions can coexist
in the graph, and the costs for the arcs can be given differently, even with arcs
on opposite directions. However, the algorithms proposed in [1] and [3] supposed
to work with bidirected graph, in which all the links are all bidirectional. Thus,
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for a fair comparison, we divided the simulations into two settings. In the first
setting, all the algorithms are run on bidirected graphs, and in the second one,
they are run on arbitrary directed ones.

Three performance metrics are taken into account in the simulations: the
number of wavelengths required, the total cost and the diameter of the resultant
routes (light-trails or light-forests). The diameter is defined as the number of
maximal hop counts from the source to all the destinations. The reason for
evaluation of this metric is that it can be represented for the end-to-end maximal
delay. In fact, the delay can be combined by switching, queueing, transmission
and propagation components. In all-optical networks, because of the high light
speed, the propagation delay can be assumed to be the same on different links,
and it is much less than the other components at the hops. Thus, the number
of hops that the light signal has to pass by is usually used to represent for the
delay.

6.3 Experimental results with bidirected graphs

In this setting, the considered algorithms have been run on several random bidi-
rected graphs with different number of nodes N = {100, 200, 300}, the costs of
arcs are randomly selected from the set of integer {1, 2, .., 20}, and the set of des-
tinations D are also randomly selected with different size |D| = {10, 20, .., N/2}.
To be sure that there is a feasible solution for all the algorithms, the selected
graph must be connected and there is at least one directed path from the source
to each destination for every simulation. Moreover, in order to guarantee a good
confidence interval, for each size |D|, we run 100 simulations with different source
and destination set. That means, each point in the resultant figures below is cal-
culated on average of 100 (successful) simulations.

Besides, to respect the effect of the coefficient α on the performance of the
proposed algorithms in [3] (FG and NG), we also set the coefficient α in {50, 100,
150}. The simulations showed that, in the cases of α = {50, 100} only FG and
NG give slightly different results, in which the number of wavelengths is slightly
higher and the total cost is slightly lower than those in the case of α = 150.
Thus we just show the results for the case of α = 150. Likewise, we just show
the results for the case of N = {200, 300}. In the case of N = 100, the results
are quantitatively the same.

In Figure 6, FG and NG result in large number of wavelengths, ranging from
1 to 5 in 200 node-networks, and from 1 to 9 in 300 node-networks when the
group size varies from 10 to N/2, while MDT and MMDT and the four variants
of our algorithm draw a horizontal line with just 1 wavelength.

In Figure 7, the two variants of [1] appear with highest cost, then the two
variants of [3], the four variants of our algorithm outperform the others. Among
the four our algorithm variants, STFF has the lowest cost, and NF has the
highest cost with a small difference.

In Figure 8, about the diameter, unsurprisingly, the two variants of [1] appear
with highest diameter, the two variants of [3] achieve a constant low diameter,
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the four variants of our algorithm are in the middle, with the lowest of NF and
the highest of STFF.

In general, in bidirectional graphs, our algorithm result in the light-trail(s)
in which the number of required wavelengths is close to 1, relatively low cost but
quite high diameter compared with the other algorithms.
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6.4 Experimental results with directed graphs

The configurations of this setting are similar as the ones in the first setting,
except that the graphs we work with are all arbitrary directed graphs. Similarly,
we just show the figures for the case of N = {200, 300}, α = 150 (cf. Figures
9, 10, and 11). In the other cases (N = 100, α = {50, 100}) the results are
quantitatively relative the same.

At first, in these configurations, MDT and MMDT almost have no solution
so we do not show their results.

In Figure 9, all the algorithms result in the increasing number of wavelengths
when the group size increases, and there is a difference between the variants
according to the group size. When the group size is less than about 35%, FG
and NG result in larger number of wavelengths with the largest of NG, while
the four variants of out algorithm slowly increase, with the lowest of FF, and
the highest of STNF. When the group size is lager than 40%, STFF and STNF
increase faster and get over FG and NG; while FF and NF remain low, with the
best of FF. In short, FF and NF provide a lowest number of wavelengths with
a slightly difference between them, STFF and STNF perform pretty well with
small group size, but do worse with large group size.

In Figure 10, all the algorithms appear with the same cost with a little
dominance of FF.

In Figure 11, again, the two variants of [3] achieve a constant low diameter
with a slightly difference between them (lower than 25% of the number of nodes).
Among variants of our algorithm, the two variants based on Nearest Greedy (NF,
STNF) result in lower diameter (lower than 35% of the number of nodes). NF
gets closer to them, especially almost the same when the group size gets closer
50%. The variants based on Farthest Greedy (FF, STFF) result in high diameter
(around 50% of the number of nodes).
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In short, in asymmetric directed graphs, our algorithms produce the light-
trails with relatively low number of required wavelengths, a reasonable cost but
quite high diameter compared with the other algorithms.
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6.5 Experimental result analysis

MDT versus MMDT
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MDT and MMDT are just suitable in symmetric networks in which they
always result in optimal wavelengths but high cost and diameter. By taking
advantage of multiple transmitters, MMDT also needs just one wavelength (Fig-
ures 6) and it is even better than MDT in term of cost (Figures 7) and diameter
(Figures 8). However, both have very poor performances in arbitrary directed
graphs, even have no solution in most of the cases. This is because only one arc
missing on the computing trail can make MDT and MMDT fail to get a solution.

Light-hierarchy based solution versus light-tree based solution

As seen in the experimental results above, light-hierarchy based solution (FF
and NF) of our algorithm outperform light-tree based solution (FG and NG)
[3] in term of the number of wavelengths and also the total cost, especially in
bidirectional networks, at the expense of the diameter. This can be explained as
follows.

The two approaches start with the same DSPT tree. In the rerouting phase,
FG and NG try to extend the tree but always keep the tree structure which does
not allow any cycles. Moreover, the nodes used for the tree extension are always
restricted. They are the source or the leaves which are either the farthest (FG)
or nearest (NG) destinations in each subtree of the computed trees. These two
properties restrict the number of destinations covered in one tree, inducing lager
number of wavelengths needed and higher cost. Besides, cycles are not allowed
in the forest, and when the destinations cannot be routed in the current tree,
they are routed in a new tree by the shortest paths, so the diameter is short.

In contrast, our approach is more flexible. After the first step, the structure
is no longer a tree, but a set of trails (composing a hierarchy) which allow cycles
without conflict between them. With this property, more arcs can be used for
the trail extension. Moreover, the nodes used for the trail extension are not re-
stricted. All of the terminals of the existed trails (and the source) are taken into
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consideration to select the best one (in term of cost). In other words, more nodes
can be used for the trail extension. These two properties increase the number
of destinations can be covered in one trail, resulting in a small number of wave-
lengths required, but, of course, with a longer diameter. Besides, because more
nodes are considered for the best cost, a lower total cost of the final trails can
be achieved.

Farthest First versus Nearest First
As shown in the experimental results above, FF results in higher diameter but
a slightly fewer wavelengths and a quasi-similar cost compared with NF. This
can be explained as follows.

First, the diameter is the number of hops (the length) of the longest trail.
When the selected trail (the routed trail) is replaced by an other one (the routing
trail), the new routing trail must be longer (in term of cost) than the routed
trail. Thus, the longer the routed trail is, the longer the new length can be. FF
chooses the longest trail in the maximal clique, hence it makes the new trail
longer than NF does. Furthermore, because the new trail is usually longer than
routed trail in the old maximal clique, and it will probably become the farthest
one in the new maximal clique and will be first considered next time. Hence it
becomes longer and longer, and finally it can correspond to the diameter of the
final trails. That is the reason for the fact that FF results in a longer diameter
than NF.

Similarly, since FF tends to include more destinations in a long trail, the
probability that the number of wavelengths that can be reduced by FF is higher
than by NF. So FF results in a fewer wavelengths than NF does.

Finally, when the routed trail is replaced, the reduced cost is calculated by
the cost of the routed trail minus the cost of the extended path of the routing
trail (or the total cost of the routing trail if the source is selected). Thus, the
longer the selected trail is, probably that the more the reduced cost can be. Since
FF chooses the longest trail and NF chooses the shortest one in the maximal
clique to diminish first, FF can reduce more cost than NF.

DSPT-based solution versus DAST-based solution

As shown in Figure 9, DAST-based solutions (STFF and STNF) result in
larger number of wavelengths compared with DSPT-based solutions (FF and
NF), even larger than FG and NG at large group size. This can be explained as
follows. The DSPT-based solutions started with a DSPT which tends to create
more branches composing a star surrounding the source. Because the source can
be equipped with multiple transmitters, so it can serve as a branching node
with arbitrary degree. Whereas, a DAST tends to include more destinations in
fewer branches. Thus the DAST does not take better advantage of the source.
Moreover, a DSPT probably produces more terminals (leaves) than a DAST.
Consequently, when the group size is large, a DSPT creates more chances for
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the terminals to reroute than a DAST, leading that more wavelengths can be
reduced with DSPT-based solutions than DAST-based solutions.

7 Conclusion and Future works

In this paper we address the multicasting problem in all-optical networks with-
out splitters. The problem is to find a set of light-trails which minimizes the
number of required wavelengths with a low cost. The problem is proved to be
NP-hard even in symmetric networks, and four heuristics are proposed to make
a feasible solution, two are Shortest Path Tree Based, and the others are Ap-
proximated Steiner Tree Based. The idea of our algorithm is to diminish the
conflict between the light-trails until it cannot be reduced. Especially, unlike the
popular approaches which assume to work in symmetric networks, our algorithm
can work well in arbitrary networks.

The four heuristics of our algorithm are compared with the proposed algo-
rithms in the literature, and the simulation results showed that our algorithm
achieves low number of used wavelengths, low cost but quite high diameter. The
experimental results also showed that the solutions based on DSPT are better
than those based on DAST in term of the number of wavelengths used, the cost
and the diameter of the trails. Among the four proposed heuristics, although the
Farthest First can result in smaller number of wavelengths and lower cost, the
Nearest First provides a better trade-off among the three performance metrics.

However, this study has some limitations. First, it is worth to show how good
our heuristic algorithm is in comparison with the optimal solution. Thus, we will
formulate the exact solution for this problem and make the comparison in the
next works.

Moreover, in this paper we just deal with the networks in which all the links
are assumed to have the same available wavelengths. To be more realistic, the
distribution of wavelengths in the network links can be arbitrary, depending on
the state of the networks where many requests are on-going together. In this
case, each wavelength corresponds to a topology graph that is different from
another. The routing problem can be more complicated but more interesting.
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