Ross Møller

Knuth Nickel Babuska

Malcolm Dekker

Pichat Neumaier Kahan

Kulisch

Bohlender Bohlender

Mosteller / Tukey

Linnaimaa Leuprecht

Oberaigner Jankowski

/ Semoktunowicz

/- Wozniakowski Jankowski

Wozniakowski Kahan

How to manage accuracy and speed? A new "better" algorithm every year since 1999

Precision

u= arithmetic precision u = 2 -53 ≈ 10 -16 for b64 in IEEE-754 (2008) Accuracy for backward stable algorithms Accuracy of the computed sum ≤ (n -1)

× cond × u cond(x i) = |x i | | x i |
No more significant digit in IEEE-b64 for large cond, i.e. > 10 16

More accuracy . . . More precision: double-double, quad-double, . . . Reliable and significant measure of the time complexity?

The classic way: count the number of flop A usual problem: double the accuracy of a computed result A usual answer for polynomial evaluation (degree n) How to chose the data test? Next step for f.p. summation: reproducibility to improve productivity Web site with common and shared resources: tested + test + make file sources, data files and generators, real and abstract associated measures

) (i) (i) (i+1) r (n-1) (n-2) (n-3) (n-4) (n-5) (0) (1) (2) (3) (4) (
Open and dynamic interaction: load your new algorithm, your new data, run them and let's contribute architectures? compilers?

suggestions and partners are welcome!

 Compensated algorithms: Kahan(72), . . . , Sum2(05), SumK(05) Accuracy of the computed sum u + cond × u K . . . but still depending on the conditioning Distillation: iterate until faithful or exact rounding Error free transformation of [x] → [x (1)] → • • • → [x *] such that x i = x * i and [x *] provides the expected rounded value. Kahan (87), . . . , Zhu-Hayes: iFastSum (SISC-09) More space to keep everything Long accumulator, hardware oriented: Malcolm (71), Kulish (80) Cut the summands: AccSum (SISC-08), FastAccSum (SISC-09) Sum by fixed exponent: HybridSum (SISC-09), OnLineExact (TOMS-10) From faithful to exact rounding -→ Run-time and memory efficiencies are now the discriminant factors Why measure summation algorithm performance? How to measure summation algorithm performance?

 pintool to analyse and visualise the ILP of x86-coded algorithms Pin (Intel) tool (http://www.pintool.org) Outputs: ILP measure (#C, #I), IPC histogram, data-dependency graph Input: x86 64 binary file Developed and maintained by B. Goossens and D. Parello (DALI) Some recent accurate and fast summation algorithms Twice more precision Sum2: Compensated with a VectSum that uses TwoSum DDSum: Recursive sum + double-double arithmetic Faithful or exact rounding iFastSum: SumK with dynamic error control AccSum and FastAccSum: Adaptative computational effort wrt cond. Split the summands by chunk that sums exactly (width depends on n), careful sum of the chunks. Chunk cutting-line fixed in AccSum while more dynamic in FastAccSum HybridSum and OnLineExactSum: Exponent extraction of the summands, careful accumulation in one (HS) or two vectors (OLE) of fixed and short length (2048 in IEEE-b64), and distillate the (very for OLE) short vector with iFastSum.

 The limited Accuracy of Performance Counter MeasurementsWe caution performance analysts to be suspicious of cycle counts . . . gathered with performance counters.

	How to trust non-reproducible experiment results? How to read the current literature?
	Numerical results in S.M. Rump contributions (for summation) Instruction Level Parallelism (ILP) describes the potential of the instructions of Measures are mostly non-reproducible A synthetic sample: e = (a+b) + (c+d) A synthetic sample: e = (a+b) + (c+d) A synthetic sample: e = (a+b) + (c+d) A synthetic sample: e = (a+b) + (c+d)
	The execution time of a binary program varies, even using the same data 26% for Sum2-SumK (SISC-05) : 9 pages over 34 a program that can be executed simultaneously x86 binary x86 binary Instruction and cycle counting x86 binary Instruction and cycle counting x86 binary Instruction and cycle counting x86 binary Instruction and cycle counting x86 binary
	input and the same execution environment. Cycle 0: i1 ... Cycle 0: i1 ... Cycle 0: i1 ... 20% for AccSum (SISC-08) : 7 pages over 35 i2 i2 i2 Hennessy-Patterson's ideal machine (H-P IM) mov eax,DWP[ebp-16] i1 mov eax,DWP[ebp-16] i1 mov eax,DWP[ebp-16] i1 mov eax,DWP[ebp-16] i1 mov eax,DWP[ebp-16] i1 mov eax,DWP[ebp-16] i1	i4 i4 i4
	Metric Flop count Flop count ratio Measured #cycles ratio Why? Experimental uncertainty of the hardware performance counters Horner CompHorner DDHorner 2n 22n + 5 28n + 4 1 ≈ 11 ≈ 14 1 2.8 -3.2 Spoiling events: background tasks, concurrent jobs, OS interrupts every instruction is executed one cycle after the execution one of the mov edx,DWP[ebp-20] i2 add edx,eax i3 mov edx,DWP[ebp-20] i2 add edx,eax i3 mov edx,DWP[ebp-20] i2 add edx,eax i3 mov edx,DWP[ebp-20] i2 add edx,eax i3 Cycle 1: i3 i5 mov edx,DWP[ebp-20] i2 add edx,eax i3 i5 mov edx,DWP[ebp-20] i2 Cycle 1: i3 add edx,eax i3 producers it depends mov ebx,DWP[ebp-8] i4 mov ebx,DWP[ebp-8] i4 mov ebx,DWP[ebp-8] i4 mov ebx,DWP[ebp-8] i4 mov ebx,DWP[ebp-8] i4 mov ebx,DWP[ebp-8] i4 Non deterministic issues: instruction scheduler, branch predictor no other constraint than the true instruction dependency (RAW) add ebx,DWP[ebp-12] i5 add ebx,DWP[ebp-12] i5 add ebx,DWP[ebp-12] i5 add ebx,DWP[ebp-12] i5 add ebx,DWP[ebp-12] i5 Cycle 2: i6 add ebx,DWP[ebp-12] i5 8.7 -9.7 External conditions: temperature of the room add edx,ebx i6 add edx,ebx i6 add edx,ebx i6 add edx,ebx i6 add edx,ebx i6 add edx,ebx i6
	Flop count vs. run-time measures Timing accuracy: no constant cycle period on modern processors (i7. . .) Measure the #cycles and the #IPC running the code with the H-P IM
	Flop counts and measured run-times are not proportional Uncertainty increases as computer system complexity does The picture is blurred: the computing chain is wobbling around maximal exploitation of the program ILP
	Run-time measure is a very difficult experimental process Which one trust? If we combine all the published speedups (accelerations) on the well processor and ILP in practice: superscalar and out-of-order execution Architecture and micro-architecture issues: multicore, hybrid, speculation execution times approaching to zero? S. Touati (2009) Compiler options and its effects known public benchmarks since four decades, why don't we observe ILP measures the potential of the algorithm performance

20% for AccSumK-NearSum (SISC-08b) : 6 pages over 30 less that 3% for FastAccSum (SISC-09) : 1 page over 37 Lack of proof, or at least of reproducibility Measuring the computing time of summation algorithms in a high-level language on today's architectures is more of a hazard than scientific research. S.M. Rump (SISC, 2009) . . . in the paper entitled Ultimately Fast Accurate Summation Software and System Performance experts' point of view D. Zaparanuks, M. Jovic, M. Hauswirth (2009) Can Hardware Performance Counters Produces Expected, Deterministic Results?

In practice counters that should be deterministic show variation from run to run on the x86 64 architecture. . . . it is difficult to determine known "good" reference counts for comparison. V.M.

[START_REF] Weaver | Can hardware performance counters produce expected, deterministic results?[END_REF]

 ∈ [10 3 , 10 7] and cond ∈ [10 8 , 10 40] = [1/u, 1/u 2.5] Not abstract enough: instruction set dependence, compiler choice Good abstraction level? Assembler program or high level programming language?

	Time complexity parameters of the summation algorithms Only n for Sum2, SumK: constant accuracy improvement n and cond for AccSum, iFastSum: adaptive accuracy improvement Exponent range of the summands: Z-H exhibit no influence for HybridSum and OnlineExactSum for large n Rump's generator of arbitrary ill-conditioned dot product (SISC-05), modified for summation and to cover an arbitrary exponent range. Low level choices are crucial n 2sum Fast2sum 2sum Fast2sum 10 3 13 11 13.7 9 10 4 6.5 6.5 5.8 4 10 5 5 5.5 3.8 3.3 10 6 4.7 5.6 3.8 3.3 Cycle ratios (vs. Sum) vary for different EFT and compilers Conclusion How to measure summation algorithm performance? ILP and the PerPI Tool Experiments with recent summation algorithms Conclusion Highly accurate algorithm -→ reliable performance evaluation Hardware counter based measure: uncertainty and no reproducibility PerPI: a software platform to analyze and visualise ILP Reliable: reproducibility both in time and location Realistic: correlation with measured ones Useful: a detailed picture of the intrinsic behavior of the algorithm Optimisation tool: analyse the effect of some hardware constraints [GLPP-Para10] Computing time: More science? Less hazard? No definitive answer Length: n Focus inside OnLineExact cond = 10 16 gcc icc Why measure summation algorithm performance? Flop count: not significant PerPI result is far from perfect
	Conclusion Exploratory tool: gives us the taste of the behavior of our algorithms
	running on "tomorrow" processors
	25 / 30