
HAL Id: lirmm-00838389
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00838389

Submitted on 25 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A New Recovery Scheme Against Short-to-Long
Duration Transient Faults in Combinational Logic

Rodrigo Possamai Bastos, Giorgio Di Natale, Marie-Lise Flottes, Feng Lu,
Bruno Rouzeyre

To cite this version:
Rodrigo Possamai Bastos, Giorgio Di Natale, Marie-Lise Flottes, Feng Lu, Bruno Rouzeyre. A New
Recovery Scheme Against Short-to-Long Duration Transient Faults in Combinational Logic. Journal
of Electronic Testing: : Theory and Applications, 2013, 29, pp.331-340. �10.1007/s10836-013-5359-y�.
�lirmm-00838389�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00838389
https://hal.archives-ouvertes.fr

A New Recovery Scheme against Short-to-Long
Duration Transient Faults in Combinational Logic

Rodrigo Possamai Bastos, Giorgio Di Natale, Marie-Lise Flottes, Feng Lu, and Bruno Rouzeyre
LIRMM (Université Montpellier II / CNRS UMR 5506)

Montpellier, France
{bastos, dinatale, flottes, lu, rouzeyre}@lirmm.fr

Abstract – This paper presents a new recovery scheme for dealing
with short-to-long duration transient faults in combinational
logic. The new scheme takes earlier into account results of
concurrent error detection (CED) mechanisms, and then it is able
to perform shorter recovery latencies than existing similar
strategy. The proposed scheme also requires less memory
resources to save input contexts of combinational logic blocks. In
addition, this work also proposes a taxonomy of CED techniques.
It allows pointing out which are the necessary recovery resources
as well as identifying which are the types of CED mechanisms
that can be used with the new recovery scheme of this paper. The
effectiveness of the proposed scheme was evaluated through
electrical-level simulations. For all short-to-long duration
transient-fault injections, it was never slower than state-of-art
similar strategy, and indeed its recovery latency was faster for
34% of the simulated faulty scenarios.

Keywords – transient faults; soft errors; concurrent error
detection; and recovery schemes

I. INTRODUCTION

Higher resilience is expected from an increasing number of
integrated systems while, in the same time, ultra-deep
submicron technologies make these systems prone to
misbehaviors induced by the natural aging processes or the
environment (radiations from cosmic origin or every day
material). In addition to these natural phenomena, malicious
fault-based attacks can be used for leading secure systems to
misbehavior, bypassing security mechanisms or providing
information on confidential data [1][2]. For both these
environmental or malicious phenomena many applications
require fast recovery.

Until the early 2000’s, researches on transient faults and soft
errors focused essentially on memory elements, which were
considered the system’s most vulnerable circuits. Many
concurrent error detection and/or correction mechanisms were
proposed to mitigate soft errors induced by transient faults in
memory cells. In the last decade, however, more sensitive
deep-submicron technologies as well as the increasing demand
in terms of digital security have also pushed for the
development of countermeasures against transient faults in
combinational parts of the circuits. These faults indeed can
propagate up to storage elements and thus cause soft errors as
well. On the other hand, if the transient fault does not induce
any error due to an electrical, logical or latching-window
masking effect, its detection is crucial all the same in secure
applications since the fault itself reveals an attempt of attack.

In addition, some transient fault phenomena considered as
short in the past (much less than one clock cycle) can be now
considered as long duration transient faults (reaching the clock
period) due to the possibility of higher operating frequencies
in recent ultra-deep-submicron technology-based circuits
[3][4]. In fact, the effects of long-duration transient faults have
clearly a much higher probability of not being masked, and so
they also stand a greater chance of producing system failures.
In addition, we may expect that maliciously induced transients
could be better monitored whether they last several clock
cycles. This emerging issue on long-duration transients
introduces therefore supplementary difficulties to design
optimized protections for the circuits.

The current trend in solutions to cope with transient-fault
effects is applying protection techniques at different
abstraction levels of the design [3][4][5][6]. The idea is thus to
prevent the use of costly fault-tolerance mechanisms like the
tripe modular redundancy, taking advantage of cheaper
mitigation techniques that ensure satisfactory soft-error
coverage for the system’s most recurrent operations. This
modern strategy is exemplified through recovery schemes
based on concurrent error detection (CED).

CED mechanisms designed at transistor or gate level
guarantee an early detection, as soon as the faults happens,
preventing more critical failure scenarios such as the induction
and propagation of multiple errors to other clock cycles,
stages, or parts of the system. In case of misbehavior, an error
flag is generated and the scheme can activate recovery
mechanisms already implemented in modern systems for
dealing with branch misprediction [4][6]. After the transient
fault disappearing, earlier faulty operation is thus repeated and
the system returns to perform its normal computational
sequence.

This work proposes a new recovery scheme based on CED
that can be also used to improve already existing solutions.
More precisely, the contributions of this paper are:

• Section II presents a new taxonomy of CED techniques
that allows understanding the requirements for
implementing their associated recovery schemes
against short-to-long duration transient faults as well as
evaluating qualitatively their costs and efficiencies;

• Section III discusses recovery schemes at micro-
architectural level in function of the CED types defined
in section II. Furthermore, we show a transient-fault
scenario that proves for existing recovery schemes the
exigency of saving two input contexts of logic blocks;

• Section IV presents the new recovery scheme and,
unlike our work in [7], its generic applicability for any
CED technique classified in II as asynchronous due to
its transient result in function of the fault behavior;

• Section V evaluates the effectiveness of our scheme
and compares it with another existing similar strategy.
We show the benefits of the new recovery scheme
based on experimental results issued from transient-
fault injection simulations.

II. TYPES OF CED TECHNIQUES

In the following, CED (Concurrent Error Detection) is a
misuse of language because we consider error detection and
fault detection schemes as well. As mentioned before,
transient faults do not necessarily produce a soft error;
however detection of masked transient faults is also of
importance for secure applications.

Classic CED solutions to face transient-fault effects are
adding spatial, information, or time redundancy to the circuit.
These three approaches can be implemented at different
abstraction levels of the design. Fig. 1 presents basic example
of such techniques at micro-architectural level. They
essentially compare two redundant results of which at least
one must be safe to permit the detection of errors. If for
instance one result fails, the comparison provides an error flag.
Furthermore, Fig. 1 also illustrates another type of CED that is
based on built-in current sensors (BICS). BICS are connected
either to Vdd and Gnd (VGBICS in [8]) or to Bulks of
transistors (BBICS in [9]) in order to detect anomalous
transient currents that can become (or not) soft errors. BICS-
based schemes therefore are able to generate an error flag in
case of occurrence of transient faults within a range defined by
the calibration of the BICS.

Fig.2 generalizes the components of a CED with recovery to
protect a target circuit. The CED circuitry is responsible to
deliver an error flag if a transient misbehaviour is detected
(i.e. a transient fault in the combinational logic of the target
circuit or a soft error in a storage element). However, as such
an error flag can have behaviours as transient and
asynchronous as the transient fault that induces it, mechanisms
for sampling this CED’s result have to be implemented. These
sampling mechanisms ensure the error flags in a steady state
enough time to activate correctly the recovery procedure.

If we come back to the columns of Fig. 1, we can even
classify the CED techniques into two types according to the
features of their error flags:

• Synchronous CED schemes: classic CED approaches
that compare their redundant parts after the data
register (e.g. [10][11][12][13][14]). Hence, they
inherently guarantee their results in steady conditions
during the cycle following the cycle on which the
transient fault appears. The error flag is generated
already in synchronization with the system since the
mechanisms for sampling such a CED’s result are
indeed parts of the CED scheme. Therefore, there is no
need for registering this result if its value is directly
used for starting the recovery procedure during the
cycle following the first faulty cycle. On the other

hand, only transient faults that reach data registers
(causing soft errors) are detected in this case. As
discussed before, it is correct for applications in which
the recovery must be launch only in case of soft errors,
but this is not sufficient when transient faults must be
detected even if they do not induce any error.
Synchronous CED schemes can be very expensive
since they require the storage of all redundant data bits
(N or C additional redundant registers in Fig. 1’s
examples) [15];

• Asynchronous CED schemes: CED techniques that

generate asynchronously their error flags in function of
the transient-fault features (e.g. [4][6][8][9][16][17]
[18][19][20]). Hence, asynchronous CED schemes
must include another extra 1-bit register dedicated only
to sample their error flags, and so ensuring results at
steady state during the necessary time for starting the
recovery procedures. Conversely to synchronous CED
schemes, there is no need to register the redundant data
bits but only the flag, and thus these solutions are less
expensive [15].

Figure 1. Examples of synchronous and asynchronous CED schemes

Figure 2. A target circuit protected by using CED with recovery

III. RECOVERY SCHEMES FOR DEALING WITH SHORT AND

LONG-DURATION TRANSIENT FAULTS IN LOGIC

CED techniques dedicated to identify transient-fault effects
require recovery schemes in order to correct soft errors. The
recovery machine acts in function of the CED’s result to thus
in fault-free conditions repeat the affected cycles whether an
error flag is generated.

The recovery scheme, therefore, initially works to save
fault-free input status of the target circuit, such as input values
of logic blocks. Then, in case of an error flag, the system is
able to later reload such good input values (after the transient
fault vanishing), and so recomputing the first cycle at which the
fault has affected the logic block’s operations.

We highlight that there is a latency of extra clock cycles
only if a transient fault is detected, and thus the target circuit
normally operates without penalty in fault-free scenarios.
About the area overheads added by recovery schemes we
remind that they can be minimal whether the target circuit’s
architecture has already a machine to repeat operations in
branch-misprediction situations. In addition, microprocessor-
based systems can take advantage of their instruction/data
memory resources in order to save the input context of logic
blocks.

Fig. 3, 4, and 5 illustrate a system compounded of a register
IN, a register OUT, and a logic block that is protected by three
different recovery schemes for dealing with short and long
duration transient faults. The other grey blocks (i.e. except
CED schemes, Redundant, Fault and Recovery Registers, and
Reset multiplexer) are resources that might be already present
in certain modern architectures to recompute previous
operations, and so they can be reused in conjunction with CED
schemes to mitigate transient faults. Note in Fig. 3, 4, and 5
that the communications between the CED blocks and the
recovery circuits are slightly different. More precisely, the type
of CED scheme (Synchronous or Asynchronous, as section II
defines) and the strategy for sampling its results (e.g. by using
a Flip-Flop or a Latch) determine the recovery efficiency and
which minimum memory resources are necessary to properly
save input contexts of logic blocks during the fault-free cycles
that precede the first faulty cycle “First_Faulty_Cycle”.

The costly synchronous CED techniques discussed in II
require at least a recovery scheme similar to Fig. 3’s
illustration. This classic machine saves the logic block’s inputs
during each clock’s low phase by using a memory that, in this
example, is represented by K latches, and we call it in this
paper as a backup file. Then, when the CED scheme indicates
an error flag in the cycle posterior to “First_Faulty_Cycle”, the
machine is able to restore the saved logic block’s inputs (Fig.
3’s “saved_logic_inputs”) of one cycle ago the instant at which
the error flag is set (i.e. the logic block’s inputs of
“First_Faulty_Cycle”). This process of restoring and
recomputing is done in the first following fault-free cycle
“Repeated_Cycle” on which the transient fault has already
vanished.

Asynchronous CED techniques that use a flip-flop for
sampling its results demand a recovery scheme like the
schematic in Fig. 4 (e.g. [6]’s Checksum-based scheme). This
simple strategy is not so efficient to sample the CED’s results
[15][21], and then its recovery efficiency is moderate.

On the other hand, Asynchronous CED techniques that use
a latch require more elaborate recovery architecture such as
Fig. 5 shows, but they allow high recovery efficiency (e.g. [4]’s
BBICS-based scheme). In fact, the fault register’s output from
Fig. 5’s scheme has a steady condition but it can be achieved at
any instant, in function of the moment at which the transient
fault happens as well as the duration it takes. This fault
register’s output is, therefore, an asynchronous signal that must
be synchronized in order to be correctly dealt by the recovery
scheme. Hence, another flip-flop, illustrated in Fig. 5 as
recovery register, is mandatory to prevent metastability
problems. This flip-flop also ensures enough time to reset the
fault register before the recomputation as well as it allows to
deal with cases in which the response time “RT” of the
asynchronous CED is longer than the clock’s high pulse width.
Note that if the fault register is a latch, we define RT as the
delay between the beginning of the transient fault and the fault
register’s output. On the other hand, if the fault register is a
flip-flop, it already makes the synchronization with the
recovery scheme, and then RT is defined as the delay between
the beginning of the transient fault and the Asynchronous CED
scheme’s output.

Figure 3. Classic recovery scheme for Synchronous CED techniques

Figure 4. Recovery scheme based on a flip-flop to sample results of
asynchronous CED mechanisms

Both types of machine in Fig. 4 and 5 save logic block’s

inputs of two clock cycles by using two backup files with K
latches each one. Thereby, if CED scheme indicates an error
flag, the recovery circuit is able to restore in “Repeated_Cycle”
the saved logic block’s inputs (Fig. 4 and Fig 5.’s
“saved_logic_inputs”) of two cycles ago the instant at which
the error flag is identified and registered at
“signal_keeping_previous”. Observe in Fig. 4 and 5 that this
signal is used to keep in the backup files the logic block’s
inputs of the previous cycles.

We notice in this paper that recovery strategies such as Fig.
4 and Fig. 5’s schemes necessarily need at least two backup
files with K latches to save logic block’s inputs of two clock
cycles. In fact, as Fig. 6 highlights, there are chances of
transient faults “TF” starting in cycle 1 not to raise
“signal_keeping_previous” in cycle 2, and then the logic
block’s inputs saved in file 1 during cycle 1 must be transferred
to file 2 during cycle 2 in order to be available in cycle 3.
Furthermore, if the response time “RT” is greater than the
clock period “T” (e.g. [4]’s BBICS calibrated with slower RT),
more than two files are required. Therefore, the slower the RT
the greater can be the number of required files.

Let us now in Fig. 7 take another example like Fig. 6’s case

but with a transient fault of longer duration “TF1”. It starts on a
“node_x” of Fig. 5’s logic block during cycle 1. The
asynchronous CED’s scheme thus raises in cycle 2 an error flag
at signal “Flag” after a maximum response time “RT” equals to
50 % of the circuit’s clock period “T”. However, this error flag
is only registered at recovery register during cycle 3. Then, as
“signal_keeping_previous” achieves steady logical level “1” in
cycle 3, logic block’s inputs from cycle 1 (which are kept at
“saved_logic_inputs”) are restored in register IN at the
beginning of cycle 4. Nevertheless, as TF1 spans up to cycle 3,
the asynchronous CED’s scheme raises again an error flag that
keeps the recovery register at “1” during cycle 4. Thus, logic
block’s inputs from cycle 1 are restored once more in register
IN but now at beginning of cycle 5 in order to recompute such
an operation without faults. TF1, therefore, penalizes the
system with a recovery latency of four extra cycles by using
Fig. 5’s scheme.

Furthermore, Fig. 7 also shows a fault “TF2” that makes
the recovery register’s flip-flop metastable. Then,
“signal_keeping_previous” results in an unknown value that
may be, for instance, “0”, and so TF2 would penalize the
system with a latency of three extra cycles instead of two
whether the resultant value was “1”.

Figure 5. Recovery scheme based on a latch and a flip-flop to sample
results of asynchronous CED mechanisms

Figure 6. Transient fault’s case that proves the exigency of at least two
backup files for Fig. 4 and Fig. 5’s recovery schemes

Figure 7. Functional behavior of Fig. 5’s recovery scheme to cope with transient faults “TF1” and “TF2”

IV. A NEW RECOVERY SCHEMES FOR DEALING WITH

SHORT AND LONG-DURATION TRANSIENT FAULTS IN LOGIC

We propose in this section a considerable improvement of
Fig. 5’s scheme discussed in III. Our improved scheme, which
is illustrated in Fig. 8, requires a smaller number of memory
resources. In fact, only a backup file is necessary since our
approach need to save the logic block’s inputs of just one cycle
ago the instant at which an error flag is identified and
registered at recovery register. This optimization is made by
using a latch as recovery register instead of a flip-flop. It
allows starting to sample the signal “Flag” at clock’s falling
edge, and so the scheme can deal earlier with error flags
coming from asynchronous CED schemes.

Fig. 9 gives further details about our recovery scheme by

showing the mitigation of the transient faults “TF1”, “TF3”,
“TF2”, and “TF4”. Note that the same faults “TF1” and “TF2”
analyzed in Fig. 7 for Fig. 5’s scheme are also discussed for
our approach.

 Let us firstly analyze TF1 and TF2. Unlike the reactions of
Fig. 7’s “signal_keeping_previous”, this signal in Fig. 9 raises
earlier during cycle 2 and cycle 8 instead of respectively cycle
3 and cycle 9 in Fig. 7. In fact, Fig. 9’s “signal_keeping_
previous” gets steady logical level “1” after clock’s falling
edge in cycle 2 and cycle 8, then logic block’s inputs of
“First_Faulty_Cycle” are restored earlier in register IN, at the
beginning of cycle 3 and cycle 9. As TF1 lasts until cycle 3, the
logic block’s inputs from cycle 1 are restored again in register
IN at the beginning of cycle 4, and so the faulty operation is
now properly re-executed without the fault presence.

Therefore, TF1 and TF2 penalizes the system respectively with
three and two extra cycles instead of four and three taken by
using Fig. 5’s scheme. Our improved scheme shows thus
requiring smaller latencies to complete the recovery due to
short or long-duration transient faults. In fact, our approach
advances the recomputation by anticipating the identification of
error flags at the clock’s falling edge instead of the rising edge
used by Fig. 5’s scheme.

Note however that there are two simple design constraints
which are modified to ensure the anticipation of the
recomputation as well as the use of only one backup file to
save previous logic block’s inputs.

In order to explain the first constraint, let us initially take
Fig. 9’s limit fault scenario in cycle 5. TF3 starts on the border
on which cycle 4 leaves of being perturbed, and so from such
an instant, which is defined as hold time “THold” after clock’s
rising edge, cycle 4 is not necessary to be recomputed later.
Clock’s high Pulse Width “hPW” has to be thus ensured
sufficiently longer than RT for clock’s falling edge sampling
correctly this last TF3-induced error flag that requires logic
block’s inputs from cycle 4. If it is accomplished, all transient
faults started from the beginning of cycle 4 (after hold time
“T Hold”) until the instant of the TF3’s startup have their
resultant error flags certainly sampled in cycle 5, and so only
the logic block’s inputs from cycle 4 has to be saved.

Equation (1) below defines this first constraint by using a
TMarginFall as additional time margin for variations in clock’s
falling edge operations (jitter and skew), and manufacturing
and environmental variabilities:

 inFallMFileupSetgINHold TTTRThPW arg1_Re_ +++> − (1)

The second design constraint is related to the low Pulse
Width “lPW” that complements hPW to make a clock period
“T”. In fact, by taking similar TF3 scenario but with TF
starting a little after, lPW must last enough time in cycle 5 to
ensure the worst case (after clock’s edge falling) when an error
flag at signal “Flag” causes metastability in recovery register’s
latch and “signal_keeping_previous” stabilizes at logical level
“1”. In this situation, the condition below in (2) must be
respected in order to the scheme works properly to recompute
in cycle 6 the logic block’s inputs from cycle 4. TMarginRise is
similar to TMarginFall but for clock’s rising edge, DMux2x1, and
DLatch are respectively the delays of the multiplexer at the
register IN’s inputs, and of the recovery register’s latch.

By using the fact that T = hPW + lPW, (2) results in (3).
And taking (1) and (3), we have (4). Note that RT and T are
adjustable whether equations (5) (derived from (1)) and (6) are
respected. DLogic is the Logic Block’s longest delay.

() gINupSetinRiseMxMuxLatchinFallMgerHold TTDDTThPWTlPW Re_arg12argRecovRe_ −+++++>−=

 (2)

()gINupSetinRiseMxMuxLatchinFallMgerHold TTDDTTThPW Re_arg12argRecovRe_ −+++++−<

(3)
()gINupSetinRiseMxMuxLatchinFallMgeryHoldinFallMFileupSetgINHold TTDDTTThPWTTTRT Re_arg12argRecovRe_arg1_Re_ −− +++++−<<+++ (4)

()inFallMFileupSetgINHold TTThPWRT arg1_Re_ ++−< − (5)

gOUTupSetinRiseMLogicgINHold TTDTT Re_argRe_ −+++> (6)

Figure 8. Our new recovery scheme based on a two latches to sample
results of asynchronous CED mechanisms

V. EXPERIMENTAL RESULTS COMPARING RECOVERY

SCHEMES

In this section we present some experimental results that
show the effectiveness of our proposed approach. We compare
the recovery latency required for the schemes presented in Fig.
5 and Fig. 8 (our proposed solution). Fig. 3 and Fig. 4’s
schemes are not considered because the first one is very costly
in terms of area and power consumption while Fig. 4’s
approach is not so effective in identifying many transient-fault
scenarios and requires at least two backup files (see
discussions in sections II and III). Furthermore, in theory these
schemes in Fig. 3 and Fig. 4 have higher recovery latencies or,
at the best, equivalent since they sample the error flags by
using the same clock’s edge used by register IN and OUT.

Experimental results were obtained using hspice simulation
of circuits with the recovery schemes and of the injected
single transient fault. The asynchronous CED scheme and the
fault register’s latch from Fig. 5 and Fig. 8 were emulated
such as the behavior of BBICS. The following parameters
were considered:

• The circuits were designed using a 65-nm standard-cell
library (ST CORE65LPSVT), Vdd 1.2V, and nominal
conditions;

• The clock period is 1ns, 50 % duty cycle;

• The transient fault was simulated by using a double-
exponential current source. Then, transient pulses with
several durations (50ps, 250ps, 500ps, 750ps, and 1ns)
were parameterized in such a way that the voltage
amplitude achieves Vdd. It prevents the electrical
masking effects of the transient faults. In fact, as the
goal is to analyze the efficiency of the recovery
mechanisms and not of the CED techniques, we were

not interested in any type of transient-fault masking
effect;

• Considered RT (asynchronous CED’s response time
defined in III) are 200ps, 250ps, 300ps, and 400ps;

• Initial instant of injection were simulated from 0 to
1000 ps of “First_Faulty_Cycle”. We have therefore
supposed a range of different logic block’s nodes on
which single transient faults are injected and
propagated up to make a soft error in register OUT.
Logical and latching-window masking effects of the
transient faults are thus not taken into account. As a
step of 1ps is used, 1000 simulations were performed
for each value of RT and fault duration;

• Recovery latency is expressed in number of clock
cycles required for the scheme to recompute the logic
block’s inputs of “First_Faulty_Cycle”.

For each RT values and transient fault durations, we have
counted how many injections (over 1000) were recovered in 1,
2, 3, and 4 clock cycles. Results of all simulations are
summarized in Fig. 10. As it can be seen, our proposed
scheme allows recovering from short and long transient faults
in less clock cycles than the other solution. For instance, for
RT 400ps and fault duration 1000ps, our Fig. 8’s approach has
a recovery latency of 4 cycles in 21% of the injected faults and
of 3 cycles in the remainder 79%, while Fig. 5’s scheme
requires 4 cycles in 73% of the injected faults and of 3 cycles
in 27% of the scenarios.

Finally, taking into account all transient fault durations for
RT 200ps, 250ps, 300ps, and 400ps, the circuit with our
scheme returned to its normal operation one cycle earlier
respectively in 31%, 33%, 35%, and 37% of the injected
transient-fault scenarios. Note therefore that the slower the RT
the better is our solution. Evidently, in the remainder of the
scenarios both schemes have the same recovery latency.

Figure 9. Functional behavior of our new recovery scheme to cope with transient faults “TF1”, “TF3”, “TF2”, and “TF4”

VI. FINAL CONCLUSIONS

In this paper we have proposed the classification of the
CED techniques into synchronous and asynchronous in order to
identify which are the necessary recovery resources. In
addition, we have proposed a new recovery scheme based on
asynchronous CED schemes for dealing with short-to-long
transient faults. Our approach uses the clock’s falling edges (in
case of data registers use clock’s rising edges) for starting to
sample error flags from transient faults. It allows reducing the
recovery latency by one cycle. Moreover, the new recovery
scheme also permits to use only a backup file to save input
contexts of logic blocks. Our solution therefore requires much
smaller recovery resources and lower latency than existing
similar strategy.

REFERENCES
[1] C.N. Chen, and S.M. Yen, “Differential Fault Analysis on AES Key

Schedule and Some Countermeasures,” in Proc. ACISP, v. 2727 of
LNCS, 2003, pp. 118-129.

[2] P. Dusart, G. Letourneux, and O. Vivolo, “Differential Fault Analysis on
A.E.S,” in Proc. ACNS, v. 2846 of LNCS, 2003, pp. 293-306.

[3] C. Lisboa, M. Erigson, and L. Carro, “System level approaches for
mitigation of long duration transient faults in future technologies,” in
Proc. ETS, IEEE, 2007, pp. 165-170.

[4] C. Lisboa et al., “Using Built-in Sensors to Cope with Long Duration
Transient Faults in Future Technologies,” in Proc. ITC, IEEE, 2007, pp.
1-10.

[5] C. Albrecht et al., “Towards a Flexible Fault-Tolerant System-on-Chip,”
in Proc. ARC, VDE Verlag GMBH, 2009, pp. 83-90.

[6] S. Z. Shazli, and M. B. Tahoori, “Transient Error Detection and
Recovery in Processor Pipelines,” in Proc. DFT, IEEE, 2009, pp. 304-
312.

[7] R.P. Bastos, G.D. Natale, M. Flottes, and B. Rouzeyre, “A New Bulk
Built-In Current Sensor-Based Strategy for Dealing with Long-Duration
Transient Faults in Deep-Submicron Technologies,” in Proc. DFT,
IEEE, 2011, pp. 302-308.

[8] B. Gill et al., “An Efficient BICS Design for SEUs Detection and
Correction in Semiconductor Memories,” in Pro. DATE, IEEE, 2005,
pp. 592-597.

[9] E. H. Neto et al., “Using Bulk Built-in Current Sensors to Detect Soft
Errors,” IEEE Micro, v. 26, n. 5, pp. 10–18, Sep. 2006.

[10] S. Mitra and E. McCluskey, “Which concurrent error detection scheme
to choose?,” in Proc. ITC, IEEE, 2000, pp. 985–994.

[11] M. Nicolaidis, “Time redundancy based soft-error tolerance to rescue
nanometer technologies,” in Proc. VTS, IEEE, 1999, pp. 86-94.

[12] Anghel, L., and M. Nicolaidis, “Cost Reduction and Evaluation of a
Temporary Faults Detecting Technique,” in Proc. DATE, IEEE, 2000,
pp. 591-598.

[13] D. Ernst et al., “Razor: A low-power pipeline based on circuit-level
timing speculation,” in Proc. MICRO, IEEE/ACM, 2003, pp. 7-18.

[14] K. Bowman et al., “Energy-efficient and metastability-immune resilient
circuits for dynamic variation tolerance,” IEEE JSSC, v. 44, n. 1, pp.
49–63, Jan. 2009.

[15] R. P. Bastos et al., “How to Sample Results of Concurrent Error
Detection Schemes in Transient Fault Scenarios?,” in Proc. RADECS,
IEEE, 2011, pp. 635-642.

[16] S. Das et al., “RazorII: In situ error detection and correction for PVT and
SER Tolerance,” IEEE JSSC, vol. 44, no. 1, pp. 32–48, Jan. 2009.

[17] M. M. Kermani, A. R. Masoleh, “Parity-Based Fault Detection
Architecture of S-box for Advanced Encryption Standard,” in Proc.
DFT', IEEE, 2006, pp. 572-580.

[18] C. Lisboa, and L. Carro, “XOR-based low cost checkers for
combinational logic,” in Proc. DFT, IEEE, 2008, pp. 281-289.

[19] D. Rossi, M. Omanã, and C. Metra, “Transient fault and soft error on-die
monitoring scheme,” in Proc. DFT, IEEE, 2010, pp. 391–398.

[20] D. J. Palframan, N. S. Kim, M. H. Lipasti, “Time Redundant Parity for
Low-Cost Transient Error Detection,” in Proc. DATE, IEEE, 2011.

[21] R. P. Bastos et al., “Timing Issues for an Efficient Use of Concurrent
Error Detection Codes,” in Proc. LATW, IEEE, 2011, pp. 1-6.

Figure 10. Distribution of recovery latencies (1, 2, 3, or 4 clock cycles) for Fig. 8 and Fig. 5’s recovery schemes in function of the asynchronous CED’s
response time “RT” (200ps, 250ps, 300ps, and 400ps) and the transient fault duration (50ps, 250ps, 500ps, 750ps, and 1ns). For instance, let us take RT

200ps and fault duration 50ps, our Fig. 8’s approach has a recovery latency of 1 cycle in 26% of the injected faults and of 2 cycles in the remainder
74%, while Fig. 5’s scheme requires 3 cycles in 27% of the injected faults and of 2 cycles in 73% of the scenarios.

