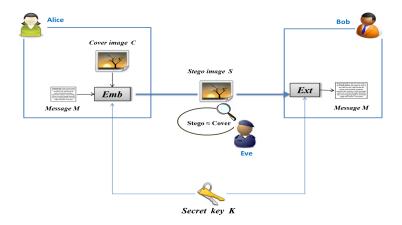


Technical Points about Adaptive Steganography by Oracle (ASO)

Sarra Kouider, Marc Chaumont, William Puech


E-mail: firstname.surname@lirmm.fr http://www.lirmm.fr/~kouider

< ∃ > < ∃ >

The proposed ASO scheme Steganography by database Experimental results Conclusion

Steganography vs Steganalysis Adaptive steganography

Steganography vs Steganalysis

э

イロト イロト イヨト イヨト

The proposed ASO scheme Steganography by database Experimental results Conclusion

Steganography vs Steganalysis Adaptive steganography

Adaptive steganography

Goal

Transmit m bits in a cover object X of n elements by making small perturbations.

Solution

• Defining the embedding impact: $D(\mathbf{X}, \mathbf{Y}) = \| \mathbf{X} - \mathbf{Y} \|_{\rho} = \sum_{i=1}^{n} \rho_i | x_i - y_i |.$

 Find the stego object Y that minimizes the distortion function D under the constraint of the fixed payload: Y = Emb(X, m) = arg min D(X, Y).

 \Rightarrow HUGO [Pevný et al., IH 2010].

 \Rightarrow MOD [Filler et al., SPIE 2011].

・ロト ・四ト ・ヨト ・ヨト

э

The proposed ASO scheme Steganography by database Experimental results Conclusion

Steganography vs Steganalysis Adaptive steganography

Adaptive steganography

Goal

Transmit m bits in a cover object X of n elements by making small perturbations.

Solution

- Defining the embedding impact: $D(\mathbf{X}, \mathbf{Y}) = \| \mathbf{X} - \mathbf{Y} \|_{\rho} = \sum_{i=1}^{n} \rho_i | x_i - y_i |.$
- Find the stego object Y that minimizes the distortion function D under the constraint of the fixed payload: Y = Emb(X, m) = arg min D(X, Y).

 \Rightarrow HUGO [Pevný et al., |H 2010].

 \Rightarrow MOD [Filler et al., SPIE 2011].

・ロト ・四ト ・ヨト ・ヨト

3

The proposed ASO scheme Steganography by database Experimental results Conclusion

Outline

- 2 The proposed ASO scheme
- 3 Steganography by database
- 4 Experimental results

Steganography vs Steganalysis Adaptive steganography

A B A A B A

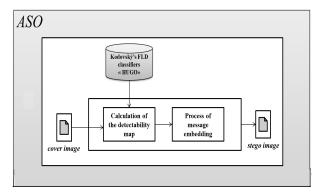
4 A N

The detectability map computation Embedding process ASO's design

1 Introduction

2 The proposed ASO scheme

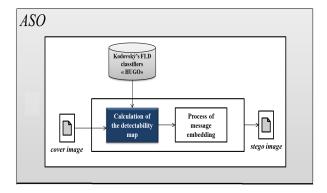
- The detectability map computation
- Embedding process
- ASO's design


3 Steganography by database

4 Experimental results

5 Conclusion

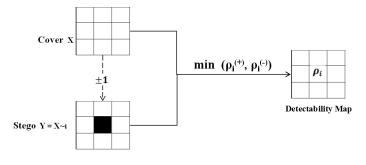
The detectability map computation Embedding process ASO's design


The proposed ASO scheme

The Adaptive Steganography by Oracle (ASO).

The detectability map computation Embedding process ASO's design

The detectability map computation


S. Kouider et al. (LIRMM, France)

EUSIPCO 2012

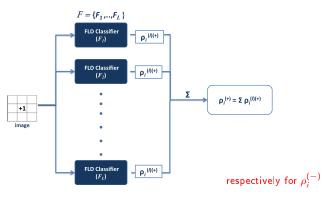
イロト 不得下 イヨト イヨト

The detectability map computation Embedding process ASO's design

The detectability map computation

For each pixel $(x_i) \Longrightarrow \rho_i = min(\rho_i^{(+)}, \rho_i^{(-)})$.

📕 🛛 T. Pevný, T. Filler, and P. Bas


Using High-Dimensional Image Models to perform Highly Undetectable Steganography. In IH'12th International Workshop. LNCS. Calgary, Canada. June 28-30, 2010.

S. Kouider et al. (LIRMM, France)

The detectability map computation Embedding process ASO's design

The detectability map computation

Our proposed approach :

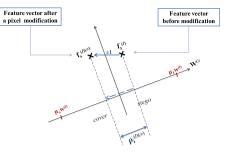
$$\rho_i^{(+)} = \sum_{l=1}^{L} \rho_i^{(l)(+)}$$

くぼう くほう くほう

The detectability map computation Embedding process ASO's design

The detectability map computation

Our proposed approach :


For each FLD classifier (F_l)

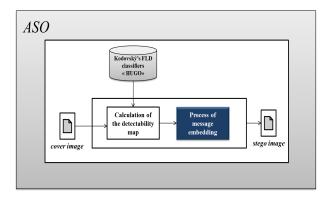
•
$$\rho_i^{(l)(+)} = \frac{\mathbf{w}^{(l)} \cdot (\mathbf{f}_{\mathbf{x} \sim \mathbf{x}_i}^{(l)(+)} - \mathbf{f}_{\mathbf{x}}^{(l)})}{\mathbf{s}^{(l)}}$$

• $\rho_i^{(l)(-)} = \frac{\mathbf{w}^{(l)} \cdot (\mathbf{f}_{\mathbf{x} \sim \mathbf{x}_i}^{(l)(-)} - \mathbf{f}_{\mathbf{x}}^{(l)})}{\mathbf{s}^{(l)}}$

where

 $f_x^{(l)}$: Feature vector before modification.

 $f_{x_{\sim}x_{i}}$ (1)(±). Feature vector after a pixel modification ±1.



・ 同 ト ・ ヨ ト ・ ヨ ト

S. Kouider et al. (LIRMM, France)

The detectability map computation Embedding process ASO's design

Embedding process

S. Kouider et al. (LIRMM, France)

EUSIPCO 2012

э

イロン イロン イヨン イヨン

The detectability map computation Embedding process ASO's design

EUSIPCO 2012

Embedding Process

• Defining the embedding impact: $D(\mathbf{X}, \mathbf{Y}) = \| \mathbf{X} - \mathbf{Y} \|_{\rho} = \sum_{i=1}^{n} \rho_i | x_i - y_i |.$

 Find the stego object Y that minimizes the distortion function D under the constraint of a fixed payload: Y = Emb(X, m) = arg min D(X, Y).

⇒ Simulating the optimal embedding algorithm.

or

 \Rightarrow Using the practical STC algorithm.

T. Filler, J. Judas, and J. Fridrich

Minimizing embedding impact in steganography using trellis-coded quantization. In SPIE. San Jose, CA, January 18-20, 2010.

The detectability map computation Embedding process ASO's design

ASO's design

- Oracle learns on 5000 covers and 5000 HUGO stego images from BOSSBase v1.00.
- Each image is represented by a vector of d = 5330 MINMAX features [Fridrich et al., 2011].
- Personal implementation of the FLD ensemble classifiers with d_{red} = 30, and L = 30 classifiers.
- Complexity reduction trick (from 2 years to 1.5 days) for 10000 images.

General scheme of ASO.

J. Fridrich, Kodovský, V. Holub, and M. Goljan Breaking HUGO - the Process Discovery. In IH. Prague, Czech Republic, May 18-20, 2011.

12/23

The steganography by database paradigm Security measure

1 Introduction

- 2 The proposed ASO scheme
- Steganography by database
 The steganography by database paradigm
 Security measure

4 Experimental results

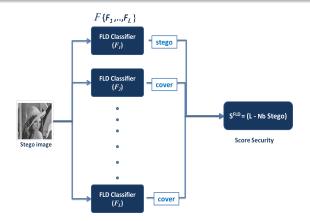
5 Conclusion

The steganography by database paradigm Security measure

The steganography by database paradigm

Paradigm:

- Requires a cover database at the input of the embedding process, instead of just one image.
- Preserves both cover image and sender's database distributions.


May output:

- One stego images with the secret message (one-time database).
- Or multiple stego images with different messages (batch steganography).

()→ ()→

The steganography by database paradigm Security measure

The proposed security measure

high score $S^{FLD} \Rightarrow$ high stego image security.

ASO's security performance Security measure performance

Introduction

- 2 The proposed ASO scheme
- 3 Steganography by database

4 Experimental results

- ASO's security performance
- Security measure performance

5 Conclusion

< ∃ >

ASO's security performance Security measure performance

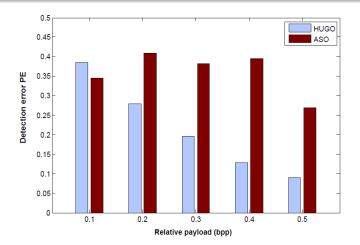
A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

EUSIPCO 2012

Evaluation protocol: ASO's security performance

- Blind steganalysis (ASO vs HUGO)
 - Kodovský ensemble classifier.
 - BossBase v1.00 database with 10000 512 \times 512.
 - Rich Model SRMQ1 of 12753 features [Fridrich et al., 2012].
- Detection Error:

$$P_{E} = \min_{P_{FA}} \frac{1}{2} \left(P_{FA} + P_{MD} \left(P_{FA} \right) \right).$$



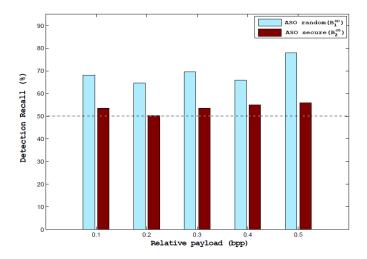
J.J. Fridrich, and J. Kodovský

Rich Models for steganalysis od Digital Images. In IEEE Transactions on Information Forensics and security. 2012.

ASO's security performance Security measure performance

ASO's security performance

< ∃⇒


ASO's security performance Security measure performance

Evaluation protocol: Security measure performance

- OC-SVM machine learning with Gaussian kernel.
- Learning phase conducted on BossBase v1.00 cover images.
- $\mathcal{B}_1^{(\alpha)}$: 500 randomly selected ASO's stego images.
- $\mathcal{B}_2^{(\alpha)}$: 500 selected ASO's stego images using the S^{FLD} security criterion.

ASO's security performance Security measure performance

Security measure performance

S. Kouider et al. (LIRMM, France)

EUSIPCO 2012

(日) (四) (日) (日) (日)

🕕 Introduction

- 2 The proposed ASO scheme
- 3 Steganography by database
- 4 Experimental results

5 Conclusion

・ 同 ト ・ ヨ ト ・ ヨ ト

Conclusion

Summary

- A new secure adaptive embedding algorithm: ASO.
- Presentation of the steganography by database paradigm.
- A selection criterion for the stego images.

Future work

- Security evaluation with a pooled steganalysis.
- Other security criterion.
- Position with game theory aspects.

A B A A B A

Thanks

for your attention

イロト イヨト イヨト イヨト

э

EUSIPCO 2012