Steganalysis by Ensemble Classifiers with Boosting by Regression, and Post-Selection of Features

> Marc Chaumont, Sarra Kouider LIRMM, Montpellier, France

> > October 2, 2012

IEEE International Conference on Image Processing 2012, Sept. 30 - Oct. 3 2012, Orlando, USA. Steganalysis by Ensemble Classifiers - Marc Chaumont - ICIP'2012 Preamble

Outline

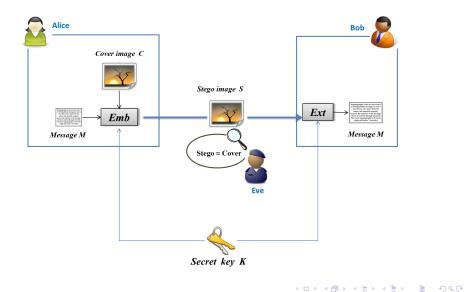
2 The Kodovsky's Ensemble Classifiers

- Boosting by regression
- 4 Post-selection of features
- 5 Experiments
- 6 Conclusion

Steganalysis by Ensemble Classifiers - Marc Chaumont - ICIP'2012

Preamble

Steganography vs Steganalysis



Steganalysis by Ensemble Classifiers - Marc Chaumont - ICIP'2012 Preamble

The proposition

An Improvement of a state-of-the-art steganalyzer

- $P_E \searrow$ of the steganalyzer THANKS TO
 - boosting by regression of low complexity,
 - post-selection of features of low complexity.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline

2 The Kodovsky's Ensemble Classifiers

- Boosting by regression
- 4 Post-selection of features
- 5 Experiments
- 6 Conclusion

Notable properties

- Appeared during BOSS challenge (sept. 2010 jan. 2011),
- Performances \equiv to SVM,
- Scalable regarding the dimension of the features vector,
- Low computational complexity,
- Low memory complexity,
- Easily parallelizable.

J. Kodovský, J. Fridrich, and V. Holub, "Ensemble classifiers for steganalysis of digital media,"

IEEE Transactions on Information Forensics and Security, vol. 7, no. 2, pp. 432–444, 2012.

Definition of a weak classifier

Ensemble Classifiers is made of L weak classifiers

- Let $\mathbf{x} \in \mathbb{R}^d$ a feature vector,
- A weak classifier, h_l , returns 0 for cover, 1 for stego :

$$egin{array}{rcl} h_l: \mathbb{R}^d &
ightarrow & \{0,1\} \ \mathbf{x} &
ightarrow & h_l(\mathbf{x}) \end{array}$$

How does classification work?

- Take an image to analys (i.e. classify in cover or stego),
- **2** Extract the features vector $\mathbf{x} \in \mathbb{R}^d$,
- Obecide to classify cover or stego (majority vote):

$$C(\mathbf{x}) = \begin{cases} 0 \text{ if } \sum_{l=1}^{l=L} h_l(\mathbf{x}) \leq L/2, \\ 1 \text{ otherwise.} \end{cases}$$

Steganalysis by Ensemble Classifiers - Marc Chaumont - ICIP'2012 Boosting by regression

Outline

2 The Kodovsky's Ensemble Classifiers

- 3 Boosting by regression
- Post-selection of features
- 5 Experiments
- 6 Conclusion

The classification (steganalysis) process was:

- Take an image to analys (i.e. classify in cover or stego),
- **2** Extract the features vector $\mathbf{x} \in \mathbb{R}^d$,
- Obecide to classify cover or stego (majority vote):

$$C(\mathbf{x}) = \left\{ egin{array}{l} 0 ext{ if } \sum_{l=1}^{l=L} h_l(\mathbf{x}) \leq L/2, \ 1 ext{ otherwise.} \end{array}
ight.$$

The classification (steganalysis) process was:

- Take an image to analys (i.e. classify in cover or stego),
- **2** Extract the features vector $\mathbf{x} \in \mathbb{R}^d$,
- Occide to classify cover or stego (majority vote):

$$C(\mathbf{x}) = \begin{cases} 0 \text{ if } \sum_{l=1}^{l=L} h_l(\mathbf{x}) \leq L/2, \\ 1 \text{ otherwise.} \end{cases}$$

BUT : some weak classifiers are less efficient than others. THEN : introduce weights !

The classification (steganalysis) process is now:

- Take an image to analys (i.e. classify in cover or stego),
- **2** Extract the features vector $\mathbf{x} \in \mathbb{R}^d$,
- Occide to classify cover or stego (weighted vote):

$$C(\mathbf{x}) = \begin{cases} 0 \text{ if } \sum_{l=1}^{l=L} \alpha_l h_l(\mathbf{x}) \leq \frac{\sum_{l=1}^{l=L} \alpha_l}{2}, \\ 1 \text{ otherwise.} \end{cases}$$

The classification (steganalysis) process is now:

- Take an image to analys (i.e. classify in cover or stego),
- **2** Extract the features vector $\mathbf{x} \in \mathbb{R}^d$,
- Occide to classify cover or stego (weighted vote):

$$C(\mathbf{x}) = \begin{cases} 0 \text{ if } \sum_{l=1}^{l=L} \alpha_l h_l(\mathbf{x}) \leq \frac{\sum_{l=1}^{l=L} \alpha_l}{2}, \\ 1 \text{ otherwise.} \end{cases}$$

How to calculate those weights with a small computational complexity ?

Steganalysis by Ensemble Classifiers - Marc Chaumont - ICIP'2012 Boosting by regression

Analytic expression of the weights

During learning step:

$$\{\alpha_I\} = \arg_{\{\alpha_I\}} \min P_E.$$

- simplify P_E expression,
- least squares problem
 ⇒ linear system A.X = B with X the weights :

$$A_{i,j} = \sum_{n=1}^{n=N} h_i(\mathbf{x}_n) h_j(\mathbf{x}_n), \quad B_i = \sum_{n=1}^{n=N} h_i(\mathbf{x}_n) y_n.$$

... solved thanks to a library of linear algebra.

Order of complexity unchanged.

Steganalysis by Ensemble Classifiers - Marc Chaumont - ICIP'2012 Post-selection of features

Outline

- 2 The Kodovsky's Ensemble Classifiers
- Boosting by regression
- Post-selection of features
- 5 Experiments

Reducing the dimension with few computations

Remember: The classification (steganalysis) process is now:

- Take an image to analys (i.e. classify in cover or stego),
- **2** Extract the features vector $\mathbf{x} \in \mathbb{R}^d$,
- Occide to classify cover or stego (weighted vote):

$$C(\mathbf{x}) = \begin{cases} 0 \text{ if } \sum_{l=1}^{l=L} \alpha_l h_l(\mathbf{x}) \leq \frac{\sum_{l=1}^{l=L} \alpha_l}{2}, \\ 1 \text{ otherwise.} \end{cases}$$

Selection of features: Pre-selection may cost a lot. What about post-selection? Once a weak classifier learned : suppress the features reducing P_E :

Algorithm :

- Compute a score for each feature; first database reading,
- ② Define an order of selection of the features,
- So Find the best subset (lowest P_E); second database reading.

Order of complexity unchanged.

Steganalysis by Ensemble Classifiers - Marc Chaumont - ICIP'2012 Experiments

Outline

- 2 The Kodovsky's Ensemble Classifiers
- Boosting by regression
- Post-selection of features
- 5 Experiments

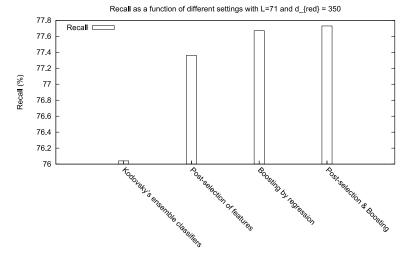
Steganalysis by Ensemble Classifiers - Marc Chaumont - ICIP'2012 Experiments

Experimental conditions

- 10 000 greyscale images (512×512, BOSS database),
- The same 10 000 embedded at 0.4 bpp with HUGO,
- Feature vector dimension d = 5330 features (HOLMES subset),
- 5 different splits, 5 different seeds,
- HUGO: "Using High-Dimensional Image Models to Perform Highly Undetectable Steganography"
 T. Pevný, T. Filler, and P. Bas, in <u>Information Hiding, IH'2010</u>.
 - HOLMES: "Steganalysis of Content-Adaptive Steganography in Spatial Domain"

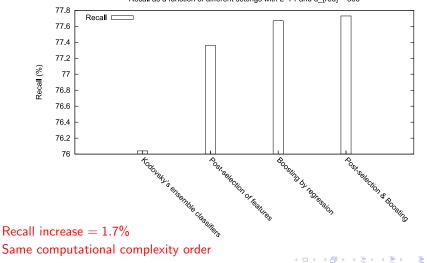
J. Fridrich, J. Kodovský, V. Holub, and M. Goljan, in Information Hiding, IH'2011.

Steganalysis results



つくぐ

Steganalysis results



Recall as a function of different settings with L=71 and d {red} = 350

Outline

- 2 The Kodovsky's Ensemble Classifiers
- Boosting by regression
- 4 Post-selection of features
- 5 Experiments

Summary

- Two propositions for the Kodovský steganalyzer:
 - boosting by regression,
 - post-selection of features.
- Significant recall increase (1.7%)
- No change in computational complexity order

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Annex: Metrics (1)

Distance between the two classes:

$$c_1^{(l)}[j] = \frac{|\mu_1[j] - \mu_0[j]|}{\sqrt{\sigma_1^2[j] + \sigma_0^2[j]}}$$

• Influence of a feature on the final correlation/decision (= dot product) used to classify:

$$c_{2}^{(l)}[j] = \sum_{i=1}^{i=N} count(\mathbf{x}_{i}^{(l)}[j], \mathbf{w}^{(l)}[j], y_{i}),$$

with:

$$count(x, w, y) = \begin{cases} 1 \text{ if } [(x.w > 0 \text{ and } y = 1) \\ or (x.w < 0 \text{ and } y = 0)], \\ 0 \text{ otherwise.} \end{cases}$$

$$c_{3}^{(l)}[j] = \sum_{i=1}^{i=N} \frac{count(\mathbf{x}_{i}^{(l)}[j], \mathbf{w}^{(l)}[j], y_{i})}{\sum_{k=1}^{k=d_{red}} count(\mathbf{x}_{i}^{(l)}[k], \mathbf{w}^{(l)}[k], y_{i})}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Annex: Metrics (2)

• Feature correlation with the class:

$$c_{4}^{(l)}[j] = corr(\mathbf{x}^{(l)}[j], y)$$

$$= \frac{\sum_{i=1}^{i=N} \left(\mathbf{x}_{i}^{(l)}[j] - \overline{\mathbf{x}^{(l)}[j]}\right) (y_{i} - \overline{y})}{\sqrt{\sum_{i=1}^{i=N} \left(\mathbf{x}_{i}^{(l)}[j] - \overline{\mathbf{x}^{(l)}[j]}\right)^{2}} \sqrt{\sum_{i=1}^{i=N} (y_{i} - \overline{y})^{2}}}$$

• Feature correlation with the weak classifier:

$$c_5^{(l)}[j] = corr(\mathbf{x}^{(l)}[j].\mathbf{w}^{(l)}[j], y).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Annex: P_E in the Boosting by Regression

During learning step:

$$\{\alpha_l\} = \underset{\{\alpha_l\}}{\arg\min P_E}.$$
$$P_E = \frac{1}{N} \sum_{i=1}^{i=N} \left(f\left(\sum_{l=1}^{l=L} \alpha_l h_l(\mathbf{x}_i)\right) - y_i\right).$$

with f a thresholding function defined by:

$$f: \mathbb{R} \to \{0, 1\}$$
$$x \to f(x) = \begin{cases} 0 \text{ if } x \leq \frac{\sum_{l=1}^{l=1} \alpha_l}{2}, \\ 1 \text{ otherwise.} \end{cases}$$

Let's simplify, P_E :

$$P_E \approx \frac{1}{N} \sum_{i=1}^{i=N} \left(\sum_{l=1}^{l=L} \alpha_l h_l(\mathbf{x}_i) - y_i \right)^2.$$

 \Rightarrow least squares problem ... solved thanks to a library of linear algebra.