N

N

Secure JTAG Implementation Using Schnorr Protocol
Amitabh Das, Jean da Rolt, Santosh Ghosh, Stefaan Seys, Sophie Dupuis,
Giorgio Di Natale, Marie-Lise Flottes, Bruno Rouzeyre, Ingrid Verbauwhede

» To cite this version:

Amitabh Das, Jean da Rolt, Santosh Ghosh, Stefaan Seys, Sophie Dupuis, et al.. Secure JTAG
Implementation Using Schnorr Protocol. Journal of Electronic Testing:: Theory and Applications,
2013, 29 (2), pp.193-209. 10.1007/s10836-013-5369-9 . lirmm-00837904

HAL Id: lirmm-00837904
https://hal-lirmm.ccsd.cnrs.fr /lirmm-00837904

Submitted on 24 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00837904
https://hal.archives-ouvertes.fr

Secure JTAG implementation using Schnorr
Protocol

Amitabh Da$, Jean Da Rdlt Santosh GhodhStefaan SeysSophie Dupufs Giorgio Di
Natalé, Marie-Lise Flotte§ Bruno Rouzeyre and Ingrid Verbauwhede

KU Leuven and IBBT, ESAT/COSIC, Leuven, Belgium
{firstname. | ast nane} @sat . kul euven. be

2LIRMM (Université Montpellier Il /CNRS UMR 5506), bhtpellier, France
{darolt, dinatale, flottes, rouzeyre, dupuis}@irnmmfr

Abstract. The standard IEEE 1149.1 (Test Access Port ansh@oy-Scan Architecture, also
known as JTAG port) provides a useful interfacedmbedded systems development, debug,
and test. In an 1149.1-compatible integrated dir¢ghie JTAG port allows the circuit to be
easily accessed from the external world, and egecontrol and observe the internal scan
chains of the circuit. However, the JTAG port candlso exploited by attackers to mount
several cryptographic attacks. In this paper w@@se a novel architecture that implements a
secure JTAG interface. Our JTAG scheme allows fotual authentication between the device
and the tester. In contrast to previous work, alieme uses provably secure asymmetric-key
based authentication and verification protocolse Tdomplete scheme is implemented in
hardware and integrated with the standard JTAGfate. Detailed area and timing results are
also presented.

Keywords: JTAG, secure testing, IP protection, secure code fwmware updates,
cryptographic circuits, Schnorr protocol, Ellip@urve Cryptography, mutual authentication.

1. Introduction

Joint Test Action Group (JTAG) is the common naorewhat was later standardized as the IEEE
1149.1 Standard Test Access Port and Boundary-S8azhitecture [1]. JTAG has remained as the
ubiquitous test and debug interface standard focuit$ and printed circuit boards in the
semiconductor industry for more than two decadé® dompanion standard, IEEE Standard 1532
(Boundary-Scan-Based In-System Configuration ofgRmmmable Devices) has extended JTAG to
support on-board programming [2]. A current IEE&nskard proposal (P1687, also known as Internal
JTAG) seeks to further enhance JTAG by allowingblwansfer of data and special instruction sets
in order to speed up In-System Programmability.

JTAG was initially designed without a concern facugrity. As the capability of hardware
attackers is increasing, more and more side-chararel discovered, which can compromise the
security of a device. One such important side-cbhimthe improper use of the JTAG port. There
have been many practical attacks on secure desigds as set-top box (STB) decoders using the
JTAG interface [3]. ARM11 (Cortex) microcontrollewhich is used in latest smartphones, has
extensive test and debug facilities through the GTgort. This is a well-known backdoor that is

currently used for instance to jailbreak iPhonesiiPor to unlock protected services in mobile
phones [4]. Even if not documented, it is reasomaisl think that JTAG could be used to
compromise the security of other applications sagmobile e-payments, or Wireless Sensor Nodes
(WSNSs) [5, 6].

Another security flaw due to JTAG is related to PG The configuration bitstream which
contains the Intellectual Property (IP) informatiafna reconfigurable design is mostly programmed
via the JTAG interface into FPGAs [7]. The firmwaupdate of set-top boxes used in pay-TV
subscriptions also happens in most cases throlgldTAG port. An insecure JTAG access would
allow on one side to re-program parts of the sysaerthe hacker's will, and on the other side it
could be used to sniff configuration bits thus allag retrieving the IP information.

Though there are several approaches for securendTAG interface, which can be found in the
literature [8, 9, 10, 11, 12], most of them aredohen symmetric-key approaches. They have an
inherent key management problem. This is what wenohto overcome through the use of Public-key
Cryptography (PKC) in our secure JTAG scheme. Megeothough there is previous work on a
protected JTAG scheme using ECC-based authenticptimtocol [26], the scheme uses PKC in a
non-standard way causing key-management problemsedyer, the paper also does not present any
timing or area results. Though several PKC prowoamdn be used for establishing a secure
authentication for JTAG, we use the ECC-based Schomotocol which is an efficient and provably
secure protocol [13].

In this paper, we seek to provide security feattodhe IEEE 1149.1 JTAG interface by including
a Schnorr-based secure test protocol, and preserdffient hardware implementation of the
protocol using elliptic curve cryptography. Moreoveur approach does not make any modifications
to the existing JTAG interface. To the best of kmowledge, this is the first paper that proposes a
mechanism for mutual authentication between tharsetevice and the tester based on a well known
and studied public key authentication protocolliawork is either based on symmetric key systems
or only proposes one way authentication, limitihg scenario’s in which these systems can be used
The area requirement to incorporate this secutertieastructure on the JTAG has been optimized to
increase the scope of our proposed scheme in arande of application scenarios.

The rest of the paper is structured as followsSétion 2, we present the past work that has been
done in the area of secure JTAG implementationogarison of these approaches with our scheme
is also made. The motivation for our work is givergsection 3. Section 4 presents the attacker model
for the JTAG mechanism, and the idea for the ScHmased authentication protocol that is the basis
of our secure JTAG strategy. This section alsouithes a discussion on the public key authenticity.
Section 5 presents the Secure JTAG implementalismm designs are presented using affine and
projective coordinates. The area and timing resuktsshown in Section 6 and we conclude the paper
in Section 7.

2. Previous Work

An ordinary JTAG standard [1] consists of a preirdat interface, containing a serial input called
TDI, a serial output called TDO, an input for theok TCK and a mode select input called TMS. By
controlling the TMS signal, the user can travelwsstn the 16 states of the JTAG finite state
machine, shown in Appendix F. Then, the requesekarcuting the instructions and the transference
of data between the circuit and the host is perfalrioy connecting the inputs TDI and the output
TDO to internal shift registers. Thus a maliciousthcan manipulate the JTAG inputs and execute
any instruction.

One of the first approaches for implementing a seclTAG appears in [8]. It presents a
locking/unlocking mechanism for controlling the ass to the JTAG instructions. It is based on
storing a secret key inside the chip boundariesgdio access to the JTAG features the user must
shift in the secret key, otherwise the JTAG bypsisdiethe data on the TDI input to the TDO output.
The scope of this approach does not consider the waere a fake circuit requests updates which
may compromise the intellectual property.

A detailed evaluation of the JTAG test standaisl,security problems, attackers’ capabilities,
possible attacks and countermeasures has beennd®@elt presents a JTAG security protocol using
a stream cipher (Trivium), hash function and a mgssuthentication code. The authors suppose that
the service server is trusted, performing one-wathentication. However, to protect the data from
unauthorized servers, the data is encrypted.

An anti-tamper JTAG Test Access Port (TAP) is desd in [10] that uses SHA-256 secure hash
and a true random number generator (TRNG) to ceeséder gate overhead challenge/response based
access system employing an on-chip an internal JPAG87 instrument. It is mentioned by the
authors that malicious designers could modify tb®ghs in order to observe the secret key, implying
a one-way authentication scenario.

A multi-level security access system for contrglimccess to individual scan cells for preventing
malicious opcodes from being loaded into the JTAGtIler is presented in [11]. This approach
also supposes the design is trusted, and thuspobgsible for fake circuits to obtain proprietary
updates.

An elaborate three-party secure JTAG protocol usergficates involving SHA-1 hash algorithm,
AES block cipher and several arithmetic operatsrpriesented in [12]. The authors describe the
possible attack cases, but the protocol is notgrde be secure.

There are also industrial solutions for prawigisecurity to the JTAG interface. The Secure
JTAG Controller (SJC) which features in FreescalemiBonductors i.MX31 and i.MX31L
Multimedia Applications Processors is one such gtamSimilarly there are tools available from
various vendors such as Discretix and LauterbacAQE32 PowerTools, which provides Secure
JTAG Debug module giving OEMs a highly secure, entitated way to debug SoC errors
throughout a system’s lifetime. A detailed overviefithe JTAG related fuses and security features in
the AVR microcontroller can be found in [14]. Somge-cases and application scenarios involving
JTAG security are presented in [15].

To the best of our knowledge, the work in [26] he tonly JTAG security solution that is also
based on asymmetric key cryptography. In contasiur work, this solution only provides one-way
authentication from the test server to the JTAGaEeWoreover, this solution does not improve key
management related to symmetric solutions, agyitires that the test server has secure access to a
database that contains all the unique private kelgsed to each device. Because of the non-standard
setup of the authentication protocol, every JTAGiakehas a unique private key that is stored in a
database. This key is retrieved by the test seérnverder to authenticate itself to the device. im o
solution, we employ a standard use of public/pevetys in which the prover uses its own private
key and a certificate signed by a CA to prove uthanticity and not a private key related to the
verifier as in [26].

Most of the previous approaches [8, 9, 10, 11 s2@pose a one-way authentication, where either
the circuit or the server is considered trustedthla paper, we propose a suitable solution incase
where neither the circuit nor the server is trusfettlitionally, most of the previous solutions st
provably secure as the Schnorr protocol used ® flaper. Moreover, due to the zero-knowledge
property of the Schnorr protocol the privacy of théhenticating device is ensured, as the device
under test can prove its identity to the test ganithout revealing its secret.

3. Motivation

JTAG is mainly used for manufacturing and ie-fleld test-and-diagnosis of VLSI circuits and
boards. It may be disabled in the chip-die afté@falization of a product. However, there are some
applications where JTAG is kept enabled for coddimmnware updates. Especially, in case of
reconfigurable devices like set-top boxes, wheenaemote reprogramming may be done through
JTAG port based on updates received from the sepriovider. For instance, the STi7101 low-cost
HDTV set-top box decoder and the TI MSP430 usesbime set-top boxes have the JTAG open for
product support and service.

In this work, we solve the inherent key-managemproblem of existing Symmetric-Key
Cryptography (SKC) based secure JTAG approachesg uBublic-Key Cryptography (PKC).
Specifically, if SKC is used for securing JTAG, thevill be a common master secret key for all
products or a large secret-key database needsn@intained at the tester/updater side, which are n
good options for mass electronic products. PKC ém@ntations are inherently more hardware
expensive and slower than SKC based approachesfdteeit is a challenging task to incorporate
PKC in a resource contrained environment like JTAG.

The use of asymmetric primitives and the relateblipiprivate key pairs substantially improve
the complexity involved in key management in thetting of tester against the device. If we take for
example the automobile industry, then we expebtittg our car to virtually any garage in the world
and get our car serviced. Servicing cars now aisludes updating software in one of the on-board
units (OBUs) which may be through the JTAG integfaCurrently these updates can be pushed to the
OBU as soon as it is powered on; no other secomégsures are used. One of most important reasons
for the current lack of authentication is the fdwt it presents car manufacturers with a large key
management problem that is inherent to the useyrofretric solutions in large scale systems. In
symmetric solutions, the verifier needs a copyhaf same key that was also used to generate the
authentication token (e.g., a message authenticatide or MAC on the firmware). This implies that
the use of a single master key is very risky aslitbe wide spread in many devices and likelyeal
at one point in time (see Section 4 for more detail who is the verifier in our approach). Therefor
symmetric key based solutions require unique keybet installed at every verifier. In large scale
systems, this would require a large databaseitilatie identity of the prover to its key and a mea
for verifiers to securely access and authentidaite dervice. Alternatively, key derivation schemes
could be used, but they only lower the risk relai®da single master key. There are many other
application scenarios where similar key-managepesiilems can occur.

To overcome this problem, the solution proposedhis paper offers the possibility of using
certificates instead of shared symmetric keys. Tvosild for example allow the use of the same
signed firmware update for a wide range of OBUshauit the risk of installing the same symmetric
key in this range of devices. They just need advabpy of the manufacturers’ public key for
signature verification.

4. Proposed Secure JTAG Scheme
4.1 Attacker Model

We have considered the following application scesafor our attacker model. The JTAG
interface of a VLSI circuit is normally used fosteg the device, as well as for updating the mdkr
code and firmware in some applications. We assumaethe external JTAG interface of the target
device is enabled and is accessible to the attabkg®], the attacker models are described based o
malicious IP cores inside an SoC. However, in gaper, we have considered the following two
attacker scenarios where internal IP cores arerassiio be trusted, and the attacker is an external
entity to the cryptographic SoC. We assume its gsjlibe to extract the stored private key (being
stored in a secure memory) on the device contathi@d TAG interface.

Manufacturing test/firmware or code update at manufcturer's end: We have considered the
manufacturing environment to be controlled and riienufacturer’s test server to be trusted. The
device may be a fake one (or a clone) trying tougetuthorized code or firmware updates through
the JTAG interface. The test server should alloly genuine devices to have access to the updates.
Hence, in this scenario, a one-way entity authatitin of the device to the Test Server is required.

The device needs to prove to the Test Server thatin possession of the correct private key,
without revealing it to the server. This is achiwbrough the use of the Schnorr protocol to be
employed in our secure test scheme. Here the pilieviire device with secure JTAG, while the
verifier is the Test Serverhis is represented symbolically by the block dsagbelow:

Test Device with

Server Secure
JTAG
Verifier (V) Prover (P)

A possible use-case for this scenario is systeegration, where the integrator procures VLSI
chips from different third-party vendors. He netulsnake sure that each chip is a genuine one, and
not a fake one or clone which can compromise thegiity of the complete system. This can be
achieved through the addition of a security featartne JTAG using an authentication mechanism.

In-the-field update, debug and testWhen devices are deployed in-the-field, the emrinent is
considered uncontrolled and both the Test Servdrth@ device with the JTAG may be potential
attackers. Hence, mutual entity authenticatioragiired between the device and the Test Server. The
Test Server might be a hacker or a malicious uggtto extract the internal secrets from the devi
through the test infrastructure. Similarly, the idevmay be malicious or even a fake one, trying to
procure unauthorized code or firmware updates titrahe JTAG interface.

Hence both the device and the Test Server need to ptwieitentity to each other without
revealing their secrets (their private keys). Fa inutual authentication using ECC based Schnorr
protocol, when the Secure JTAG is the prover, thst Berver is the verifier. Similarly when the Test
Server is the prover, the Secure JTAG is the erifi

This is represented graphically by the followingdi diagram:

Test Device with
Server Secure JTAG
Prover (P)

Verifier YV [

Prover (P) Verifier (V)

A 4

A possible application of this attacker model is fiimware update of set-top boxes used in pay-
TV subscriptions. The user of the set-top box migbt a possible attacker trying to get an
unauthorized update from the server using the JpAG to watch pay channels for free. Similarly,
an unauthorized update from a remote hacker usmgTAG port might compromise the secret keys
stored in the smart card of the set-top box.

The Schnorr protocol itself is proven secure iregy\strong attacker model [13]. This means that
no information about the private key is leakedhe verifier or any of the attackers that fit the
attacker model in [13]. This means that the systam only be attacked through extraction of the
private key through side-channel attacks (thoughdmsigns are protected against Simple Power
Analysis), leaks during installation/generationtioé keys, attacks on the CA facilities, etc. Irsthi
paper we present an efficient implementation ofShknorr protocol that makes its use cost effective
for low cost JTAG devices. Side channel attackthaimplementation or attacks related to software
bugs, etc. or not in scope of this paper. We cldiat our solution is secure in the two scenario’s
described above, as it is a straightforward ugheoSchnorr protocol that is proven secure.

4.2 Secure Test Authentication Based on Schnorréocol

We use an enhanced version of ECC-based SchndacBr$l3] as the public-key cryptographic
protocol in our secure JTAG test scheme. Variolsipltey implementations, such as RSA or ECC,
may be used to solve the key-management probleasemtr in previous secure JTAG approaches.
We chose ECC as it offers the same security as R®W®W, much smaller area footprint. Area
overhead is of critical importance, since we arast@ained in terms of silicon area required to
incorporate security features into JTAG, owing tee tsmall test interface available in most
applications. Similarly, various protocols using@&@ay been used. We chose the Schnorr protocol
as it is provably secure and allows efficient innpdmtation on space-constrained hardware.

An added positive side-effect of Schnorr is thdsitzero-knowledge” and thus no information
about the secret key of the prover leaks duringotopol run. The zero-knowledge property may be
useful in an uncontrolled in-the-field code updatiebug or test environment where the
communication channel between the test server aAdG Js untrusted and the secret need not be
shared or linked to a communicating entity. Moregp@ehnorr is a very established protocol, and is
used in Radio Frequency Identification (RFID) poatis [16, 17]. The related ECC-based Schnorr
authentication protocol [13] is described in apperd

4.3 Public Key Verification

When using public key cryptography for authentmatpurposes, it is essential to verify the
authenticity of the prover’'s public key. Traditidigathe link between a user’s public key and some
identifier of the user is captured in a digitaltifimate that is signed by a trusted third partyg(e
certificate authority or CA). By verifying this ddicate, a verifier is assured that the public kiegt
is provided by the prover is genuine. This meaasiths sufficient to have a copy of the CA’s gabl
key in order to verify all public keys that aretdfeed by the CA. It is clear that storing a sin@lé’s
public key is far more practical than storing dextion of symmetric keys that are shared with each
possible prover. Therefore, we argue that our padfcalthough more resource consuming, does
provide a more practical solution when compared wpitevious JTAG authentication mechanisms
that are based on symmetric cryptography only.

We propose two modes of operation, one is purdlynefand the other uses an online connection
to a trusted Authentication Server (AS).

In the offline mode, we assume that every proveréaaertified public key and this certificate is
signed by a trusted CA. Every verifier has a copthe CA'’s public key. Before the actual Schnorr
authentication protocol, the prover sends his fieate to the verifier. The verifier simply usesth
CA'’s public key to verify the certificate. In cagbe verifier has access to a “clock”, the verifian
also check an optional expiration date inside #difccate. In case the JTAG device is the verjfier
this clock will probably not be available and ngeation date can be verified. Note that in this
scenario, it is not possible to revoke certificatesit is not possible to use an online servebtain
revocation lists or use an Online Certificate St&uwtocol (OCSP) like protocol.

In case the verifier has the possibility to conttet online trusted AS, we propose to use a
simplified version of the OCSP protocol. The praicsteps are depicted in the next figure:

Authentication Server (AS)

BN

D
Prover Verifier
Pk

—_

Check Sig on Pksing public-key of AS

Sigas denotes signature of the prover’'s public key vifte private key of the Authentication
Server, IDP and PKP are the Identity and Publicédethe Prover respectively.

The prover starts with sending itssHhd its public key Rko the verifier. The verifier then
initiates a call to the AS by sending a fresh randiallenge C and the ID of the prover to the AS.
The AS will now lookup the public key of the proyeheck whether it is still valid, and if so send a
signature on the XOR of BKC and IR back to the verifier. The verifier will only acdeghe public
key received from the prover upon reception of &dvaignature by the CA on the generated
challenge PKL C [IDp. We are XORing the ID, challenge and the public Kestead of
appending) in order to make sure that we can signvalue without first using a cryptographic hash
function. In case the messages we wish to signrbesdonger than the field length of the ECC
module we use, we would first have to reduce #rigith by employing a cryptographic hash function
(and potentially cropping the result). As the inmpémntation of such a hash function would consume
too much area, we have designed our protocol tcatggithout a hash function.

The signature scheme can be implemented @imgic Curve Digital Signature Algorithm
(ECDSA). This consumes less area overhead than24-4i0 RSA signature scheme. An area-
efficient implementation is presented in [18]. laramplementation, we have modified the ECC
Schnorr controller to allow ECDSA. The hashing iweal in the ECDSA signature verification is
avoided as we use 192-bit signatures (the samehlergythe message that is signed, which is the
public-key of the prover). Through this public kegrtificate we protect the Schnorr protocol from
man-in-the-middle attack too. Devices which havecadte resources (online connection to the
authentication server) to support this authenticatirocess can opt for an online mode, while other
devices can have an offline mode of authentication.

In this paper, we provide two different implentations. One is over projective coordinates
and another is over affine coordinates. In the filessign we do not implement inversion module
whereas it is included in the second design. Duprégective coordinates the first design invokes
very few inversions which are performed iteratively a multiplier unit following Fermat’s little
theorem. However, in affine coordinates inversi@n performed at every iteration of point
multiplication algorithm. Thus, a dedicated inversunit based on extended Euclidian algorithm is
implemented which also helps efficient executioreGDSA on our secure JTAG scheme. Here we
provide implementation details for both designsalhprovide better design variations and the user
can opt for one of them in practice.

5. Secure JTAG Implementation
5.1 Integration of the ECC-processor with JTAG

An important contribution in our paper is the irmggon of the ECC based Schnorr controller
and ECC point multiplier with the JTAG interface®md with the other modules. This has been done
in a seamless manner so as not to affect the tiadgpegcts of the IEEE 1149.1 JTAG standard, and
also keeping the behavior of the TAP finite statehine (illustrated in Appendix F) unchanged.

Our proposed architecture is shown in FigiHe ordinary JTAG circuitry is enclosed within
dotted lines, and it is divided into its two maiongponents: the TAP finite state machine and the
instruction decoder. The Schnorr protocol (descrilie Appendix A), as well as the ECDSA
signature authentication are performed by the Schoantroller, placed in the center of Fig. 1. It
interacts with a modified JTAG instruction decodeGC module, and a 192-bit random number
generator (a Linear Feedback Shift Register). Taselpoint coordinates (curve parameters) are
fetched from an external non-volatile memory.

ECC

. S NVM
R oint multiplication
private key [} P &p K— (for curve parameter

Bt Storage
modular multiplication ge)

{

Schnorr 192-bit
controller PRNG

N MUX2

A

request_unlock
release_lock

> Sch hift ist
‘ chnorr shift registers }% —
Synchronization

shift_dr] Flip-Flop
pause_dr

update_dr
capture_dr

TDI >|| DUT Boundary scan }— MUX1
%I DUT specific registers
TDO

J

ms 1=~
— ——]
| TAP %’ Instruction register
TCK +X———> FSM |
TRST I

A

———————————————— instruction decoder

shift_ir/pause_ir/update_ir/capture_ir

L e e e e e e e ===

Fig. 1. JTAG-ECC controller Integration ArchitecliBlock Diagram

The system is supposed to be locked in dggnbing. In order to unlock it, the tester must
manipulate the JTAG inputs to enter the new ‘UNLOG@istruction. Then, the instruction decoder
informs the Schnorr controller to start the protpby means of the ‘request_unlock’ signal. As soon
as the authenticity of the test server is veriftb@, Schnorr controller activates the ‘release_akilo
signal, informing the instruction decoder that otimstructions can now be performed. For instance,
if the system is unlocked, the design under tes#fT(Dboundary scan register can be controlled.
Meanwhile, when ‘release_unlock’ signal is not\astithe instruction decoder sets the multiplexer
‘MUX1' to select always the output from the muleger ‘MUX2’, which is controlled by the
Schnorr controller, impeding the shift out of anyDspecific register.

During the protocol execution, the commutidsa with test server consists of using the
Schnorr shift registers (192 bits) to shift in and information required for the protocol. For mste,
the transmission of the intermediate value ‘t' (Beool in Appendix A) is performed by means of
shifting out the value ‘t’ once the ECC point mpliitation is finished. It is important to noticeath
the shifting is always controlled by the test servand that the timing for executing point
multiplications depends on the scalar multipliemeans that the Schnorr controller must inform the
test server that it has finished each operatiothefprotocol. This synchronization is achieved by
always adding one flip-flop at the end of the Schishift register that is set to '1’ if the infortian
in the shift register is valid, otherwise the nplidker ‘MUX2' selects the TDI input and the
synchronization flip-flop is set to ‘0’. Thus, thest server keeps on shifting at least this onéobit
detect that the Schnorr controller is ready foendng the next data. The step-wise detailed ECC-
based Schnorr protocol for Secure JTAG is desciritbéghpendix B.

5.2 Implementation of the ECC processor

The exponentiations involved in the Schnorr proteuay be implemented using RSA or ECC.
However, ECC involves much smaller bit lengths camed to RSA and is efficient in hardware.
Hence we implement the Schnorr protocol using I9E6C over prime fields which offers higher
security compared with 1024-bit RSA. Highly effisieECC and ECDSA implementations for
contrained environments can be found in [28][29wdver, in this work, we present two new
designs which are optimized both for area and tynsunted for integration with the standard JTAG.

We use the 192-bit NIST ECC curve P192 and worgrime fields (F). The curve parameters
used in our ECC implementation is as follows [19]:

p : The order of the prime field,F

a,b: The coefficients of the elliptic curug = x*+ax+b.
n: The (prime) order of the base point

h: The cofactor.

X, y: Thex andy coordinates oP.

P-192: p= #%-2%-1 a=-3,h=1

b = Ox 64210519 E59C80E7 OFA7E9AB 72243049 FEBSDEHA6BIB1
n = Ox FFFFFFFF FFFFFFFF FFFFFFFF 99DEF836 146B(®H122831
x = 0x 188DASOE B03090F6 7CBF20EB 43A18800 FAFFOAGADF1012
y = 0x 07192B95 FFC8DA78 631011ED 6B24CDD5 73F971K794811

The point operations over affine and projectooordinates are performed by standard formula
taken from the literature, and are provided in Apje C. In the projective coordinate we represent
a point as: (x=X/Z, y=Y/Z, c=1, d=1). In generatpjective coordinates are introduced to avoid the
relatively more costly inversion used in point-cgten over affine coordinates. However, relativity
among the costs of multiplication and inversiorFjnvaries on their implementations. For example,
when modular multiplication is computed in a bitigkefashion, it leads to lggp number of
iterations (clock cycles); whereas, when invergmmperformed by binary Euclidean algorithm, it
requires at most 2 lggp number of iterations (clock cycles). Followirgetabove design technique,
the point operations over affine coordinates oditper projective coordinates.

5.2.1 Design I: ECC over Projective Coordinates

In thisimplementation, we use the 1998 Cohen—Miyaji—Oneeghicoordinates for point addition
[20] and the 2007 Bernstein—Lange formulae [21]pgoint doubling from Explicit Formula database
for Short Weierstrass curves [22]. The equatiores raentioned in Appendix C. To reduce area
overhead, the adder and the Montgomery multiplserdun ECC have been optimized. The ordinary
adder/subtractor (required for the intermediaterajiens of the Montgomery Multiplier) has been
combined with the modular adder/subtractor (requice the addition/subtraction operations used to
implement ECC in projective coordinates) using hit2select signal. This helps reduce the area
overhead further. The modules employed in ourgieare described below.

Schnorr & ECDSA controller modules: Figure 2 shows the block diagram of the Design |
implementation.

mult_ inputs_|
PRNG module 4 arith_inputs‘
start ”| Montgomery ["op_type |
random number ¢ _done Multiplier [arith_result” |
inputpoint ECC | mult_result B
olier > < Modular
multiplier »| PointMultiplier Ordi /
Schnorr outputpoint Controller o reinary
Controller “mode & arith_inputs _
done " ECDSA mod_kind R Sfbdtf:crt/or
'y 2 Controller module g
generator key o
point select q
Non-Volatile modulus > arith_result i
Memory r2 > A

Fig. 2. Block diagram of the security architecture

The Schnorr protocol consists of two main operatidaCC point multiplication and modular
multiplication. In order to perform an ECC point Iblication, the Schnorr controller loads
correctly the inputs of the ECC & ECDSA controlland sets the “mode” signal to ‘0. Then it
disables the “reset” signal of the ECC & ECDSA colhér so it can initiate the execution. Then the
Montgomery multiplier and the modular/ordinary adslebtractor blocks are used to perform the
point multiplication. As it can be seen, the adsldfractor block is shared between the ECC
controller and the Montgomery multiplier. If the EQontroller is using it, it sets the “select” safjn
to ‘1’ and then it chooses the operation type Wirgethe “mod_kind” signal (‘0’ for addition and
‘1’ for subtraction). Each ECC scalar multiplicatitss performed using the Montgomery Powering
Ladder algorithm, which is also protected againmstpie Power Analysis (SPA).

On the other hand, to perform a modular multiplaatwe reuse the Montgomery multiplier. For
that purpose we use the order of the prime numbenadulus instead of the prime number itself.
The Schnorr controller sets the mode to ‘1’ andthses the ECC controller as an interface to the
Montgomery multiplier block. This interfacing wasplemented in order to reuse the ECC
controller finite-state-machine.

The ECDSA operation is performed partially by the@E& ECDSA controller and partially by
the Schnorr controller. It first executes all theC[BESA steps which require only integer
multiplications by setting the mode to ‘2’ and loagithe signature into the ECDSA block. Then the
Schnorr controller saves these intermediate vadumeisreuses the ECC controller block to run the
two final point multiplications. For executing tireversion present in the ECDSA protocol we used
the Itoh-Tsuijii algorithm [23] based on the Fermadiftle theorem that allows to execute inversions
using a modular multiplier. The Pseudo-Random Nunt@enerator (PRNG) in the diagram which
generates the random numbers required in the Schraincol is a 192-bit LFSR. We are reseeding
the LFSR after every authentication execution, withew seed to avoid starting it with the same
initial value on power up, in order to prevent ephttacks. Efficient LFSR reseeding techniques
[30, 31, 32] using seed storage methods or seedatlen from the modules of the design can be
used for the purpose. For security, the LFSR lemgtist be large enough to prevent brute-force
attacks (192-bit in our design) and irreducibleypomials used for the feedback taps to have all
possible sequences'{2— 1, in our case). Moreover, the reseeding mustidre quite often to
prevent prediction of generated sequences (ategabing of every authentication as in our case).
Alternatively, for enhanced security, True Randominiber Generators (TRNGs) based on
Fibonacci or Galois Ring Oscillators [27], whichvkasimilar area overhead as LFSRs and
substantially high randomness properties, canlzsemployed.

Montgomery multiplier. Montgomery’s algorithm is the most common method #o fast
implementation of modular multiplications.

Algorithm 1 in Appendix D presents an efficient ilmmentation of this algorithm. As one can
notice, the final comparisas optimized exploiting carry-save-adders (CSA)AS&re used for the
intermediate computations and then a full additioperformed to convert the final carry-save result
into a conventional form, such as presented inAlgerithm 2, Appendix D, and Figure 3.b. The
CSA adders have indeed a small area and avoid paspagation, i.e. are computed in constant time
independently of the operands’ length.

However, as a modular adder/subtractor is edddr ECC, we have decided to use the initial
algorithm. We have indeed modified the adder/sghtrablock in order to have an ordinary
addition/subtraction also, in order to use this ckloin our Montgomery multiplication
implementation. Optimizing the area is indeed owaimmobjective, so using existing resources is
better than implementing CSA adders. As a consegjesur implementation takes more or less
twice as many cycles, but it is the one that om@nrimost of the area. In the end, we have managed
to optimize the area by more than 16%, in comparisih the RTL description of the original
design with an unoptimized implementation of thdexdsubtractor. This optimized arithmetic block
is presented in Apendix E.

P Xi Y
S @ C
R —1 k+1
k+1 ‘_.—
k+1 CSA k+1
0]
k+2 k+2
CSA
k+2
k+1 § ¥ k+1
L k+1 +
v K+1
L = -
~1_ 0/ i o
Tk
R R

(@) (b)

Fig. 3. Montgomery multiplier. a: Classical areluitiure b: CSA architecture

5.2.2 Design Il: ECC over Affine Coordinates

The execution of the Schnorr protocol and ECDSAsiia of several finite field operations
(including inversion) and operations on ellipticnaes. In Weierstrass elliptic curve, a point is
primarily defined over Affine (X, y) coordinates igh is further redefined over several Projective
coordinates with the help of a third variable (X,2] in order to avoid inversion in point operagon

performed by chord-and-tangent method. Explicitrfolae are provided in Appendix C. A single
inversion is eliminated by several (4-12) multiplions in Projective coordinates — still reseasch i
going on for finding coordinate systems to lowewdanultiplications in a point operation.

However, the implementation technique also playsgortant role for improving efficiency of
elliptic curve operations under a resource constcenvironment like JTAG. It is already described
in Section 5.2 that delay of a binary inversiongln method is just twice of a bit-serial
multiplication where both of them are assumed toirhplemented by simple adder circuits —
demands area in same decimal order (3 times). @nother hand, efficient implementation of
modular (Montgomery) multiplication could be actedvthrough digit-serial (parallel) architecture
which demands much more area (order of digit lengthich may not be affordable in the
application of secure JTAG implementation. Thusigtesl attempts to implement a compact and
flexible architecture for executing Schnorr prottoand ECDSA over Affine coordinates. Besides,
this design computes all modular operations diyeati 2's complement binary domain that avoids
cost of domain conversions compared to the firsigie

Flexible Datapath. In order to reduce the complexity of the controltagic, design Il consists of a
flexible datapath having all arithmetic blocks. Tdere two top level controllers in the current
secure JTAG implementation — namely ECDSA-contraled Schnorr-controller. These controllers
generate instructions likéointAdd, PointMult, FieldAdd, FieldMult, Fieldinv, FieldSub. In the next
lower level, there is an ECMULT-controller whichimparily generates two instructiondPeintAdd
andPointDbl. All instructions generated by top level contrdlare first checked by the ECMULT-
controller which further passes through the newtelolevel. ExcepPointMult, all other instructions
are directly executed by the datapath shown in EBigThe instructionPointMult consists of
PointAdd and PointDbl instructions which are generated in proper sequédncthe ECMULT-
controller. All controller logics in design Il arealized as finite state-machines in which thelfina
state sends done signal to its predecessor. With the help of figmporary registers the datapath
shown in Fig. 4 computes a point operation (poouhding or point addition) as a single instruction

— in which case the output of an execution is stared supplied back to the memory througlanxd

ys ports. On the other hand the outputs for all ofiméte field operations are directly generatecdhro
individual arithmetic units. In order to exectReintAdd instruction the datapath takes the input data
from 'x/’, 'y{, ‘X2, 'y2, ‘p’, and ‘a’ ports, whereas for executing indiual finite field operation the
ports are configured by the upper level contrdibeic.

Prime field Multiplication. In this design we use Blakley multiplication whighbased on the
iterative execution of doubling and addition. Alternal operations are performed in respective
prime field, that is intermediate results are alsvaty their reduced form. Hence, the costly final
reductions are eliminated. The multiplier unit @néed in the datapath block (Fig. 4) computes a
multiplication ab mod p in log p humber of clock cycles, assuming that both a laradso have
lengths of logp.

Prime field Inversion and Division. The prime field inversion and division could beiaéntly
computed by binary inversion division algorithm,iefhis based on binary Euclidian algorithm. The
current design follows the implementation of suchirat that is described in [24]. The current
module can compute one inversion (used on ECDSAyelk as one division (used to execute
PointAdd andPointDbl) in 2 log p humber of clock cycles.

PointAdd X1 V
FieldMult Y1 Prime field
W Csocnrj[rno(?lrerr FieldAdd dd Memory 7 Iu adder
- done :naﬁ: Module 362 .
>
i a ; Prime field
_‘E: Fpigll(;]MtAuo:? Data- |M-start Ip smIJbtral:tor
o
a| | EcDsa | Fieldinv 82:' |-start Registers | o
Controller |FieldAdd | - |selects Yy e Blakley
Jone M-dond t, <:|:> X Multiplier
. . t e
. PointAdd, I-done x33 ; Inversion
S ECMULT | pPointDbl Vs s Module
o] Controller done L
DATAPATH

Fig. 4. Datapath of the design Il

Design Il executes BointAdd instruction in 5 logp + 6 clock cycles andointDbl in 4 log p + 8
clock cycles. The clock cycles required to exeeuBaintMult instruction is: logk * (4 log p + 8)
+ (#k-1) * (5 log p + 6), where k represents the scalar multipliekklP and #k indicates the
Hamming weight of k.

6. Results

We present here the area and timing results ofnoplementation. Both ASIC and FPGA results
of the overall secure JTAG design with the sub-nheglare mentioned. Though our design is larger
than earlier methods, owing to the use of publig-kgyptography (as opposed to symmetric-key
usage in the other approaches), this helps solekdély-management problem inherent in other
approaches to a great extent.

6.1 Area Overhead

The ASIC area requirements in terms of gate eqgeivtal (GES) (synthesized with Synopsys
Design Compiler v2009.06 for a Faraday 130 nm hrdor the modules used in our ECC

implementation are given in the table below. Th&BPRSynthesis results on Xilinx ISE 12.4 (with

Virtex 6 xc6vIx75t family) for the modules are algesented.

Table 1: Hardware cost of secure JTAG

Module Design | Design Il Design | | Design Il
ASIC ASIC FPGA FPGA
(GEs) (GEs) (Slices) (Slices)
Arithmetic unit (modular adder 1374 5128 164 311
and subtractor)
Modular multiplier * 5152 7314 615 756
Inversion module -- 24313 -- 1482
Controller and data multiplexers 40190 102985 218P 315
Total 46716 47050 2968 3080

*Montgomery multiplier for Design |, while Blakley witiplier for Design I

Hence, as shown in the table, we requirelésign | a total of 46716 GEs and 47050 GEs for
Design 1l to implement the secure JTAG Scheme whh Schnorr and ECDSA controllers. We
choose the solution described in [12] for havingeatimative of area overhead of our approach. The
cost of that solution is 25k gates. It means thatsmlution is around twice larger than the solutio
in [12]. Our solution is based on public-key crygraphy, which inherently demands more hardware
resources than symmetric-key based approaches, this@rea calculations in [12] do not consider
the overhead of the Hash function implementatiormiist be also noted that all authentication
schemes including the one proposed in this papguine Non-volatile memory is for storing
cryptographic keys.

The area requirement in our designs can be redfwséter by making use of a tiny custom
microcontroller with an Instruction Set Extensid8K), as in [28]. Here only the top-level ECDSA
commands are managed with a processor. Moreoydacieg the Montgomery Multiplier (suitable
for general prime-field operations) with more gt multipliers employing Mersenne-like NIST
prime reduction suitable for prime fields over(#ith the prime number p being a Pseudo Mersenne
number as used in NIST curves) can also help rethigcexecution time for an Elliptic Curve scalar
multiplication.

There are of course much more compact implementatwailable in the literature, for instance,
the 192-bit ECDSA implementation in [28] employitigg same NIST recommended curve as in our
case requires only 19.1 KGEs (thus consuming 23es% than the approach in [12]) and 859,188
cycles in total for the combined operations of E@GD$ash and Random number generation
required for the protocol execution. Similarly tinest area efficient 163-bit ECC implementation in
[29] consumes only 12.5 KGEs (thus taking aroun®8% less area than [12]) and 275,816 cycles
for one Elliptic Curve scalar multiplication. Inishpaper, though we did not achieve such high
compactness, we have shown the feasibility of natiign of the JTAG with the ECC and ECDSA
modules by presenting combined area and timindteestich have limited overheads.

6.2 Timing overhead

The impact of the proposed solution in the usehefITAG standard consists of an initial delay
for executing the Schnorr protocol/ECDSA. Once dlighentication and the signature verification
steps are finished, the JTAG is unlocked and theGJnstructions can be used without any timing
overhead.

The initial delay is due to three main operatidi)sthe time to request the unlock (associated with
the time to insert the instruction ‘UNLOCK’) andetiime to release the lock; 2) the time to shift in

the protocol inputs and shift out the protocol atgpusing the JTAG controller; and 3) the time to
perform the protocol operations, including ECC panultiplications, ordinary multiplications and
additional operations to communicate between trdicdeed Schnorr protocol modules. The first
two operation types are measured in test clockesyttlat depend on the JTAG frequency, while the
last operation type is measured in functional clogkles, the functional clock being usually faster
than the test clock. The timing overhead is prexkmh Table 2, where we have distinct four
scenarios. The first scenario is a one-way autbatitn in which the DUT acts as prover and the
host acts as verifier. The second scenario is an@yeauthentication, but the roles of prover and
verifier are reversed. The third case is the twg-aathentication and finally the last one is the
timing overhead associated with the execution e EEDSA signature verification.

Table 2. Detailed timing estimates

Scenario Operation # Clock cycles Clock class
Design | Design I
1. One way Unlocking 13 13 Test clock
Authentication Time to shift data in and out 768 768 Test clock
(DUT is the prover) | Protocol (3 k.P operations) 3068150 507488| Functional clock
2. One way Unlocking 13 13 Test clock
Authentication Time to shift data in and oult 768 768 Test clock
(DUT is the verifier) | Protocol (3 k.P operations) 3068542 506882| Functional clock]
3. Two-way Unlocking 13 13 Test clock
Authentication Time to shift data in and oult 960 960 Test clock
Protocol (6 k.P operations) 6136692 1014370| Functional clock
4. ECDSA Unlocking 13 13 Test clock
Time to shift data in and oult 5716 576 Test clock
Protocol (3 k.P operations) 30693[L7 508288| Functional clock

* k.P indicates Elliptic Curve Scalar Multiplicatipwhich requires O(lafy) field multiplications.

For having an estimation of time in millisecond® suppose a 100MHz clock frequency for the
JTAG Test clock, and 115MHz as functional cloclgtrency for Design | and 123MHz for Design
Il, as shown in Table 3. Considering the mutuahantication scenario with ECDSA signature
verification, the Design | has an initial delay 8.04ms while Design Il has an initial delay of
12.4ms.

Table 3. Time delay for authentication

Functional Delay for authentication (ms)*
Clock (MHz) | Scenario 1| ScenarioR Scenario 3 Scenarjo 4
Design | 115 26.67 26.68 53.36 26.68
Design I 123 4.2 4.1 8.3 4.1

*Delays are based on 100 MHz clock frequency fok@TTest clock and respective Functional clock.

7. Conclusion

In this paper, we have presented the implementatiom secure test scheme using the Schnorr
protocol, suitable for JTAG-based embedded devedmpntest and debug. The key management
problem inherent in previous approaches is overcihmmigh the use of public-key cryptography in
our test scheme. Moreover, we used ECC to redecartra overhead. To the best of our knowledge,
this is the first complete work for securing théA@d interface using public-key cryptography.

Acknowledgment

This work was supported in part by the Researchn€ibuKU Leuven: GOA TENSE
(GOA/11/007), by the IAP Programme P6/26 BCRYPTtlnd Belgian State (Belgian Science
Policy) and by the European Commission throughl@ie programme under contract ICT-2007-
216676 ECRYPT Il. Amitabh Das received the Erasiusmdus External Cooperation Window
(ECEMW) Lot 15 fellowship for India, till April 202, when part of the work was performed.

References

1. IEEE Standard. 1149.1-1990 - IEEE Standard TesteggcPort and Boundary-Scan
Architecture, 1990.

2. IEEE P1687 and In-Circuit Test (ICT). Asset Inteitarticle, June 2011.
3. Maestra Comprehensive Test for Satellite TestingwiBw.maestra.ca.

4, Greenemeier, L.: iPhone Hacks Annoy AT&T but Arelikisly to Bruise Apple. Scientific
American, August 30, 2007.

5. Becher, A., Benenson, Z., and Dornseif, M.: Tampuemvith Motes: Real-World Physical
Attacks on Wireless Sensor Networks. SPC 2006, LRE3!, pp. 104-118, 2006.

6. Hartung, C., Balasalle, J., and Han, R.: Node Comfge in Sensor Networks: The Need
for Secure Systems. Technical Report CU-CS-99@®m@pt of Computer Science, Univ of Colorado
at Boulder, 2005.

7. Spartan-3 Generation Configuration User Guide faieBded Spartan-3A, Spartan-3E, and
Spartan-3 FPGA Families. UG332 (v1.6) October 2892 pp. 80.

8. Novak, F., and Biasizzo, A.: Security Extension #8EE Std. 1149.1. Journal of Electronic
Testing: Theory and Applications 22, pp. 301-3TH&

9. Rosenfeld, K., and Karri, R.: Attacks and DefentmsJTAG. IEEE Design and Test of
Computers, 2010.

10. Clark, C.J.: Anti-tamper JTAG TAP design enablesMD® JTAG registers and P1687 on-
chip instruments. IEEE Symposium on Hardware-Oedr&ecurity and Trust (HOST) 2010.

11. Pierce, L., and Tragoudas, S.: Multi-level secr&@ architecture. IOLTS(2011), pp. 208-
209.

12. Park, K., Yoo, S.G., Kim, T., and Kim, J.: JTAG 8dty System Based on Credentials.
Journal of Electronic Testing: Theory and Applioas, September 2010.

13. Schnorr, C.P.: Efficient identification and signats for smart cards. In G Brassard, ed.
Advances in Cryptology — Crypto '89, pp. 239-25R1S 435, 1990.

14. Guide to Understanding JTAG Fuses and Securitytnfermediate Look at the AVR JTAG
Interface. AVRFreaks.net, Sept 2002.

15. Rippel, E.: Security Challenges in Embedded Desifiscretix Technologies Ltd., Design
& Reuse article. http://www.design-reuse.com/ag8(20671/security-embedded-design.html.

16. Batina, L., Guajardo, J., Kerins, T., Mentens, Nyls, P., Verbauwhede, I.: An Elliptic
Curve Processor Suitable For RFID-Tags. IACR Criggp ePrint Archive, 2006.

17. Batina, L., Guajardo, J., Kerins, T., Mentens, Nyls, P., and Verbauwhede, I.: Public-
Key Cryptography for RFID-Tags. Workshop on RFICc&aty, pp. 61-76, 2006.

18. Kern, T., and Feldhofer, M.: Low-Resource ECDSA lempentation for Passive RFID Tags,
ICECS 2010.

19. Hankerson, D., Menezes, A., and Vanstone, S.: Guaidelliptic Curve Cryptography, pp.
262, Sample parameters.

20. Cohen, H., Miyaji, A., and Ono, T.: Efficient gitic curve exponentiation using mixed
coordinates. ASIACRYPT '98. LNCS 1514, pp. 51-688.

21. Bernstein, D.J., and Lange. T.: Faster addition atalbling on elliptic curves.
ASIACRYPT 2007. LNCS 4833, pp. 29-50, Springer, 200

22. Explicit Formula Database. http://www.hyperelliptig/EFD/g1p/auto-shortw.html.

23. Itoh, T., and Tsujii, S.: A Fast Algorithm for Conrjing Multiplicative Inverses in GF(2
Using Normal Bases. Information and Computation,pf8 171-177, 1988.

24. Ghosh, S., Mukhopadhyay, D., and Roychowdhury, Retrel: power and timing attack
resistant elliptic curve scalar multiplier basedpsogrammable arithmetic unit. IEEE Transactions
on Circuits and Systems I, Vol 58, No. 11, pp. 178812, 2011.

25. Alam, M., Ray, R., Mukhopadhayay, D., Ghosh, Syé¢howdhury, D., Sengupta, I.: An
Area Optimized Reconfigurable Encryptor for AESfRi@el, DATE 2007, pp. 1116 - 1121.

26. Buskey, R.F., and Frosik, B.B.: Protected JTAG,cRedlings of the 2006 International
Conference on Parallel Processing Workshops (ICBEM0-7695-2637-3/06.

27. Jovan Dj. Golic, “New Methods for Digital Generatiand Postprocessing of Random
Data”, IEEE Transactions on Comput¥, 55, No. 10, October 2006.

28. Michael Hutter, Martin Feldhofer, Thomas Pl#sy ECDSA Processor for RFID
Authentication”, RFIDSec LNCS 2010plume 6370, 2010, pp 189-202.

29. Yong Ki Lee, Kazuo Sakiyama, Lejla Batina, Idgverbauwhede, “Elliptic-Curve-Based
Security Processor for RFID”, IEEE TransactionsGomputers, November 2008 (vol. 57 no. 11),
pp. 1514-1527

30. Stelios Neophytou, Maria K. Michael, Spyrosdgadas, “Efficient Deterministic Test
Generation for BIST Schemes with LFSR Reseedingfh 1IEEE International On-Line Testing
Symposium, 2006 (IOLTS’06).

31. Zhanglei Wang, Krishnendu Chakrabarty, and §eoon Wang, “Integrated LFSR
Reseeding, Test Access Optimization, and Test Stingdor Core-Based System-on-Chip”, IEEE
Transactions on Computer-Aided Design of Integr&eduits and Systems, Vol. 28, No. 8, August
20009.

32. Mahmut Yilmaz and Krishnendu Chakrabarty, “S8etéction in LFSR-Reseeding-Based
Test Compression for the Detection of Small-Del&fdats”, DATE 2009.

Appendix A

ECC-based Schnorr Protocol

In the manufacturer environment scenario, A is theprover (Secure JTAG) and B is the
verifier (Test server):

P, is the public key of A and,ks the private key of A, which are related by:

P.=ksP

where P is the initial point on the Elliptic curflzsase point), which is public.P represents a point
multiplication of scalar kwith base-point P.

Goal: B wants to be ensured the identity of A, in otlwerds A knows k

Protocol:
1) A generates a random numbgand sends an intermediate valug (point multiplication of
and P)to B
A->B: T,=n.P
2) B generates a random numbgand sends it to A,
A<EB n
3) A sends ‘s’ to B;
A->B: s=p+k.n
Here k.n, represents an integer multiplication, while ‘+dioates an ordinary addition.

B can verify that A is A by calculating the poinuhiplication of scalar s with base-point P and
cross-checking it with the modular addition of ‘With the point multiplication of pand R:

s.P=J+n.P,
(B+ kanp)P = (n.P) + (k.P).ny
aP + k.n,.P = n.P + k.n,.P

Thus B verifies the identity of A by only knowingsApublic key B

For in-the-field updates, debug and test:
A is the prover (Secure JTAG), when B is the veri{iTest server).
B is the prover (Test server), when A is the veri{iSecure JTAG).

P, is the public key of A and,ks the private key of A, which are related by:
P, = k..P, where P is the initial point on the Ellipticee (base point), which is public.

P, is the public key of B and, ks the private key of B, which are related by:
P, = ko.P, where P is the initial point on the Ellipticree (base point), which is public.

Goal: B wants to be sure that A is actually A, in otherds, that A knows Kk Similarly, A wants to
be sure that B is actually B, in other words, B&nows k.

Protocol:
1) A generates a random numbgrand sends it along with an intermediate valygtd'B, which is
calculated as:
A>B: T,=n.P

2) B generates two random numbgand ny, and sendsgalong with an intermediate value, To
A, which is calculated as:

ACB: T,=n'.P, n
3) A generates another random numbgand sends it along with sends ‘s’ to B, B sergsto A:

A> B: s=np+k.ny, ny

AEB: s=n'+k,.n/

B can verify that A is A by calculating:
s.P=7T+n.P,
(B + ka).P = (n.P) + n.(ka.P)
AP + k.n,.P = n.P + n.k,.P

Similarly, A can verify that B is B by calculating:
P =T, + P
(W + Ko.Ng).P = (ny'.P) + ny'.(K.P)
g.P+ k.n,.P=n'".P +n .k,.P

Thus B verifies the identity of A by only knowingsfpublic key B and A verifies the identity of B
by only knowing B's public keyP

Moreover, p.n,'.P can be used as a session key K to encrypuiité communication between the
security chip and test server. The reason behigdghhat A knows P and g, while B knows n
and n'.P from which they can construct K, but any unawited party cannot do so. This may be
particularly useful for instance in the case of fa) updates happening on the set-top box from a
remote server using a network communication, wlaereavesdropper can listen to the channel in
between.

Appendix B

ECC based Schnorr for secure JTAG
The execution of the Schnorr protocol is now exmdi in some detail using the block diagram
below:

1) First, the JTAG public key Pa is calculated. Fas,tthe ECC controller module sends the
private JTAG key Ka (from on-chip storage) and blse point coordinates and other curve
parameters (prime number, R*R mod n) from the nolatile memory to the ECC point
multiplier module. It then instructs the point niplier module to start an ECC point
multiplication operation.

2) The ECC point multiplier then performs a point riplitation of the scalar Ka with the base
point P and returns the result (Pa) back to the E@@roller module. This result is stored in
a 192-bit temporary register inside the contrattedule.

3) A 192-bit random number Na is generated by the lop-candom-number generator and
sent to the ECC controller module.

4) The ECC controller module then sends this Na aedbidise point coordinates and other
curve parameters from the non-volatile memory ®@HECC point multiplier module. It then
instructs the point multiplier module to start a@@E point multiplication operation.

5) The ECC point multiplier then performs a point rplitation of the scalar Na with the base
point P and returns the result (‘") back to the@Eentroller module. This result is stored in
another temporary register inside the controlledute.

6) The test server then generates a 192-bit randonbe&wuidb and sends this to the JTAG
module bit-by-bit through the TDI input. This iseth stored in the 192-bit shift (data)
register of the JTAG.

7) Nb and the private key of the JTAG (ka) is trangérto the ECC.

8) For the integer multiplication of Ka with Nb, theCE controller instructs the arithmetic
module inside the point multiplier module to perfoa modular multiplication of Ka with
Nb using the ‘order of the prime’ (fetched from then-volatile memory storage of curve
parameters) as the modulus (this is equivalemtener multiplication of Ka with Nb). The
result is stored back in a 192-bit register insfde ECC controller module.

9) A modular addition of Na with Ka.Nb is then perfathin the arithmetic block inside the
point multiplier module. For this, the appropriatentrol is provided from the ECC
controller which also stores the result of the cotapon (‘'s’) in the same 192-bit register.

10) The ECC controller module then sends ‘s’ and theeljaoint coordinates and other curve
parameters from the non-volatile memory to the E@ht multiplier module. It then
instructs the point multiplier module to start a@@E point multiplication operation.

11) The ECC point multiplier then performs a point riplitation of the scalar ‘s’ with the base
point P and returns the result back to the ECCrotbet module. This result is stored in the
same register inside the controller module.

12) Next, the ECC controller module then sends Nb thedpublic key of the JTAG (Pa) and
other curve parameters from the non-volatile menmohe ECC point multiplier module. It
then instructs the point multiplier module to semtECC point multiplication operation.

13) The ECC point multiplier then performs a point riplitation of the scalar Nb with Pa and
returns the result back to the ECC controller meddihis result is stored in another
temporary register inside the controller module.

14) A modular addition of the stored ‘t" with Nb.Pattsen performed in the arithmetic block
inside the point multiplier module. For this, thepeopriate control is provided from the
ECC controller which also stores the result ofdbmputation in the same 192-bit register.

15) The result of the above computation (t + Nb.Pahen compared with s.P computed and
stored earlier inside the comparator module inBERC controller module. If they match,
then only the JTAG is allowed to enter the test @gioug modes, otherwise it remains in the
bypass mode.

Appendix C
Point Addition and Point Doubling in Affine Coordin ates:

When P = (xyp) and Q = (%,Yo) are not negative of each other, then P + Q = Bravh

S= (- Yo) / (% - %)
X =§ - X - Xq and ¥t = Yo + 506 - Xe)

Note that s is the slope of the line through P@nd
Similarly, When g is not 0, then 2P = R where

s=(3% +a)/(2p)
Xg = § - 2% and & = -Yp + SO% - Xg)

Recall that a is one of the parameters chosenthalelliptic curve and that s is the tangent on the
point P.

Formulae for ECC Point Addition and Doubling in Projective Coordinates:

Table C1: Explicit Formulae:

Point Addition Point doubling

Cost
12 Field Multiplications + 2 Squarings + 6| 7 Multiplications + 3 Squarings + 5
additions + 1 shift. additions + 4 shifts + 1 cubing.
Source

1998 Cohen—Miyaji—Ono [24] 2007 Bernstein—Lange [23]

"Efficient elliptic curve exponentiation

using mixed coordinates”

Formulae
Y172 = Y1*Z2 w = 3*(X1 - Z1)*(X1 + Z1)
X172 = X1*Z2 s =2*Y1*Z1
7172 =71*72 SS = §*s
u=Y2*Z1-Y1Z2 SSS = S*SS
uu = u*u R=Y1l*s
v = X2*Z1 - X172 RR = R*R
W = VY B = 2*X1*R
VVV = V¥vy h = w*w - 2*B
R = w*X1Z2 X3 =h*s
A = uu*Z1Z2 — vvv - 2*R Y3 =w*B - h) - 2*RR
X3 = Vv*A Z3 =sss
Y3 =u*R - A)-vwwY1lZ2
Z3 =vw*Z172

Here * indicates modular multiplication which iaur case has been implemented using the
Montgomery Multiplier. The addition and subtractioperations denoted here are all modular in
nature. Using these set of formulae have the amditiadvantage that the computations are not
dependent on the value of parameters ‘a’ and ‘b’.

Appendix D
Algorithm 1: Algorithm 2:
Modified Montgomery modular multiplication Montgomery modular multiplication
Input: A, B,M Input: A, B, M
Output: R=XY 2™ mod M Output: R=XY 2™2 mod M
a:i"bitof A, :LSBof S a: i" bit of A
1. S=0,C=0; ro: LSB of R
2. fori=0ton+1 1. R=0;
S5,C=S+C+,&B; 2. fori=0ton-1
S5C=S+C+&xM; R=R+ ax B;
S =Sdiv 2; R=R+pxM;
C=Cdiv2; R =R div 2;
3. R=S+C 3. ifR=Mthen R=R-M
4. if R =2 M then R=R-M 4. return R
5. return R
Appendix E

Modular adder / subtractor. A “naive” implementation of a modular addition A+Bod P is
presented in Fig. Al.a; it consists in computingBAsand then subtracting P to this result. A
comparison between these two intermediate reslittwsachoosing which one to use for the final
result. However, this comparator could be avoidgdbserving the carry (borrow) out signal of
addition (subtraction) which could be realized bsirgle OR gate (instead of a 192-bit comparator)
such as presented in Fig. Al.b. Concerning theactiin, the principle is the same: computing A-B
and then A-B+P, and comparing these intermediageltseto choose which one to use for the final
result. A naive and an optimized version of theradhion are presented in Fig. Al.c and Al.d.

A B op_type

N

S S
(©) (d) (e)
Fig. A1. Modular addition and subtraction implensitns

The two optimized versions (Fig. Al.b and Al.d) éndoeen combined to produce an optimized
modular adder/subtractor block such as depictddgnAl.e. In this architecture an input (op_type)
is used to generate whether an addition or a sutlira(put to 1 for an addition and O for a
subtraction). This architecture uses two addenfagtur blocks (i.e. an addition combined with the
inversion (or not) of the second operand using Xfakes and the input carry to ‘1’ (or ‘0’)) and the
optimized comparison implementation depicted earli&ncerning the architecture used for the
additions/subtractions, we have used the libraoyvided by the synthesizer which includes highly
optimized RTL for arithmetic building blocks.

In the end, an efficient adder architecture comdbiméth an optimized comparison implantation
have led us optimize the area of more than 90%cdwparison with the area obtained from a
VHDL file directly generated by our Gezel implematidn.

Appendix F

16-cycle JTAG TAP Controller State Diagram

Test-Logic-
Reset

Run-Test/

dle _~ A
A

Fig. A2. TAP controller state diagram

