N

N

Sound, Complete, and Minimal Query Rewriting for
Existential Rules

Mélanie Konig, Michel Leclere, Marie-Laure Mugnier, Michaél Thomazo

» To cite this version:

Mélanie Konig, Michel Leclere, Marie-Laure Mugnier, Michaél Thomazo. Sound, Complete, and
Minimal Query Rewriting for Existential Rules. IJCAI: International Joint Conference on Artificial
Intelligence, Aug 2013, Beijing, China. lirmm-00838791

HAL Id: lirmm-00838791
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00838791

Submitted on 26 Jun 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal-lirmm.ccsd.cnrs.fr/lirmm-00838791
https://hal.archives-ouvertes.fr

Sound, Complete, and Minimal Query Rewriting for Existential Rules *

Mélanie Konig and Michel Leclere and Marie-Laure Mugnier and Michaél Thomazo
University of Montpellier, France

firstname.lastname@lirmm. fr

Abstract

We address the issue of Ontology-Based Data Ac-
cess which consists of exploiting the semantics ex-
pressed in ontologies while querying data. Ontolo-
gies are represented in the framework of existen-
tial rules, also known as Datalog+/-. We focus on
the backward chaining paradigm, which involves
rewriting the query (assumed to be a conjunctive
query, CQ) into a set of CQs (seen as a union of
CQs). The proposed algorithm accepts any set of
existential rules as input and stops for so-called fi-
nite unification sets of rules (fus). The rewriting
step relies on a graph notion, called a piece, which
allows to identify subsets of atoms from the query
that must be processed together. We first show that
our rewriting method computes a minimal set of
CQs when this set is finite, i.e., the set of rules is
a fus. We then focus on optimizing the rewriting
step. First experiments are reported in the associ-
ated technical report.

1 Introduction

In recent years, there has been growing interest in exploiting
the semantics expressed in ontologies when querying data,
an issue known as ontology-based data access (OBDA). The
dominant approach to this issue is based on description log-
ics (DLs), with the most studied DLs in this context being
lightweight DLs like DL-Lite and £ £ families [Baader, 2003;
Calvanese et al., 2007] and their Semantic Web counter-
parts, so-called tractable fragments of OWL2. A newer ap-
proach, to which this paper contributes, is based on exis-
tential rules. Existential rules have the ability of generat-
ing unknown individuals, a feature that has been recognized
as crucial in an open-world perspective. These rules are of
the form body — head, where body and head are conjunc-
tions of atoms (without functions), and variables that occur
only in head are existentially quantified [Baget et al., 2009;
2010; 2011b; Krotzsch and Rudolph, 2011]. They are also
known as Datalog+ an extension of plain Datalog to database

*The paper on which this extended abstract is based was the re-
cipient of the best paper award of the 2012 Web Reasoning and Rule
Systems Conference (RR 2012) [K6nig et al., 2012b].

constraints called tuple-generating dependencies [Cali et al.,
2008; 2009].

In this paper, we consider knowledge bases (KBs) com-
posed of a set of facts, or data, and of existential rules. We fo-
cus on the standard basic queries, namely conjunctive queries
(CQs), which can be seen as existentially quantified conjunc-
tions of atoms. The fundamental decision problem associated
with query answering can be expressed in several equivalent
ways, in particular as a Boolean CQ entailment problem: is a
given Boolean CQ logically entailed by a knowledge base?

CQ entailment is undecidable for general existential rules.
There has been an intense research effort aimed at finding de-
cidable subsets of rules that provide good tradeoffs between
expressivity and complexity of query answering (see [Mug-
nier, 2011] for a synthesis). Compared to lightweight DLs,
these decidable rule fragments are more powerful and flex-
ible. However, the existential rule-based OBDA framework
does not come yet with practically usable algorithms, with
the exception of very simple classes of rules, which can be
seen as slight generalizations of lightweight DLs. In this pa-
per, we undertake a step in this direction.

There are two classical paradigms for processing rules,
namely forward chaining and backward chaining, which can
both be seen as ways of integrating the rules either into the
facts or into the query: forward chaining uses the rules to en-
rich the facts and the query is entailed by the KB if it maps by
homomorphism to the enriched facts, while backward chain-
ing uses the rules to rewrite the query in several ways and the
initial query is entailed by the KB if a rewritten query maps to
the initial facts. In the context of large data, the obvious ad-
vantage of backward chaining is that it does not make the data
grow. When the set of rewritten queries is finite, this set can
be seen as a single query, which is the union of the queries
in the set. An approach initiated with DL-Lite consists of
decomposing backward chaining into two steps: (1) rewrite
the initial CQ as a union of CQs (2) use a database manage-
ment system to answer this rewritten query. This approach
aims to benefit from the optimizations developed for classical
database queries. It is at the core of several systems, such as
QuOnto [Calvanese et al., 20071, Requiem [Pérez-Urbina et
al., 2009], Nyaya [Gottlob ef al., 20111, Rapid [Chortaras et
al., 2011], Iqaros [ Venetis et al., 2012] and Quest [Rodriguez-
Muro and Calvanese, 2012]. While the above work focuses
on specific rule sublanguages, in this paper we consider gen-



eral existential rules, i.e., our algorithm accepts as input any
set of existential rules, but of course is guaranteed to stop only
for a subset of them (called “finite unification sets” in [Baget
et al., 2010]), which includes expressive classes of rules.

The originality of our work lies in the rewriting step based
on a notion stemming from a graph view of a set of atoms,
that of a piece.! Briefly, a piece is a subset of atoms from
the query that must be rewritten together. Classically, in logic
programming, rules and queries are processed atom by atom:
at each step, an atom « of a query @ is unified with the head
of a rule R (a single atom) and a new query is generated by
replacing a in () by the body of R (precisely: let u be the
unifier, the new query is u(body(R)) U u(Q \ {a}). Here,
existential variables in rule heads have to be taken into ac-
count, which prevents the use of atomic unification. Instead,
subsets of atoms (the pieces) have to be considered at once.
We present below a very simple example.

Example 1 Let the rule R = Vz (¢(z) — Jy p(z,y)), and
the Boolean CQ Q = JuTvIw(p(u,v) A p(w,v) A r(u, w)).
Assume we want to unify the atom p(u,v) from Q with
p(x,y) by a substitution {(u,x), (v,y)}. Since v is unified
with the existential variable y, all other atoms containing
v must also be considered: indeed, simply rewriting Q) into
q(z) A p(w,y) Ar(z, w) would be incorrect: intuitively, the
fact that the atoms p(u,v) and p(w,v) in Q share a vari-
able would be lost in atoms q(x) and p(w,y). Thus, p(u,v)
and p(w,v) have to be both unified with the head of R by
means of the following substitution: {(u, ), (v,y), (w,x)}.
{p(u,v),p(w,v)} is called a piece. The corresponding
rewriting of Q is q(x) A r(z, ).

An alternative method would be to consider the Skolem
form of rules, i.e., to replace existential variables in the head
by Skolem functions of variables occurring in the body, how-
ever we think it is simpler and more intuitive to keep the origi-
nal rule language. This framework established, we then posed
ourselves the following questions:

1. Can we ensure that we produce a minimal set of rewrit-
ten conjunctive queries, in the sense that no sound and
complete algorithm can produce a smaller set?

2. How to optimize the rewriting step? The problem of de-
ciding whether there is a piece-unifier between a query
and a rule head is NP-complete and the number of piece-
unifiers can be exponential in the size of the query.

With respect to the first question, we first point out that any
sound and complete set of CQs remains sound and complete
when it is restricted to its most general elements (w.r.t. the
generalization relation induced by homomorphism). We then
show that all sound and complete sets of CQs restricted to
their most general CQs have the same cardinality, which is
minimal w.r.t. the completeness property.

With respect to the second question, we consider rules with
an atomic head. This is not a restriction in terms of expressiv-
ity, since any rule can be decomposed into an equivalent set
of atomic-head rules by simply introducing a new predicate

"Pieces come from earlier work on conceptual graph rules [Sal-
vat and Mugnier, 1996] recast in the framework of existential rules
in [Baget et al., 2009; 201 1a].

for each rule [Cali er al., 2008; Baget er al., 2009]. Besides,
many rules found in the literature have an atomic head. We
exploit the fact that each atom in a CQ () belongs to at most
one piece with respect to a rule R (which is false for exis-
tential rules with non-atomic head) to efficiently compute a
rewriting step, i.e., generate all CQs obtainable from R and
. An algorithm producing a sound and complete minimal
set of rewritten CQs, and benefiting from the above optimiza-
tions, has been implemented.

The paper is organized as follows. Section 2 introduces
our framework. Sections 3 and 4 are respectively devoted to
the first and to the second question. Finally, Section 5 reports
first experiments and outlines further work. See [Konig ef al.,
2012al] for the associated technical report with all proofs.

2 Framework

An atom is of the form p(t1,...,t;) where p is a predicate
with arity k, and the ¢; are terms, i.e., variables or constants.
Given an atom or a set of atoms A, vars(A), consts(A) and
terms( A) denote its set of variables, of constants and of terms,
respectively. In the following examples, all the terms are vari-
ables (denoted by z, y, z, etc.). |= denotes the classical logi-
cal consequence. A fact is an existentially closed conjunction
of atoms. A conjunctive query (CQ) is an existentially quan-
tified conjunction of atoms. When it is a closed formula, it is
called a Boolean CQ (BCQ). Hence facts and BCQs have the
same logical form. In the following, we will see them as sets
of atoms. Given sets of atoms A and B, a homomorphism
h from A to B is a substitution of vars(A) by terms(B) s.t.
h(A) C B. We say that A maps to B by h. If there is a homo-
morphism from A to B, we say that A is more general than
B (or B is more specific than A), which is denoted A > B
(or B < A). Given a fact ' and a BCQ (@, the answer to ()
in F is positive if F = Q. It is well-known that F' = Q iff
there is a homomorphism from Q) to F.

Definition 1 (Existential rule) An existential rule (or simply
rule) is a formula R = VxVy(B[x,y] — 3zH|[y,z]) where
B = body(R) and H = head(R) are conjunctions of atoms,
resp. called the body and the head of R. The frontier of R,
noted fr(R), is the set vars(B) N vars(H) =y.

A knowledge base (KB) K = (F,R) is composed of a
finite set of facts (seen as a single fact) F' and a finite set of
existential rules R. The BCQ entailment problem takes as
inputaKB K = (F,R) and aBCQ Q, and asks if F, R |= Q.
Other notations: Throughout the paper we note respectively
R and @ the considered rule and query. We always assume
that R and () have no variables in common. Given Q' C
@, we note ()’ the set @ \ Q’. The variables in vars(Q') N
vars(Q') are called separating variables and noted sep(Q’).
In the examples, we will omit quantifiers in facts and rules
since there is no ambiguity.

As explained in the introduction, the rewriting step relies
on a specific unification operation based on “pieces”.

A piece-unifier is a pair (Q’,u), where Q" C Q and u is
a substitution that “unifies” @’ with some H' C head(R),

“We generalize the classical notion of a fact in order to take ex-
istential variables into account.



in the sense that u(Q’) = w(H’). The substitution u can
be decomposed as follows: (1) it specializes fr(R), thus
head(R) > wu(head(R)), with existential variables left un-
changed; (2) it maps @’ to u(head(R)), while satisfying the
following constraint: the separating variables in Q' are not
mapped to existential variables.

Definition 2 (Piece-unifier) A piece-unifier of QQ with R is a
pair p = (Q',u) with Q' C Q, Q' # 0, w a substitution of
fr(R)Uvars(Q') by terms(head(R)) U consts(Q’" U head(R))
s.t.:

1. forall x € fr(R), u(z) € fr(R) U consts(Q' U head(R))
(for technical convenience, we allow u(zx) = x);

2. for all x € sep(Q’'), u(x) € fr(R) U consts(Q U
head(R));

3. u(Q') C u(head(R)).

Example 2 Let R = q(z) — p(z,y) and Q = p(u,v) A
p(z,v) Ap(w,t) Ar(u, w). There are three (“most general”,
cf- Sect. 4) piece-unifiers of Q) with R:

® [ = (Qllyul) with Qll = {p(uvv)vp(zvv)} and up =
{(u, %), (v,9), (2, x)}; we omit identity pairs in all examples,
fi. uy contains (x,x)

oy = (Qy,uz) with Qy =
{(w, ), (t,y)}

o u3 = (Q%,us) with Q5 = {p(u,v),p(z,v),p(w,t)} and
Uz = (Uv 1’), ('U, y)7 (Zv x)v (U}, (E), (tv y)}

We are now able to formally define pieces. Generally
speaking, a set of atoms can be partitioned into subsets (called
pieces) w.r.t. a set T of variables acting as “cutpoints”: two
atoms are in the same piece if they are connected by a path
of variables that are not in 7". Here, T is the set of variables
from ()’ that are not mapped to existential variables by u.

Definition 3 (Piece) [Baget et al., 2011a] Let A be a set of
atoms and T C vars(A). A piece of A according to T is a
minimal non-empty subset P of A s.t. for all a and o’ in A, if
a € P and (vars(a) N vars(a’)) € T, then a’ € P.

{p(w,t)} and us =

Definition 4 (Cutpoint, Piece of Q) Given a piece-unifier
uw = (Q,u) of Q@ with R, a variable x € @' is a cutpoint
ifu(x) € fr(R) U consts(Q" U head(R)). The set of cutpoints
associated with [ is denoted by Tg(p). We call piece of @
(for 1) a piece of Q according to T ().

Example 2 (contd) Q) and Q) are pieces for iy and po re-
spectively. Both are pieces for ps.

In fact, for any piece-unifier y = (Q',u), @’ is a set of
pieces of @), which justifies the name “piece-unifier”. To sum
up, a piece of () is a minimal subset of atoms that must be
considered together once cutpoints in () have been defined
(indeed, an atom of ) may belong to different pieces ac-
cording to different piece-unifiers). Finally, note that in rules
without existential variables, such as in plain Datalog, each
piece is restricted to a single atom.

Definition 5 (Immediate Rewriting) Given a piece-unifier
w = (Q',u) of Q with R, the immediate rewriting of Q) ac-
cording to i, denoted 5(Q, R, p), is u(body(R)) U u(Q").

Definition 6 (R-rewriting of ()) An R-rewriting of Q) is a
CQO Qy; obtained by a finite sequence (Qo = Q), Q1, - .., Qk
s.t. forall 0 < 1 < k, there is R; € R and a piece-unifier p;
OfQZ‘ with R; s.t. Ql‘+1 = ﬂ(QZ, R;, Mi)-

To evaluate the correctness of different rewriting mecha-
nisms, we introduce the notions of soundness and complete-
ness of a set of CQs with respect to @@ and R (such a set is
called a rewriting set hereafter):

Definition 7 (Sound and Complete (rewriting) set of CQs)
Let R be a set of existential rules and Q) be a (B)CQ. Let Q
be a set of CQs. Q is said to be sound w.r.t. Q) and R if for
all facts F, for all Q; € Q, if Q; maps to F then R, F = Q.
Reciprocally, Q is said to be complete w.r.t. QQ and R if for
allfact F, if R, F = Q then there is Q; € Q s.t. Q; > F.

3 Minimal Rewriting Sets

We first point out that only the most general elements of a
rewriting set need to be considered. Indeed, let ()1 and ()5 be
two elements of a rewriting set s.t. Q2 < (7 and let F’ be any
fact: if (91 maps to F, then @5 is useless; if ()1 does not map
to F, neither does (Q2; thus removing ()2 will not undermine
completeness (nor soundness). The output of a rewriting al-
gorithm should thus be a minimal set of incomparable queries
that “covers” all rewritings of the initial query:

Definition 8 (Cover) Let Q be a set of BCQs. A cover of Q
is a set of BCQs Q° C Q s.t.:

1. forany Q € Q, thereis Q' € Q°s.t. Q < Q/,
2. elements of Q° are pairwise incomparable w.r.t. <.

It can be easily checked that all covers of Q have the same
cardinality. Note that the set of rewritings of () can have a
finite cover even when it is infinite (Example 3).

Example 3 Let Q = t(u), R = t(z) A p(x,y) — t(y). The
set of R-rewritings of Q with {R} is infinite. The first gen-
erated queries are the following (note that rule variables are
renamed when needed):

Qo = t(u)

Q1 = t(x) A pla,y) / from Qo and R with {(u,y)}

Q2 = t(wo) A p(x0,y0) A P(yo,y) / from Q1 and R

Q3 = t(x1) Ap(z1,91) Ap(y1,90) Ap(yo,y) and soon . ..
However, the set of the most general R-rewritings is {Qo}
since any other obtainable query is more specific than Q.

A set of rules R for which it is ensured that the set of R-
rewritings of any query has a finite cover is called a finite uni-
fication set (fus). The fus property is not recognizable [Baget
et al., 2011al, but several recognizable fus classes have been
exhibited in the literature [Baget et al., 2009; Cali et al., 2009;
2010]. Following Algorithm 1 is a breadth-first algorithm
that, given a fus R and a query (), generates a cover of the
set of R-rewritings of ). “Exploring” a query consists of
computing the set of immediate rewritings of this query with
all rules. Initially, @ is the only query to explore; at each step
(a while loop iteration), all queries generated at the preceding
step and kept in the current cover are explored. The following
lemma justifies the fact that only the most general rewritings
are kept at each step of the algorithm.



Algorithm 1: REWRITING ALGORITHM

Data: A fus R, a conjunctive query @
Result: A cover of the set of R-rewritings of Q)
Or + {Q}; // resulting set
Qp + {Q}; // queries to be explored
while Qr # () do
Q; < 0; // queries generated at this rewriting step
for Q; € Qg do

for R € R do

for p piece-unifier of Q; with R do
L L Qt — Qt Uﬁ(leRvu),

Q¢ + ComputeCover(Qr U Q;); // update cover
Qp « Q°\Qpr; // select unexplored queries
L QF + Q%

return Qr

Lemmal If Q1 > Q2 then for all piece-unifiers s of Q2
with R: either (i) Q1 > B(Q2, R, u2) or (ii) there is a
piece-unifier y of Q1 with R such that B(Q1, R,pu1) >
ﬂ(Q%Ra NQ)

Theorem 1 Let R be a fus and Q be a sound and complete
rewriting set of Q (with R). Any cover of Q is of minimal
cardinality among sound and complete rewriting sets of Q.

From the previous observation, we conclude that any sound
and complete rewriting algorithm can be “optimized” so that
it outputs a set of rewritings of minimal cardinality. If we
moreover delete redundant atoms from the obtained CQs, we
obtain a unique sound and complete set of CQs that has both
minimal cardinality and elements of minimal size (unicity is
of course up to a bijective variable renaming).

4 Most General Single-Piece Unifiers

W.l.0.g. we now focus on rules with atomic head. What is
simpler with these rules? The definition of a piece-unifier in
itself does not change. The difference lies in the number of
piece-unifiers to be considered at a rewriting step. We first
notice that we can restrict our focus to most general single-
piece unifiers: the number of such unifiers of @) with R is
bounded by |Q)|, since there is a unique way of associating
any atom in @) with head(R).

Let u; = (Q',u1) and o = (Q’, uz) be two piece-unifiers
of @ with R, defined on the same subset Q' of Q. pu; is said
to be more general than o, noted p; > po, if uy is more
general than us (i.e., there is a substitution s s.t. ug = sowuy).

Property 1 Ler 1 = (Q',u1) and ps = (Q', uz) be piece-
unifiers s.t. py > po. Then 5(Q, R, pu1) > B(Q, R, u2).

A piece-unifier p = (Q’,u) of @ with R is said to be
single-piece if ()’ is a piece of (). Any piece-unifier can be
decomposed into single-piece unifiers. Note however that ap-
plying successively each of these underlying single-piece uni-
fiers may lead to a CQ strictly more general than 5(Q, R, 1),
as illustrated in the next example:

Example4 Let R = p(z,y)
q(u,v) A r(v,w) A q(t,w).

= q(z,y) and Q =
Let p = (Q',u) be a

piece-unifier of Q with R with Q' = {q(u,v),q(t,w)}
and u = {(u,2),(v,9), (t,2), (w,9)}. BQ Rop) =
p(z,y) A r(y,y). @ has two pieces w.rt. u: Py =
{q(u,v)} and P, = {q(t,w)}. If we successively ap-
ply the underlying single-piece unifiers |ip, and |p,, we
obtain B(B(Q, R, pp,), R, up,) = B(p(x,y) A r(y, w) A
q(t,w), R, pp,) = p(x,y)Ar(y, v )Ap(@', y') < B(Q, R, ).
Property 2 For any piece-unifier i of Q with R, there is QQ°
an {R}-rewriting of Q obtained by considering exclusively
most general single-piece unifiers s.t. Q° > B(Q, R, u).

From Lemma 1 and Property 2, we obtain:

Theorem 2 Given a set of rules R, the set of R-rewritings of
Q obtained by considering exclusively most general single-
piece unifiers is sound and complete.

However, single-piece unifiers cannot be used as such in
Algorithm 1. The next example shows that, despite the com-
pleteness result of Theorem 2, the restriction to single-piece
unifiers is not compatible with selecting most general rewrit-
ings at each step, as done in Algorithm 1.

Example 5 Let Q = p(y,z) Ap(z,y) and R = r(z,z) —
p(x,x). There are two single-piece unifiers of Q with
Ropy = (p(y.2)su) and py = (p(z,y),u) with u =
{(y,x),(z,2)}, which yield the same rewriting Q; =
r(z,x) A p(x,z). There is also a two-piece unifier p =
(Q,w), which yields Q' = r(x,x). A query equivalent to Q'
can be obtained from Q1 by a further single-piece unification.
Now, assume that we restrict unifiers to single-piece unifiers
and keep most general rewritings at each step. Since @ > Q1,
Q1 is not kept, so Q' will never be generated, whereas it is in-
comparable with Q.

To keep the correctness of Algorithm 1, we have to com-
bine single-piece unifiers when they are compatible: two
piece-unifiers of @ with R, pu; = (Q},u1) and pe =
(@Y, us), are said to be compatible if (1) Q) N Q5 = 0 (2)
for all z € vars(Q}) N vars(Q5), when uq () and ua(x) are
both constants, it holds that u;(x) = us(z). To sum up, we
keep the schema of Algorithm 1 but, instead of computing all
the piece-unifiers at a given step, we compute the single-piece
unifiers, then apply together the compatible ones.

5 Perspectives

First experiments were led with the same benchmark as [Got-
tlob et al., 2011], then extended using the query generator
from [Imprialou ef al., 2012]. We compared our algorithm
to Nyaya/NY* rewriting engine [Gottlob et al., 2011]. Both
running times were comparable, however we found that NY*
did not output minimal rewriting sets (although its output was
already shown smaller than the output of other existing sys-
tems). Since the benchmark we used consists of very simple
ontologies we need to consider larger and more complex rule
bases. We also have to compare to other recent rewriting sys-
tems, though these systems deal with more restricted classes
of rules. Finally, our rewriting mechanism is yet far from be-
ing optimized. For instance, the number of explored queries
is still very large w.r.t. the size of the final cover. The question
of whether it is worthwhile, when rules do not have atomic
heads, to deal directly with them, still needs to be addressed.



References

[Baader, 2003] F. Baader. Terminological cycles in a de-
scription logic with existential restrictions. In IJCAI'03,
pages 325-330, 2003.

[Baget et al., 2009] J.-F. Baget, M. Leclére, M.-L. Mugnier,
and E. Salvat. Extending decidable cases for rules with
existential variables. In IJCAI'09, pages 677—682, 2009.

[Baget et al., 2010] J.-F. Baget, M. Leclere, and M.-L. Mug-
nier. Walking the decidability line for rules with existential
variables. In KR’10, pages 466-476. AAAI Press, 2010.

[Baget et al., 2011a] J.-F. Baget, M. Leclére, M.-L. Mugnier,
and E. Salvat. On rules with existential variables: Walk-
ing the decidability line. Artificial Intelligence, 175(9-
10):1620-1654, 2011.

[Baget et al., 2011b] J.-F.  Baget, M.-L.  Mugnier,
S. Rudolph, and M. Thomazo.  Walking the com-
plexity lines for generalized guarded existential rules. In
1JCAI'11, pages 712-717, 2011.

[Cali et al., 2008] A. Cali, G. Gottlob, and M. Kifer. Tam-
ing the infinite chase: Query answering under expressive
relational constraints. In KR’08, pages 70-80, 2008.

[Cali et al., 2009] A. Cali, G. Gottlob, and T. Lukasiewicz.
A general datalog-based framework for tractable query an-
swering over ontologies. In PODS’09, pages 77-86, 2009.

[Cali er al., 2010] A. Cali, G. Gottlob, and A. Pieris. Query
answering under non-guarded rules in datalog+/-. In
RR’10, pages 1-17, 2010.

[Calvanese et al., 2007] D. Calvanese, G. De Giacomo,
D. Lembo, M. Lenzerini, and R. Rosati. Tractable rea-
soning and efficient query answering in description logics:
The DL-Lite family. J. Autom. Reasoning, 39(3):385-429,
2007.

[Chortaras et al., 20111 A. Chortaras, D. Trivela, and G. B.
Stamou. Optimized query rewriting for OWL 2 QL. In
CADE, pages 192-206, 2011.

[Gottlob et al., 20111 G. Gottlob, G. Orsi, and A. Pieris.
Ontological queries: Rewriting and optimization. In
ICDE’11, pages 2—-13, 2011.

[Imprialou ef al., 2012] M. Imprialou, G. Stoilos, and
B. Cuenca Grau. Benchmarking ontology-based query
rewriting systems. In AAAZ, 2012.

[Konig et al., 2012a] M. Koénig, M. Leclére, M.-L. Mugnier,
and M. Thomazo. A Sound and Complete Backward
Chaining Algorithm for Existential Rules. Technical Re-
port RR-12016, LIRMM, GraphlK - INRIA Sophia An-
tipolis, 2012.

[Konig et al., 2012b] M. Konig, M. Leclere, M.-L. Mugnier,
and M. Thomazo. A sound and complete backward chain-
ing algorithm for existential rules. In M. Krotzsch and
U. Straccia, editors, RR, volume 7497 of Lecture Notes in
Computer Science, pages 122—138. Springer, 2012.

[Krotzsch and Rudolph, 2011] M. Krotzsch and S. Rudolph.
Extending decidable existential rules by joining acyclicity
and guardedness. In IJCAI'11, pages 963-968, 2011.

[Mugnier, 2011] M.-L. Mugnier. Ontological Query An-
swering with Existential Rules. In RR’/I, pages 2-23,
2011.

[Pérez-Urbina et al., 2009] H. Pérez-Urbina, 1. Horrocks,
and B. Motik. Efficient query answering for owl 2. In
ISWC’09, pages 489504, 2009.

[Rodriguez-Muro and Calvanese, 2012] M. Rodriguez-
Muro and D. Calvanese.  High performance query
answering over DL-lite ontologies. In KR, 2012.

[Salvat and Mugnier, 1996] E. Salvat and M.-L. Mugnier.
Sound and Complete Forward and Backward Chainings of
Graph Rules. In ICCS’96, volume 1115 of LNAI, pages
248-262. Springer, 1996.

[Venetis et al., 2012] T. Venetis, G. Stoilos, and G. B. Sta-
mou. Incremental query rewriting for OWL 2 QL. In De-
scription Logics, 2012.



