
HAL Id: lirmm-00835852
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00835852v1

Submitted on 19 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

In-vivo Identification of Skeletal Muscle Dynamics with
Nonlinear Kalman Filter -Comparison between EKF and

SPKF
Mitsuhiro Hayashibe, David Guiraud, Philippe Poignet

To cite this version:
Mitsuhiro Hayashibe, David Guiraud, Philippe Poignet. In-vivo Identification of Skeletal Muscle
Dynamics with Nonlinear Kalman Filter -Comparison between EKF and SPKF. ISRN Rehabilitation,
2013, 2013, pp.ID 610709. �10.1155/2013/610709�. �lirmm-00835852�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00835852v1
https://hal.archives-ouvertes.fr


Hindawi Publishing Corporation
ISRN Rehabilitation
Volume 2013, Article ID 610709, 10 pages
http://dx.doi.org/10.1155/2013/610709

Research Article

In Vivo Identification of Skeletal Muscle Dynamics with
Nonlinear Kalman Filter: Comparison between EKF and SPKF

Mitsuhiro Hayashibe, David Guiraud, and Philippe Poignet

DEMAR Project, INRIA Sophia-Antipolis and LIRMM, CNRS, University of Montpellier, 34095 Montpellier, France

Correspondence should be addressed to Mitsuhiro Hayashibe; mitsuhiro.hayashibe@inria.fr

Received 24 March 2013; Accepted 20 April 2013

Academic Editors: A. Cappozzo and S. Park

Copyright © 2013 Mitsuhiro Hayashibe et al. his is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Skeletal muscle system has nonlinear dynamics and subject-speciic characteristics. hus, it is essential to identify the unknown
parameters from noisy biomedical signals to improve the modeling accuracy in neuroprosthetic control. he objective of this work
is to develop an experimental identiicationmethod for subject-speciic biomechanical parameters of a physiological muscle model
which can be employed to predict the nonlinear force properties of stimulated muscle. Our previously proposed muscle model,
which can describe multiscale physiological system based on the Hill and Huxley models, was used for the identiication. he
identiication protocols were performed on two rabbit experiments, where the medial gastrocnemius was attached to a motorized
lever system to record the force by the nerve stimulation. he muscle model was identiied using nonlinear Kalman ilters: sigma-
point and extended Kalman ilter. he identiied model was evaluated by comparison with experimental measurements in the
cross-validation manner.he feasibility could be demonstrated by comparison between the estimated parameter and the measured
value. he estimates with SPKF showed 5.7% and 2.9% error in each experiment with 7 diferent initial conditions. It reveals that
SPKF has great advantage especially for the identiication of multiscale muscle model which accounts for the high nonlinearity and
discontinuous states between muscle contraction and relaxation process.

1. Introduction

1.1. Muscle Modeling and FES. Functional electrical stimula-
tion (FES) is an efective technique to evoke artiicial con-
tractions of paralyzed skeletal muscles. It has been employed
as a general method in modern rehabilitation to partially
restore motor function for patients with upper neural lesions
[1, 2]. Recently, the rapid progress in microprocessor tech-
nology provided the means for computer-controlled FES
systems [3–5]. A fundamental problem concerning FES is
how to handle the high complexity and nonlinearity of
the neuromusculoskeletal system [6, 7]. In addition, there
is a large variety of patient situations depending on the
type of neurological disorder. To improve the performance
of motor neuroprosthetics beyond the current limited use
of such system, subject-speciic modeling is essential. he
use of a mathematical model can improve the development
of neuroprosthetics by optimizing their functionality for
individual patients.

A mathematical model makes it possible to describe
the relevant characteristics of the patient’s skeletal muscle
and to accurately predict the force as a function of the
stimulation parameters. Indeed, synthesis of stimulation
sequences or control strategies to achieve movement can be
eiciently computed and optimized using numerical models
[8]. herefore, it can contribute to enhancing the design and
function of controls applied to FES. Over the years, a great
variety of muscle models have been proposed, difering in
their intended application, mathematical complexity, level
of structure considered, and idelity to the biological facts.
Some of them have attempted to exhibit the microscopic or
macroscopic functional behavior, for instanceHuxley [9] and
Hill [10]. he distribution-moment model [11] constitutes a
bridge between the microscopic and macroscopic levels. It
is a model for sarcomeres or whole muscle which has been
extracted via a formal mathematical approximation from
Huxley crossbridge models. Models integrating geometry
of the tendon and other macroscopic consideration can be
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found in [12]. A study by Bestel and Sorine [13], based on
both microscopic Huxley and macroscopic Hill type model,
proposed an explanation of how the beating of cardiac
muscle is achieved through a chemical control input. It
integrated the calciumdynamics inmuscle cells that stimulate
the contractile element of the model. Starting with this
concept, we adapted it for striated muscle [14]. We proposed
a musculotendinous model which considered the muscular
masses and viscous frictions in muscle-tendon complex.his
model is represented by diferential equations where the
outputs are the muscle’s active stifness and force. he model
input represents the actual electrical signal as provided by the
stimulator in FES.

1.2. In Vivo Identiication for Subject-Speciic Parameters.
In actual FES system, the appropriate tuning is achieved
empirically by intensively stimulating the patient’s muscle
for each task. If this adjustment could be calculated in the
simulation, and if we could ind the best signal pattern
using virtual skeletal muscle, such method would be very
helpful for movement synthesis for spinal cord injured (SCI)
patients. However, in order to perform the simulation, an
accurate skeletal muscle model is required to reproduce a
well-predicted force for each muscle corresponding to the
patient-speciic characteristics.

For any biological systems, identiication is a diicult
problemdue to the fact that (i)measurementsmust be as non-
invasive, particularly on humans, (ii) some entities cannot be
directly measured, (iii) an experimental setup and protocol
have to be designed and certiied, (iv) intersubject variations
can be large, and (v) the large nonlinearity and complex-
ity of the models cause some optimization algorithms to
fail. hus, few papers address biomechanical parameters
identiication in FES context, and they used macroscopic
model for global force production [15]. Consequently, we
described an approach for coupling the model with in-vivo
measurements, that is, using a multiscale muscle model in an
estimation procedure in order to perform the identiication
of the parameters, hence, giving access to physiologically
meaningful parameters of the muscle. Preliminary result was
reported in [16].

he skeletal muscle dynamics are in particular highly
nonlinear, and we need to identify many unknown phys-
iological parameters if a multiscale model is applied. he
main objective of this paper is to develop an experimen-
tal computational method to identify unknown internal
parameters from the limited information. For such identi-
ication of nonlinear system, extended Kalman ilter (EKF)
has oten been used for skeletal muscle [17] and cardiac
muscle identiication [18]. It can work when the model is
not complicated and not highly nonlinear. In this paper, a
sigma-point Kalman ilter (SPKF) was applied to the in vivo
experimental data to identify internal states in the nonlinear
dynamics of multiscale skeletal muscle model. SPKF has
higher accuracy and consistency for nonlinear estimation
than EKF theoretically. he feasibility of both identiications
is veriied by comparison.he computational performance is
discussed.

he outline of the paper is as follows. he next sec-
tion presents the formulation of the skeletal muscle model
controlled by FES. he following section is devoted to
the experimental identiication of the model for isometric
contraction, including the identiication protocol.he experi-
mentalmeasurementwas performed in-vivo on rabbits.hen,
we present detailed results of the parameter estimation, the
comparison with EKF, and cross-validation which illustrates
the pertinence of the identiication. Finally, we present some
discussions, conclusions, and perspectives in the last sections.

2. Skeletal Muscle Model

Muscle modeling is complex, in particular when the model
is based on biomechanics and physiological realities. Most
of the muscle models have been based on phenomenological
models derived from Hill’s classic work [10] and well sum-
marized by Zajac [12]. Hill macroscopic model is a standard
muscle model for practical use. Recent work [19] performed
the validation of Hill model during functionally relevant
conditions. hey concluded that model errors are large for
diferent iring frequencies and largest at the low motor unit
iring rates relevant to normal movement. hey pointed out
that the reason may come from the Hill model assump-
tion to consider muscle activation, force-length, and force-
velocity properties independently. It was suggested that more
physiological coupling between activation and force-velocity
properties can be demonstrated in microscopic crossbridge
models incorporating a dependence between physiologically
based activation and crossbridge attachment [19]. hus, our
approach is to provide a multiscale physiology-based model
on the both micro- andmacroscale fact to obtain meaningful
internal parameters.

Our muscle model is composed of two elements of
diferent nature: (i) an activation model which describes how
an electrical stimulus generates an action potential (AP) and
initiates the contraction and (ii) a mechanical model which
describes the dynamics in force (Figure 1). For details of the
muscle model, refer to the previously published article [14].
Here, a brief summary of the model and the information
necessary for the identiication are given.

2.1. Activation Model. he activation model describes the
electrical activity of muscle which represents the excitation-
contraction phenomena. In muscle physiology, it is known
that two input elements dominate muscle contraction: iber
recruitment rates and temporal activation [20]. he recruit-
ment rates determine the percentage of recruitedmotor units.
In Hill model, it has only one input which corresponds to this
recruitment rate. Hill model is mainly applied for voluntary
contraction where temporal activation is not dominant.
However, in FES, since all muscle ibers are synchronously
activated, this temporal activation which occurs by every
stimulation pulse, is important. he recruitment rates can be
determined on the pulse width (PW) and pulse amplitude of
signal �, generated by the stimulator [21].he recruitment rate�(PW, �) can be assumed to be a constant valuewhenPWand� remain constant.
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Figure 1: Outline of skeletal muscle model and its identiication.

he temporal activation can be considered as the under-
lying physiological processes which describes the chemical
input signal, �, that brings muscle cells into contraction as
shown in Figure 2. Muscle contraction is initiated by an AP
along the muscle iber membrane, which goes deep into the
cell through the T-tubules. It causes calcium releases that
induce the contraction process when its concentration rises
above a threshold and is sustained till the concentration drops
back below this threshold once again. Hatze [22] gives an

example of calcium dynamics (Ca2+) modeling. Since we
focus on the mechanical response in this paper, we choose
a simple model that renders the main characteristics of the
dynamics. he contraction-relaxation cycle is triggered by

the (Ca2+) associated with two phases: (i) contraction and,
(ii) relaxation as in Figure 2. We use a delayed (�) model
to take into account the propagation time of the AP and
an average time delay due to the calcium dynamics. he
frequency of the chemical input, �, can be deined from the
stimulation frequency. he time delay and the contraction
time can be obtained from a twitch test by single stimulation
pulse. A contraction takes place with a kinetics �� then, if
no other AP has been received in the mean time, an active
relaxation follows indeinitely with a kinetics ��. �� is linked
to the rate of actine-myosine cycle whereas �� is related to
the rate of crossbridge breakage. Finally, � can be written as
follows,whereΠ�(�) is a trapezoidal switching functionwhich
connects relaxation and contraction state from 0 to 1:

� = Π� (�) �� + (1 − Π� (�)) ��. (1)

2.2. Mechanical Model. he model is based on the macro-
scopicHill-Maxwell typemodel and themicroscopic descrip-
tion of Huxley [9]. For crossbridge modeling, Huxley [9]
proposed an explanation of the crossbridge interaction in a
sarcomere. A sarcomere model can be used to represent a
whole muscle which is assumed to be a homogeneous assem-
bly of identical sarcomeres. he distribution-moment model
of Zahalak [11] is a model for sarcomeres or whole muscle
which is extracted via a formal mathematical approximation
from Huxley crossbridge models. his model constitutes
a bridge between the microscopic and macroscopic levels.
Based on Huxley and Hill-type models, Bestel and Sorine
[13] proposed an explanation of how the beating of cardiac
muscle may be performed, through a chemical control input,
connected to the calcium dynamics in muscle cell, that
stimulates the contractile element of the model.

Stim. PW

Contraction Relaxation Contraction Relaxation

T = 1/f
[Ca+2]

u
Uc

Ur

C

�

I

Figure 2: Chemical control input � for temporal activation.

hemodel is composed of macroscopic passive elements
and a contractile element �� controlled by input commands:
the chemical input, �, as suggested by Bestel and Sorine
[13] for the cardiac muscle on the sarcomere scale and the
recruitment rate, �, on the iber scale as shown in Figure 3. In
order to express isometric contractions, whereas the skeleton
is not actuated, our muscle model is introduced with masses� (kg) and linear viscous dampers ��1, ��2 (Ns/m) to ensure
energy dissipation. On both sides of ��, there are elastic
springs, ��1, ��2 (N/m), and viscous dampers to express the
viscoelasticity of the muscle-tendon complex. he parallel
element,��, mainly represents surrounding tissues, but it can
be omitted in isometric contraction mode. We assume the
symmetric form with the two masses and passive elements
identical. Here, �� = ��1 = ��2, �� = ��1 = ��2, and � = ��1 =��2. ��0 and � �0 (m) are the lengths of �� and �� in the rest
state. Initially, we can deine the relative length variation � as
positive when the length increases, as in (2). In particular, in
the case of isometric contraction, the following relationship
exists (3):

�� = � � − � �0� �0 �� = �� − ��0��0 , (2)

2� �0�� + ��0�� = 0. (3)

he dynamical equation of one of the masses is given by (4).�� and �� express the force and the stifness of��, respectively.
he force �� at the output of this muscle model is the sum
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Figure 3: Macroscopic mechanical coniguration of the muscle
model.

of the spring force �� and the damping force ��. When
we measure the tension of skeletal muscle under in vivo
conditions, the experimentally measured force is equivalent
to��.Whenwe take the ratio of�� and��, � �0 is ofset and can
be written as in (6). (7) is the relational equation in Laplace
transform. From this relationship, the diferential equation
(8) can be obtained:

�� �0 ̈�� = �� − ��� �0�� − �� �0 ̇��, (4)

�� = �� + �� = ��� �0�� + �� �0 ̇��, (5)

���� =
� ̈�� + � ̇�� + ����� ̇�� + ���� , (6)

L [��]
L [��] = ��2 + �� + ���� + �� , (7)

��̈� + ��̇� + ���� = ��̇� + ����. (8)

Finally, in isometric contraction, the diferential equations of
this model can be described as follows:

�̇� = −��� + ���Π��� − �� ���� ̇������ (9)

�̇� = −��� + ���Π��� − �� ���� ̇������ + ��0�� ̇��, (10)

�̈� = − �
��̇� − ����� + �

��̇� + �����, (11)

̈�� = − 2�����0 −
����� − �

� ̇��. (12)

he dynamics of the contractile element correspond to (9)
and (10). he terms �� and �� are the maximum values
for �� and ��, respectively. From (3) and (4), the diferential
equation for �� is obtained as in (12). he internal state vector
of this system should be set as x = [�� �� �� �̇� �� ̇��].
3. Experimental Identification

In this study, we have developed a method to identify the
parameters in the mechanical part of a skeletal muscle
model. he input controls of the model are set as the static
recruitment rate � and the chemical control input � from the
activation model. hese two controls are computed from the
FES input signal. Note that the identiication was performed
with constant FES parameters for pulse width and intensity of

electrical stimulation so that the recruitment rate is constant.
he amplitude and pulse width were selected to recruit 90%
of the maximum muscular force; then � can be set as 0.9
for the iber recruitment. In addition, the calcium dynamics
in our model induce a time delay and an on/of control
which represents contraction/relaxation so that correct data
processing can avoid the detailed calcium dynamics. he
trigger for signal � can be calculated from the timing of
the electrical stimulation. �� and �� are set as 20 and 15,
respectively, as in [23].

In isometric contraction, the diferential equations of
skeletal muscle dynamics are straightly given in (9)–(12).
In this case, ��, ��, ��, and �� are unknown time-varying
values and �, ��, and ��0 are unknown static parameters
to be estimated. For the identiication of this model, it is a
nonlinear state space model, and many state variables are
not measurable. Moreover, in-vivo experimental data include
some noise. Hence, we need an eicient recursive ilter that
estimates the state of a dynamic system from a series of noisy
measurements.

3.1. Sigma-Point Kalman Filter. For this kind of nonlinear
identiication, extended Kalman ilter (EKF) is the well-
known standard method. In EKF, the nonlinear equation
should be linearized to irst order with partial derivatives
(Jacobian matrix) around a mean of the state. he optimal
Kalman iltering is then applied to the linearized system.
When the model is highly nonlinear, EKF may give particu-
larly poor performance and diverge easily. In skeletal muscle
dynamics, its state-space is dramatically changed between
the contraction and relaxation phases. At this time, partial
derivatives would be incorrect due to the discontinuity.
herefore, we introduced the sigma-point Kalman ilter
(SPKF).he initial idea was proposed by Julier and Uhlmann
[24] and has been well described by Merwe and Wan [25].
SPKF uses a deterministic sampling technique known as the
unscented transform to pick a minimal set of sample points
(called sigma points) around the mean. hese sigma points
are propagated through the true nonlinearity. his approach
results in approximations that are accurate to at least second
order in a Taylor series expansion. In contrast, EKF results in
only irst-order accuracy.

Anoutline of the SPKF algorithm is described. For details,
the reader should refer to [25, 26]. he general Kalman
framework involves estimation of the state of a discrete-time,
nonlinear dynamic system,

x�+1 = f (x�, k�) ,
y� = h (x�,n�) ,

(13)

where x� represents the internal state of the system to be
estimated and y� is the only observed signal. he process
noise k� drives the dynamic system, and the observation
noise is given by n�. he ilter starts by augmenting the state
vector to � dimensions, where � is the sum of dimensions in
the original state, model noise, and measurement noise. he
corresponding covariance matrix is similarly augmented to
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an � by �matrix. In this form, the augmented state vector x̂��
and covariance matrix P�� can be deined as

x̂
�
� = � [x��] = [x̂�� k

�
� n�� ]�,

P
�
� = � [(x�� − x̂

�
�) (x�� − x̂

�
�)�]

= [
[
Px�

0 0
0 Q

k�
0

0 0 Rn�

]
]
,

(14)

where Px is the state covariance, Q
k
is the process noise

covariance, and Rn is the observation noise covariance.
In the process update, the 2� + 1 sigma points are

computed based on a square root decomposition of the prior

covariance as in (15), where � = √� + � and � is found using

� = �2(� + �) − �. � is chosen in 0 < � < 1 which determines
the spread of the sigma points around the prior mean
and � is usually chosen equal to 0. he augmented sigma-
point matrix is formed by the concatenation of the state
sigma-point matrix, the process noise sigma-point matrix,
and the measurement noise sigma-point matrix, such that

X� = [(X�)� (XV)� (X�)�]�. he sigma-point weights to

be used for mean and covariance estimates are deined as in
(16). he optimal value of 2 is usually assigned to �:

X
�
�−1 = [x̂��−1 x̂��−1 + �√P��−1 x̂��−1 − �√P��−1] , (15)

��0 = �
(� + �) ,

��0 = ��0 + (1 − �2 + �) ,
��� = ��� = 1

(2 (� + �)) (for � = 1, . . . , 2�) .
(16)

And these sigma points are propagated through the nonlinear
function. Predicted mean and covariance are computed as
in (18) and (19) and predicted observation is calculated as
follows:

X
�
�|�−1 = f (X��−1,XV

�−1) , (17)

x̂
−
� =
2�∑
�=0
��� X��,�|�−1, (18)

P
−
x�
= 2�∑
�=0
��� (X��,�|�−1 − x̂

−
�) (X��,�|�−1 − x̂

−
� )�, (19)

Y�|�−1 = h (X��|�−1,X��−1) , (20)

ŷ
−
� =
2�∑
�=0
��� Y�,�|�−1. (21)

he predictions are then updated with new measurements
by irst calculating the measurement covariance and state-
measurement cross-correlationmatrices, which are then used
to determine the Kalman gain. Finally, the updated estimate

and covariance are determined from this Kalman gain as
below:

Pỹ�
= 2�∑
�=0
��� (Y�,�|�−1 − ŷ

−
� ) (Y�,�|�−1 − ŷ

−
� )�,

Px�y�
= 2�∑
�=0
��� (X��,�|�−1 − x̂

−
�) (Y�,�|�−1 − ŷ

−
� )�,

K� = Px�y�
P
−1
ỹ�
,

x̂� = x̂
−
� + K� (y� − ŷ

−
� ) ,

Px�
= P
−
x�
− K�Pỹ�

K
�
� .

(22)

hese process updates and measurement updates should be
recursively calculated in � = 1, . . . ,∞ until the end point of
the measurement.

3.2. Experimental Measurement for Identiication. Stimula-
tion experiments were performed on two New Zealand
white rabbits at Aarhus University Hospital in Aalborg,
Denmark, as depicted in Figure 4. Anesthesia was induced
and maintained with periodic intramuscular doses of a
cocktail of 0.15mg/kg Midazolam (DormicumR, Alpharma
A/S), 0.03mg/kg Fetanyl, and 1mg/kg Fluranison (combined
in HypnormR, Janssen Pharmaceutica) [14].

he let leg of the rabbit was anchored at the knee
and ankle joints to a ixed mechanical frame using bone
pins placed through the distal epiphyses of the femur and
tibia. A tendon of the medial gastrocnemius (MG) muscle
was attached to the arm of a motorized lever system (Dual
mode system 310B Aurora Scientiic Inc.). he position and
force of the lever arm were recorded. An initial muscle-
tendon length was established by lexing the ankle to 90∘. A
bipolar cuf electrode was implanted around the sciatic nerve,
allowing the MG muscle to be stimulated. Data acquisition
was performed at a 4.8 kHz sampling rate. he muscle
force against the electrical stimulation was measured under
isometric conditions.

4. Result of Identification

In order to facilitate the convergence of the identiication,
the estimation process has been split into two steps. In the
irst step, we only estimate geometrical parameter ��0. In the
second step, we estimate the dynamic parameters: � and �.
he biomechanicalmusclemodel to be identiied is presented
as (9)–(12). We deine the state vectors for geometric and
dynamic estimations in SPKF as follows:

xg = [�� �� �� �̇� �� ̇�� ��0] ,
xd = [�� �� �� �̇� �� ̇�� � �] . (23)

4.1. Parameter Estimation. Parameter estimation was per-
formed using two rabbit experimental data. he stimulation
signal input used for the estimation is composed of two
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Figure 4: Overview of the rabbit experiment.

successive pulses (doublet) at 16Hz and 20Hzwith amplitude
105 �A and pulse width 300 �s. he stifness �� has been
estimated separately, using the experiments performed on
the isolated muscle. he isolated muscle was pulled with the
motorized lever. he stifness is taken as equal to the slope of
the straight line of the passive length versus force relationship
in the experimental measurement as shown in Figure 5. he�� obtained was 4500N/m. �� and �� can be obtained
knowing the force response of muscle to a stimulation
pattern with maximum signal parameter values (frequency,
amplitude, pulse, and width). In this case, �� = 1000N/m
and �� = 15N were obtained from the measurement.

he experimental muscle force against the doublet stim-
ulation (20Hz) was used for parameter estimation during
measurement updates for �� in SPKF. he covariance matrix
has been initialized as in Table 1 for both geometric and
dynamic parameter identiications. he evolutions of esti-
mated internal states for �� and �� are obtained as shown
in Figure 6. From these behaviors, we can conirm that the
contractile element of the model is successfully tracking
the contraction represented by the dynamics of diferential
equations under the estimation process. Figure 7 shows the
estimated parameter ��0 and the error covariance. he fact
that the error covariace is being decreased during identiica-
tion process shows stable convergence of the estimation. Even
with the diferent initial values setting, parameter estimation
results converged into a particular value in SPKF as shown in
Figure 7(a). We tested the estimation from 7 diferent initial
values with an interval of 5mm from 55mm to 85mm. he
color is changed from magenta to cyan in the plot.

As can be seen from the resultant computational behavior
on the graphs, the internal state vectors of the muscle model
converged well to stationary values even with diferent initial
values. Ater the complete estimation process for geometric
and dynamic parameters, the estimated values are summa-
rized in Table 2. Normalized RMS errors between measured
and estimated force were also computed for each case. More-
over, the estimated length of the contractile element with
each stimulation showed values close to the actual measured
lengths of the extracted muscle. he border between the
contractile element and tendon is not so clear visually, but
it was approximately 7 cm for both rabbit GM muscles.
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Figure 6: Estimated state of the stifness�� (a) and the strain �� (b)
for the contractile element with SPKF.

he sizes of the two rabbits were similar; in particular, the
estimated length of ��0 had good correspondence with the
measured length for both rabbits andwith diferent frequency
stimulations. Physical parameters are impossible to make
visual veriication, but the estimated intrasubject property
is maintained among the parameters obtained by diferent
frequency stimulations from Table 2.
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Figure 7: Estimated parameter for the original length of the
contractile element � �0 (a) and its error covariance (b) with SPKF.
he plot color is changed from magenta to cyan with 7 diferent
initial values from 55mm to 85mm.

Table 1: he covariance matrix initialization.

Initial covariance matrix (geometric)

Px = diag([1 0.1 0.1 1 1 10 10−2])
Q

k
= diag([2.5 0.1 0.1 2.5 2.5 10 10−3] × 10−4)

Rn = 2.5 × 10−3
Initial covariance matrix for (dynamic)

Px = diag([1 0.1 0.1 1 1 10 10−4 10])
Q

k
= diag([2.5 0.1 0.1 2.5 2.5 10 10−5 10−3] × 10−4)

Rn = 2.5 × 10−3

Table 2: Parameter estimation.

Parameters
Rabbit 1 Rabbit 2

16Hz 20Hz 16Hz 20Hz

� �0 (cm) 7.1 7.4 7.4 6.8
� (g) 16.5 19.8 36.5 39.8
� (Ns/m) 19.7 19.4 19.7 19.2
NRMS (%) 0.60 0.46 1.02 0.82
Measured length of
contractile element

7 cm 7 cm

Body weight 4.5 kg 4.2 kg

4.2. Comparison with the Extended Kalman Filter. he
extended Kalman ilter is generally chosen for nonlinear
system identiication. However, in EKF, irst-order partial
derivatives are used for the computation, which means that
a matrix of partial derivatives (Jacobian) is computed around
the estimate for each step.he detail of EKF is summarized in
the appendix. When the process and measurement functions
f and h are highly nonlinear, EKF can give particularly
poor performance and diverge easily [25]. he estimate can
have a bias due to the linear approximation especially for
discontinuous systems.

Using the same computational conditions, such as ini-
tial values for states, parameters, and covariance matrices,
parameter estimation was also performed with EKF to com-
pare the estimation quality for this nonlinear system. he
estimation results with EKF are shown in Figures 8 and 9.
he numerical comparison for SPKF and EKF in 7 diferent
initial conditions is summarized in Table 3 both for rabbit1
and rabbit2.With the observation noise covariance� = 2.5 ×10−3, the same as with SPKF, the result with EKF converged
computationally as shown at the error covariance of EKF1 in
the table. However, the matched result in force level does not
mean directly that the estimated internal state and parameter
are correct. he internal state �� in EKF estimation was
not well estimated as the contracted strain variation. he
diference can be observed by comparing the plots of Figures
9 and 6 for the EKF and SPKF estimates, respectively. In
Figure 6, the estimated state of �� has two sharp peaks which
correspond to the strain of the contractile element induced by
muscle contraction by doublet stimulation.hus, this internal
state relects the expected phenomenon in muscle dynamics.
However, the estimated state in Figure 9 does not show sharp
deformation induced by stimulation pulse.

he linear approximation in the EKF transformation
matrix could be the cause of the lower quality of the
state estimation. Finally, it resulted in a bias for parameter
estimation. hus, the converged value for ��0 under these
conditions is not realistic. he EKF estimation was also
performed with the observation noise covariance � = 2.5 ×10−2, giving more uncertainty to the measurement update. In
this case, the estimated value became more realistic as the
SPKF estimate did. However, the convergence became poor
as in Figure 8(b) and it was highly dependent on the initial
values as in Figure 8(a).

4.3. Model Cross-Validation. A cross-validation of the iden-
tiied model was carried out to conirm the validity of this
method. he resultant muscle force was calculated using the
identiied models with the control input generated by the
stimulation frequency. Figure 10 shows the measured force
response of the MG muscle of the rabbit and the simulated
force with the identiied model. he stimulation was three
successive pulses in � = 105 �A, PW = 300 �s, and Freq =
31.25Hz. he red line indicates the measured muscle force,
the blue and green dotted lines are the plots by the identiied
model with SPKF and EKF1, respectively. he model identi-
ied by SPKF could predict the nonlinear force properties of
stimulatedmuscle quitewell in this cross-validation. Figure 11
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Table 3: Quantitative comparison on identiication (SPKF versus
EKF) in 7 diferent initial conditions.

Rabbit 1 SPKF EKF1 EKF2

� for �� 1.61 × 10−4 1.61 × 10−4 4.51 × 10−4
� for � �0 1.81 × 10−4 2.47 × 10−4 2.9 × 10−3
Mean � �0 (cm) 7.4 4.7 7.5

Deviation � �0 (cm) 6.12 × 10−2 7.67 × 10−3 0.34
Average errors (%) 5.7 33.6 6.9

Rabbit 2 SPKF EKF1 EKF2

� for �� 1.72 × 10−4 1.61 × 10−4 4.53 × 10−4
� for � �0 8.97 × 10−4 3.93 × 10−4 2.5 × 10−3
Mean � �0 (cm) 6.8 3.9 10.4

Deviation � �0 (cm) 8.92 × 10−2 3.38 × 10−2 6.49 × 10−2
Average errors (%) 2.9 44.9 47.9

EKF1 and EKF2 represent EKF estimation with the observation noise
covariance � = 2.5 × 10−3 and � = 2.5 × 10−2, respectively. � represents
steady-state error covariance.

is the result in the case of stimulation trains with six pulses in
20Hz. here is a good agreement between the measured and
the predicted force; however, when muscle fatigue appears,
the experimental force is lower than that from the simulation.
Particualrly, the diference between the measured and the
estimated forces at the end can be considered as the error
coming from modeling without considering muscle fatigue.
Apart from the error coming from muscle fatigue, we could
conirm the feasibility of the FES muscle modeling and
the efectiveness of the identiication. Normally, the muscle
property varies greatly, being dependent on the type of
muscle, and the force response is highly subject-speciic.
herefore, the muscle force prediction by cross-validation is
quite diicult even for the approximate prediction especially
when force production is predicted for each stimulation
pulse. he identiication based on experimental response
would contribute strongly to realistic force prediction in
electrical stimulation and FES controller development. Fur-
ther investigation is required for the expression of fatigue
phenomena [27], for its reproducibility and identiication.

5. Discussion

he skeletal muscle model used in this identiication protocol
is based on both macroscopic and microscopic physiology
which is unlike the black-box or other approaches using
simple Hill muscle model. he structured model requires
more parameters in highly nonlinear dynamics, which have
to be estimated by experiment. However, the great advantage
of our model is the insight which it can give to a muscle’s
biomechanical and physiological connections, where the
parameters have a physical signiicance such as length and
mass. his paper describes an identiication method which
uses experimental response and a nonlinear, physiological
muscle model to obtain subject-speciic parameters. he
advantage of animal experiment is to have direct access to
extracted muscle for conirmation of the obtained parameter
ater the experiment.
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Figure 8: Estimated parameter for the original length of the
contractile element� �0 (a) and its error covariance (b) with EKF.he
plot color is changed from magenta to cyan with 7 diferent initial
values from 55mm to 85mm.he results with two diferent settings
for the observation noise covariance are shown.
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Figure 9: Estimated state of the strain of the contractile element ��
with EKF.

his work was performed for application of FES stim-
ulated muscles; however, since many living systems have
nonlinear dynamics and subject speciicity, this kind of
identiication approach itself could be applied to other organ
models and clinical situations. In this work, both SPKF
and EKF algorithms were applied for muscle dynamics
identiication. EKF showed a high dependency on initial
settings of the computation and it was diicult to ind the
efective range of initial states and covariances. In SPKF,
the obtained result was more consistent and robust with
respect to various initial conditions. Moreover, for SPKF,
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Figure 10: Measured and simulated isometric muscle force by the
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Figure 11: Measured (red) and simulated isometric muscle force by
the identiiedmodel (blue) with six successive stimulation pulses (in
� = 105 �A, PW = 300�s, and Freq = 20Hz).

the computation of a Jacobian is not necessary, so it can
easily be applied even to complex dynamics. SPKF results
in approximations that are accurate to at least second order
in Taylor series expansion. In contrast, EKF results in irst-
order accuracy. Further, the identiication accuracy is clealy
improved, especially for nonlinear systems, but the compu-
tation cost still remains the same as for EKF. Advanced and
robust system identiication, including designing experimen-
tal protocols, has a very important role to improve the control
issues in neuroprosthetics. In addition, the main diiculty
in understanding human systems is caused by their time-
varying properties. he systems are not static and change
over time. he function of a human being is not always
the same; for example, muscle fatigue can easily change the
expected force response. In order to deal with the time-
varying characteristics of a human system, robust biosignal
processing and model-based control which corresponded to
nonlinearity and time variancewould provide a breakthrough
in the development of neuroprosthetics [28].

6. Conclusion

We have developed an experimental identiication method
for subject-speciic biomechanical parameters of a skele-
tal muscle model which can be employed to predict the
nonlinear force properties of stimulated muscle. he math-
ematical muscle model accounts for the multiscale major
efects occurring during electrical stimulation. hus, the
identiicationmethodwas required to deal with the high non-
linearlity and discontinous states betweenmuscle contraction
and relaxation phase. he identiied model was evaluated
by comparison with experimental measurements in cross-
validation. here was a good agreement between measured
and simulated muscle force outputs. he result showed
the performance which can contribute to the prediction of
the nonlinear force of stimulated muscle under FES. he
feasibility of the identiication could be demonstrated by
comparison between the estimated parameter and the mea-
sured value. In this study, the identiication was performed
by sigma-point Kalman ilter and extended Kalman ilter.
he performance was compared and summarized under
the same computational conditions. SPKF gives more stable
performance than EKF. he internal state in EKF estimation
was not well estimated as the contracted muscle strain.
In SPKF estimation, keeping the realistic state transition
and independence from initial conditions, it could realize
converged solution for each identiication trial.

SPKF is a Bayesian estimation algorithm which recur-
sively updates the posterior density of the system state as
new observations arrive online. his framework can allow
us to calculate any optimal estimate of the state using newly
arriving information. We believe that the proposed identi-
ication method has also the advantage for human muscle
identiication while it provides not only better accuracy in
nonlinear dynamics but also adaptability to time-varying
systems. he preliminary result is reported as in [29].

Appendix

Extended Kalman Filter

he extended Kalman ilter [30] extends the scope of Kalman
ilter to nonlinear optimal iltering problems by forming a
Gaussian approximation of the distribution of state x and
measurements y using a Taylor series-based transformation.
It is based on linear approximations to the transformation
matrix. Assuming the same nonlinear system as in (13),
EKF approximates a process with nonlinear diference and
measurement relationships as follows:

x�+1 ≈ f (x̂�, 0) + A� (x� − x̂�) ,
y� ≈ h (x̂�, 0) + C� (x� − x̂�) ,

A� = �f
�x

��������x=x̂� , C� = �h
�x

��������x=x̂� .
(A.1)

Note that the diference between EKF and KF is that the
matricesA� andC� in KF are replaced with Jacobianmatrices
which are partial derivatives around the estimate in EKF.
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In order to avoid numerical problems, it is necessary to
proceed the algorithm by using a square root factorization
as a UD decomposition which ensures that the covariance
matrix remains a positive deinite matrix.
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