
HAL Id: lirmm-00839024
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00839024

Submitted on 10 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Asynchronous Forward Bounding Revisited
Mohamed Wahbi, Redouane Ezzahir, Christian Bessiere

To cite this version:
Mohamed Wahbi, Redouane Ezzahir, Christian Bessiere. Asynchronous Forward Bounding Revisited.
CP: Principles and Practice of Constraint Programming, Sep 2013, Uppsala, Sweden. pp.708-723,
�10.1007/978-3-642-40627-0_52�. �lirmm-00839024�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00839024
https://hal.archives-ouvertes.fr

Asynchronous Forward Bounding Revisited

Mohamed Wahbi1, Redouane Ezzahir2, Christian Bessiere3

mohamed.wahbi@emn.fr, red.ezzahir@gmail.com,
bessiere@lirmm.fr

1 TASC (INRIA/CNRS), Mines Nantes, France
2 ENSA Agadir, University Ibn Zohr, Morroco

3 University of Montpellier, France

Abstract. The Distributed Constraint Optimization Problem (DCOP) is a power-
ful framework for modeling and solving applications in multi-agent coordination.
Asynchronous Forward Bounding (AFB BJ) is one of the best algorithms to solve
DCOPs. We propose AFB BJ+, a revisited version of AFB BJ in which we refine
the lower bound computations. We also propose to compute lower bounds for the
whole domain of the last assigned agent instead of only doing this for its current
assignment. This reduces both the number of messages needed and the time fu-
ture agents remain idle. In addition, these lower bounds can be used as a value
ordering heuristic in AFB BJ+. The experimental evaluation on standard bench-
mark problems shows the efficiency of AFB BJ+ compared to other algorithms
for DCOPs.

1 Introduction

Distributed Constraint Optimization Problem (DCOP) is a powerful framework to
model a wide range of applications in multi-agent coordination such as distributed
scheduling [14], distributed planning [4], distributed resource allocation [17], target
tracking in sensor networks [15] distributed vehicle routing [12], etc. A DCOP con-
sists of a group of autonomous agents, where each agent has an independent comput-
ing power. Each agent owns a local constraint network. Variables owned by different
agents are connected by constraints. These constraints specify a non-negative constraint
cost for combinations of values assigned to the variables they connect. In general, con-
straints or value assignments may be strategic information or private choice that should
not be revealed or delegated to other agents. Thus, each agent only has control on its
variables and only knows constraints that involve them. DCOP addresses problems in
which agents must, in a distributed manner, assign values to their variables such that
the sum of the constraint costs of all constraints is minimized.

Several complete algorithms for solving DCOPs have been proposed in the last
decade. The pioneer complete asynchronous algorithm is Adopt [15]. Later on, the
closely related BnB-Adopt [20] was presented. BnB-Adopt changes the nature of the
search from Adopt best-first search to a depth-first branch-and-bound strategy, ob-
taining better performance. Gutierrez and Meseguer show that some of the messages
exchanged by Adopt and BnB-Adopt turned out to be redundant [9]. By removing

these redundant messages they obtain more efficient algorithms: Adopt+ and BnB-
Adopt+. The algorithms mentioned so far perform assignments concurrently and asyn-
chronously. Thereby, the perception of agents on the variable assignments of other
agents is in general inconsistent.

Another category of algorithms for solving DCOPs is that of algorithms perform-
ing assignments sequentially and synchronously. The synchronous branch and bound
(SyncBB) [10] is the basic systematic search algorithm in this category. In SyncBB,
only the agent holding the token is allowed to perform an assignment while the other
agents remain idle. Once it assigns its variables, it passes on the token and then remains
idle. Thus, SyncBB does not make any use of concurrent computation. No-Commitment
Branch and Bound (NCBB) is another synchronous polynomial-space search algorithm
for solving DCOPs [5]. To capture independent sub-problems, NCBB arranges agents
in constraint tree ordering. NCBB incorporates, in a synchronous search, a concurrent
computation of lower bounds in non-intersecting areas of the search space based on the
constraint tree structure.

Another attempt to incorporate a concurrent computation in a synchronous search
was applied in Asynchronous Forward Bounding (AFB) [6]. AFB can be seen as an
improvement of SyncBB where agents extend a partial assignment as long as the lower
bound on its cost does not exceed the global upper bound (i.e., the cost of the best solu-
tion found so far). In AFB, the lower bounds are computed concurrently by unassigned
agents. Thus, each synchronous extension of the current partial assignment is followed
by an asynchronous forward bounding phase. Forward bounding propagates the bounds
on the cost of the partial assignment by sending to all unassigned agents copies of the
extended partial assignment. When the lower bound of all assignments of an agent ex-
ceeds the upper bound, it performs a simple backtrack to the previous assigned agent.
Later, the AFB has been enhanced by the addition of a backjumping mechanism, result-
ing in the AFB BJ algorithm [7]. The authors report that AFB BJ, especially combined
with the minimal local cost value ordering heuristic performs significantly better than
other DCOP algorithms.

In this paper, we propose AFB BJ+, a revisited version of AFB BJ in which we
refine the lower bound computations. We also propose to compute lower bounds for
the whole domain of the last assigned agent instead of only doing this for its current
assignment. Thus, an unassigned agent computes the lower bound for each value in the
domain of the agent requesting it. This reduces both the number of messages needed
and the time future agents remain idle. Hence, we take all possible advantage from
the asynchronicity of the system. In addition, these lower bounds are used as a value
ordering heuristic in AFB BJ+. Thus, an agent assigns first values with minimal lower
bound.

This paper is structured as follows. Section 2 gives the necessary background on
DCOP and a short description of the AFB algorithms. We present the AFB BJ+ algo-
rithm in Section 3. Correctness proofs are given in Section 4. We report experimental
results in Section 5. Finally, we conclude in Section 6.

2 Background

2.1 Basic definitions and notations

The Distributed Constraint Optimization Problem (DCOP) has been formalized in [15]
as a quadruple (A,X ,D, C), where A is a set of p agents {A1, . . . , Ap}, X is a set
of n variables {x1, . . . , xn}, where each variable xj is controlled by one agent in A.
D = {D1, . . . , Dn} is a set of n domains, where Dj is the set of possible values to
which variable xj may be assigned. Only the agent controlling a variable can assign a
value to it and has knowledge of its domain. C = {cij : Di × Dj → R+} is a set of
binary utility constraints (i.e., soft constraints). Each utility constraint cij ∈ C is defined
over the pair of variables {xi, xj} ⊆ X . We say that xi and xj are neighbors.

For simplicity purposes, we consider a restricted version of DCOP where each agent
holds exactly one variable (p = n). Thus, we use the terms agent (Aj) and variable (xj)
interchangeably and we identify the agent ID with its variable index (j). Furthermore,
all agents store a unique total order ≺ on agents. Agents appearing before an agent
Aj ∈ A in the total order are the higher priority agents and those appearing after Aj

are the lower priority agents. The order ≺ divides the set Γ(xj) of neighbors of Aj

into higher priority neighbors Γ
−
(xj), and lower priority neighbors Γ

+

(xj). For sake of
clarity, we assume that the total order is the lexicographic ordering [A1, A2, . . . , An].
In the rest of the paper, we consider a generic agent Aj ∈ A. Thus, j is the level of
agent Aj .

An assignment for agent Aj is a tuple(xj , vj), where vj is a value from Dj . Aj

maintains a counter tj and increments it whenever it changes its value. The value of the
counter tags each generated assignment. When comparing two assignments for the same
agent, the most up to date is the one with the greatest tag. A current partial assignment
(CPA) is an ordered set of assignments, e.g., Y = [(x1, v1), . . . ,(xj , vj)] s.t. x1≺ . . .≺
xj . The set of all variables assigned in Y is denoted by var(Y) = {x1, . . . , xj}. A time-
stamp associated to a CPA Y is an ordered list of counters [t1, t2, . . . , tj] where ti
is the tag of the variable xi s.t. xi ∈ var(Y) [16,19]. When comparing two CPAs, the
strongest one is that associated with the lexicographically greater time-stamp. That is,
the CPA with greatest value on the first counter on which they differ, if any, otherwise
the longest one. Let Y = [(x1, v1), . . . ,(xi, vi), . . . ,(xj , vj)] be a CPA, the subset of
Y including all variables down to xi is denoted by Y i = [(x1, v1), . . . ,(xi, vi)].

The guaranteed cost of a CPA Y , denoted by gc(Y), is the sum of all utility con-
straints cij s.t. xi and xj are assigned in Y (Eq. 1).

gc(Y) =
∑
cij∈C

cij(vi, vj) | (xi, vi),(xj , vj)∈ Y . (1)

A full assignment Y is a CPA that involves all variables of the problem, i.e.,
var(Y) = X . The goal of a DCOP solver is to distributively find a full assignment
Y ∗ with minimal cost, that is, Y ∗ = arg min

Y
{gc(Y) | var(Y) = X}.

In the following, we will present standard AFB algorithms. We will use a nomen-
clature of messages and data structures different from those used in the original paper
[7] in order to be closer to those used in our approach.

Aj−1 Aj Aj+1 Ak
.ok?B

fb?B

lbB

backB

Bok? :〈Y =[(x1, v1), . . . ,(xj, vj)], gc(Y)〉
Bfb? :〈Y =[(x1, v1), . . . ,(xj, vj)]〉
Blb:〈Y =[(x1, v1), . . . ,(xj, vj)], lbk(Y)〉
Bback:〈Y =[(x1, v1), . . . ,(xj−1, vj−1)]〉

Fig. 1: The messages exchanged by the AFB algorithm.

2.2 Asynchronous Forward Bounding (AFB) algorithm

In Asynchronous Forward Bounding (AFB) [6], agents assign their variables sequen-
tially and unassigned agents asynchronously try to compute lower bounds on the CPA,
say Y . Agents perform assignments of their variables only when they hold the current
partial assignments Y (i.e., Y is the token). Each extension of the CPA Y , is followed
by a Forward Bounding (FB) phase. The FB phase is performed by sending forward
copies of Y to all unassigned agents. In the FB phase, it is required from unassigned
agents to compute a lower bound on the cost increment caused by an assignment of
their variables on Y . Once computed, the lower bounds are sent back to the agent that
sent the request, i.e., the last assigned agent in Y . Due to the asynchronous nature of
the FB phase, multiple CPAs may be present at a given moment in time. However, the
time-stamp mechanism is used by agents to discard obsolete ones.

The lower bounds collected from unassigned agents are used to compute a lower
bound on the CPA. When the computed lower bound becomes larger than the current
upper bound (i.e., the cost of the best full CPA found so far), the CPA is pruned. Con-
cretely, whenever agent Aj receives a valid lower bound from an unassigned agent, it
adds it to that received from other agents and checks if the cumulative lower bound
exceeds the upper bound. In such a case, Aj tries to assign an alternative value to its
variable. If such value is not available, it needs to backtrack. When agent Aj takes the
decision to backtrack, it sends the CPA (Y j−1) backwards to the last agent assigned on
it (i.e., Aj−1). However, if Aj is the first agent in the ordering, it ends the search pro-
cess after claiming this to other agents. The AFB algorithm then reports that the optimal
solution is the best full CPA found so far.

Fig. 1 shows the messages exchanged by the AFB algorithm.4 AFB agents exchange
the following types of messages:

ok? : a message which contains the CPA Y with its cost gc(Y). When Aj assigns its
variable, it sends this message to the next agent in the ordering (Aj+1).

back : a message which contains an inconsistent CPA. It is sent back to agent Aj−1

requiring it to change its assignment.
fb? : a message which contains a copy of an ok? message. It is sent by Aj to unas-

signed agents to compute a lower bound on the CPA it carries.
lb : a message which contains a lower bound on the current partial assignment. It is

sent as response to a fb? message.

4 The names of the message types here are closer to that used in our approach and then different
from that used in the original AFB paper [6].

The computation of lower bounds on AFB is performed as follows. In a preprocess-
ing step, Aj computes the minimal future cost estimation for each possible value in its
domain incurred by every lower priority agent Ak (Eq. 2). fcj(vj) is a lower bound
on the cost of constraints involving the assignment(xj , vj) and all its lower priority
neighbors. Agents compute these estimations only once and store them.

fcj(vj) =
∑

xk∈Γ+(xj)

min
vk∈Dk

{cjk(vj , vk)}. (2)

Given a current partial assignment Y i, and an unassigned agent Aj , the local cost
of assigning a value vj to Aj is the sum of the constraints costs of this value with all
assignments in Y i s.t. i < j (Eq. 3).

lcj(Y
i, vj) =

∑
(xh,vh)∈Y i s.t. h≤i<j

chj(vh, vj) (3)

Summing the local cost of an assignment(xj , vj) and the minimal future cost in-
curred by lower priority neighbors provides a future cost of an eventual extension of Y i

with(xj , vj). The lower bound of Y i on a unassigned agent (Aj) is the minimal future
cost over all its values (Eq. 4). Thus, whenever a higher priority agent Ai requires from
Aj to compute a lower bound on a CPA Y i, it responds by sending back the minimal
lower bound of Y i over all values in its domain, i.e., lbj(Y i).

lbj(Y
i) = min

vj∈Dj

{lcj(Y i, vj) + fcj(vj)}. (4)

By collecting lower bounds from lower priority agents, agent Aj can compute a
lower bound on its CPA Y j . The lower bounds on a CPA Y j reported by lower priority
agents are accumulated and summed up with the guaranteed cost of Y j to provide a
lower bound on the cost of a complete extension of Y j (Eq. 5).

lb(Y j) = gc(Y j) +
∑

Ak�Aj

lbk(Y j) (5)

If the computed lower bound lb(Y j) exceeds the current known upper bound (UBj),Aj

needs to change its current value vj on Y j by a new value v′j generating a stronger CPA.
Then, search continues with the generated CPA. If Aj has already tested all possible
values for its variable, it backtracks, asking the previous agent in the ordering (Aj−1)
to assign a new value to its variable through a back message.

2.3 Asynchronous Forward Bounding with CBJ (AFB BJ)

The Asynchronous Forward Bounding with backjumping (AFB BJ) was obtained by
adding a backjumping mechanism to standard AFB [7]. When the lower bounds of all
values exceed the upper bound, instead of backtracking to the most recently assigned
variable, AFB BJ tries to jump to the last assigned agent such that its re-assignment
could possibly lead to a solution. To this end, agents in AFB BJ use some maintained
data structures that we introduce in the following. Another feature of AFB BJ is that the
agent that performs an assignment, uses the minimal local cost (Eq. 3) as value ordering
heuristic.

When an agent Aj assigns its variable, it sends an ok? message to the next agent
in the ordering. In AFB BJ, the ok? message contains the current partial assignment
Y j and an array of guaranteed costs, one for each level. gc(Y j)[j] is the cost of Y j =
[(x1, v1), . . . ,(xj , vj)] where gc(Y j)[0] = 0. For each i ∈ 1..j−1, gc(Y j)[i] equals
that received from Aj−1, i.e., gc(Y j−1)[i].

gc(Y j)[j] = gc(Y j) = gc(Y j−1) + lcj(Y
j−1, vj) (6)

In order to perform backjumping, AFB BJ agents compute a lower bound for each
level on the CPA. Concretely, instead of computing the lower bound for the whole
received CPA Y i, Aj computes it for each Y h where h ≤ i < j. To this end, Aj first
computes the local cost for each level h (Eq. 7).

lcj(Y
i, vj)[h] = lcj(Y

h, vj) (7)

The lower bound at level h (Eq. 8) is then the minimal lower bound of Y h over all
values in Dj . When a higher agent Ai requests from Aj to compute its lower bound on
a CPA Y i, it answers by sending an array of lower bounds, one for each level h where
h ≤ i < j.

lbj(Y
i)[h] = min

vj∈Dj

{lcj(Y i, vj)[h] + fcj(vj)}. (8)

When Aj successfully assigns a value vj to its variable, it sends forward copies of
the extended CPA, Y j , to each unassigned agentAk and awaits for receiving from them
the array of lower bounds. The lower bounds denoted by lbk(Y j), is an array in which
the ith element (1 ≤ i ≤ j) contains a lower bound on the cost of assigning a value
to Ak with respect to the assignment on Y i (Eq. 8). Once Aj receives lower bounds
arrays, it computes a lower bound on the cost of any full assignment (Eqs. 9).

lb(Y j)[i] = gc(Y j)[i] +
∑

Ak�Aj

lbk(Y j)[i]. (9)

These lower bounds are used by the AFB BJ to determinate the backjumping level.
For more details about the way in which the level of backjumping is calculated we refer
the reader to [7].

3 Asynchronous Forward Bounding revisited

AFB BJ+ is a revisited version of AFB BJ in which we propose a refinement of the
lower bound computations. We also propose to compute lower bounds for the whole
domain of the last assigned agent instead of only doing this for its current assignment.
Thus, an unassigned agent computes the lower bound for each value in the domain of
the agent requesting it. In addition, these lower bounds are used as a value ordering
heuristic.

3.1 Lower bound refinement

When an agentAi successfully assigns a value vi to its variable, it sends forward copies
of the extended CPA, Y i, to each unassigned agent and awaits for receiving from them

the array of lower bounds. When agent Aj receives this CPA Y i (through a fb? mes-
sage), it computes the lower bound for each level h where h ≤ i < j (Eq. 8). When
computing the lower bound of level h only assignments on Y h are considered. We also
add the cost of assigning vi to xi (i.e.,(xi, vi)) to this lower bound. Moreover, we also
add the minimal cost of constraints with variables (xm) between xh and xi. Thus, in-
stead of being a lower bound on a possible extension of Y h by a possible assignment
of Aj , it will be a lower bound on a possible extension of Y h by both Ai and Aj and
agents between xh and xi. Hence, we revise Eq. 8 to get Eq. 10 where the first and the
last terms remain as in the original equation.

lbj(Y
i)[h] = min

vj∈Dj

{
lcj(Y

i, vj)[h] +

i−1∑
m=h+1

min
vm∈Dm

{cmj(vm, vj)}

+ cij(vi, vj) + fcj(vj)

} (10)

At first glance, it seems that this will require more computational effort from unas-
signed agents, however it is not the case. One can simply compute the array of lower
bounds, as is already done in AFB BJ, and at the end it adds to each level the cost with
variable xi. We obtain the addition of the third term, i.e., cij(vi, vj). To get the quantity
to be added by the second term (i.e.,

∑i−1
m=h+1 min

vm∈Dm

{cmj(vm, vj)}), we use the same

principle used in Eq. 2. Agents compute for each value the estimations of each level
only once and store them.

The refinement of the lower bounds computation allows agents to get more accurate
lower bounds on their assignments. Thus, the accumulated lower bound at each level
is increased. This mechanism allows earlier detection of CPAs with lower bound larger
than the upper bound. In addition, by doing this, the back message will be sent as high
as possible in the agent ordering, thus saving unnecessary search effort.

3.2 Lower bounds for the whole domain

In AFB BJ, the forward bounding phase is very expensive in term of communication
load. FB requires for each value in Dj , 2× (n− j) messages (a fb? and a lb message
for each lower agent). Thus, FB needs, for each CPA Y j−1, 2×|Dj |×(n−j) messages.

In AFB BJ+, we propose to compute lower bounds for the whole domain of the last
assigned agent instead of only computing this for its current assignment. When an agent
receives a fb? message it answers by sending back a two-dimensional array, an array for
each value in the domain of the receiver agent. Hence, the forward bounding phase will
need, for each CPA Y j−1, only 2(n − j) messages, 2 messages for each lower agent.
When agent Aj receives a fb? from agent Ai, instead of computing lbj(Y i)[h] only for
the current value of xi, Aj computes it for each value vi in Di, lbj(Y i−1)[h][vi] using
Eq. 11.5

∀h ∈ 1..i-1, ∀vi ∈ Di, lbj(Y
i−1)[h][vi] = lbj(Y

i−1 ∪(xi, vi))[h] (11)

5 If xi and xj are not neighbors, a simple array is sufficient since the lower bound is the same
for all values in Di. Moreover, xj does not known Di.

3.3 Avoiding redundancy

Another feature of the AFB BJ+ algorithm is that agents retain and maintain the re-
ceived lower bounds to avoid redundant messages. When an agent Aj receives a fb?
message from agent Ai, instead of clearing all information it stores (namely the col-
lected lower bounds and the computed ones with their local costs), it clears only irrel-
evant information w.r.t the received CPA Y i. Concretely, Aj compares the time-stamp
of the received CPA with its CPA. If its CPA is stronger than the received one, the mes-
sage is discarded. Otherwise, Aj gets the index h ≤ i of the first counter on which they
differ. All local costs and lower bounds on the current partial assignment Y h−1 remain
valid. Thus, agent Aj will not re-compute lower bounds for this part.

The same thing is done for ok? messages. Whenever agent Aj receives a CPA
Y j−1, it updates all stored information by only removing parts that are not compatible
with Y j−1. When Aj succeeds in assigning its variable, it sends forward copy of the
extended CPA Y j in fb? messages to its lower agents. However, some of these mes-
sages are redundant. To avoid this, each agent Aj stores, for each lower priority agent
Ak, the agent which is the closest to Aj in the neighbors of Ak higher than Aj . As long
as the assignment of such agent or agents higher than him were not updated, there is
no need to send fb? message to Ak. Thus, redundant messages and computations are
saved. Moreover, the agent assigning its variable has more accurate lower bounds for
all values in its domain. As long as the new complete array of lower bounds has not
yet been received, the remaining valid part can be used as a lower bound estimation
for each value in the current domain using Eq. 12. h is the lowest valid level for lower
bound received from Ak.

lb(Y j) = gc(Y j) +
∑
k�j

lbk(Y j−1)[h][vj] s.t. (xj , vj)∈ Y j (12)

3.4 Promising value ordering heuristic

Unlike AFB BJ that uses minimal local cost as value ordering heuristic, an AFB BJ+

agent uses a different strategy for reordering values in its current domain. All compu-
tations performed so far by unassigned agents to calculate lower bounds are used to
reorder values in the current domain. Thus, when receiving an ok? message, Aj com-
putes the lower bounds for all values in its domain using Eq. 12. Aj chooses to assign
first values with minimal lower bound. Then, instead of considering only costs with
past variable, both costs with past variables and estimations of costs on future vari-
ables are considered. We mimic an informed memory-bounded version of A∗, instead
of simulating an uninformed memory-bounded version of A∗.

3.5 AFB BJ+ description

Fig. 2 presents the pseudo-code of AFB BJ+ executed by every agent Aj . Agent Aj

maintains a variable UBj that stores the current upper-bound (the cost of the best solu-
tion found so far) initialized to +∞, v∗j that stores the value of Aj on the solution, Y
that stores the strongest received CPA, GC an array of size j− 1 that stores the guaran-
teed costs where GC[i] = gc(Y i), and lbk(Y)[] that stores the lower bounds received

procedure AFB-BJ+()
01. UBj ← +∞; v∗j ← empty; Y ← {}; GC[1..j−1]← [0, . . . , 0];
02. mustSendFB ← True;
03. foreach (Ak � Aj) do
04. foreach (vj � Dj) do lbk(Y)[0][vj]← min

vk∈Dk

{cjk(vj , vk)} ;

05. if (Aj = A1) then ExtendCPA() ;
06. while (¬end) do
07. msg ← getMsg();
08. if (msg.UB < UBj) then UBj ← msg.UB; v∗j ← vj ;
09. if (msg.Y is stronger than Y) then
10. Y ← msg.Y ; GC ← msg.GC ;
11. clear irrelevant lower bounds ;
12. switch (msg.type) do
13. ok? : mustSendFB ← true ; ExtendCPA() ;
14. back : Y ← Y j−1; ExtendCPA() ;
15. fb? : sendMsg : lb〈lbj(Y i)[], msg.Y 〉 to Ai ; /* Ai is msg sender */
16. lb : ProcessLB(msg);
17. stp : end← true;

procedure ExtendCPA()
18. vj ← arg min

v′j∈Dj

{lb(Y ∪ (xj , v
′
j))} ; /* Eq. 12 */

19. if (lb(Y ∪(xi, vi)) ≥ UBj) then Backtrack() ;
20. else
21. Y ← {Y ∪(xj , vj)}; tj ← tj + 1;
22. if (var(Y) = X) then
23. UBj ← gc(Y) ; /* Aj = An */
24. v∗j ← vj ;
25. Y ← Y j−1;
26. ExtendCPA() ;
27. else
28. sendMsg : ok?〈Y, GC, UBj〉 to Aj+1 ;
29. if (mustSendFB) then
30. foreach (Ak � Aj) do sendMsg : fb?〈Y, GC, UBj〉 to Ak ;
31. mustSendFB ← false ;

procedure Backtrack()
32. for (i← j-1 dowTo 1) do
33. if (lb(Y)[i−1] < UBj) then
34. sendMsg : back〈Y i, UBj〉 to Ai ; return;
35. broadcastMsg : stp〈UBj〉 ;
36. end← true;
procedure ProcessLB(msg)

37. lbk(Y
j)← msg.lb ; /* Ak is the sender of msg */

38. if (lb(Y j) ≥ UBj) then ExtendCPA() ;

Fig. 2: The AFB BJ+ algorithm running on agent Aj .

from a lower agent Ak. Since lbk(Y)[0][vj] depends only on the assignments of xj and
xk, it is initialized to min

vk∈Dk

{cjk(vj , vk)}. Thus, it is a valid lower bound for all CPAs

that contains(xj , vj). Eq. 2 is obtained by summing lbk(Y)[0][vj] for each lower agent
Ak.

AFB BJ+ starts by initializing the local data structures ofAj (lines 1-4).Aj then en-
ters in the waiting and processing message loop (line 6). Each received message holds a
CPAmsg.Y and its corresponding guaranteed costsmsg.GC. Due to the asynchronous
nature of the algorithm, some messages may be obsolete. Aj uses the time-stamping
mechanism to discard those messages (line 9). If the received CPA (msg.Y) is stronger
than Y , Aj updates Y and GC by the received ones (line 10). Then, Aj clears all ir-
relevant lower bounds computed or received so far (line 11). Agent Aj attaches to each
message it sends its UBj . The upper bound UBj and v∗j are updated when a received
message carries a new upper bound smaller than the stored one (line 8).

Upon receiving an ok? message, Aj marks that it must send fb? messages by set-
ting mustSendFB to true. Next, it attempts to extend the received CPA by calling
procedure ExtendCPA() (line 13).

When calling ExtendCPA(),Aj tries to find a value with the minimum lower bound
(Eq. 12) without exceeding UBj (lines 18-19). If such value does not exist, Aj back-
tracks (Backtrack() call, line 19). Otherwise, Aj extends the CPA by adding its new
assignment and increments its counter tj . If the resulting CPA includes assignments of
all agents (line 22), a solution is found and then the upper bound is updated. Instead of
broadcasting the new solution and its associated upper-bound, Aj calls ExtendCPA()
to continue the search (line 26). Since UBj is always attached to the exchanged mes-
sages, other agents will be informed of this new upper bound when continuing the
search. At the end of the search, the best assignment of Aj is stored in v∗j . If Aj is not
the last agent on the ordering, it sends the extended CPA to the next agent (line 28).
Afterwards, Aj sends fb? messages to all lower priority agents (lines 30-31).6

When Aj receives a fb? message, it computes for each value from the domain of
the sender a lower bound on the cost increment caused by adding an assignment to its
variable using Eq. 10. These lower bounds are sent back to the agent who sent the fb?
message through a lb message.

When Aj receives a valid lb message, it saves the attached lower bounds (line 37).
It checks if this new information causes the current partial assignment to exceed the
upper-bound. In such a case, Aj calls ExtendCPA() in order to change its assignment
(line 38).

AgentAj calls procedure Backtrack()whenever the lower bounds of all its values
exceed the upper-bound. When this occurs, Aj computes to which agent the CPA Y
should be sent to (the backtracking target). Aj goes over all candidates, from j − 1
down to 1, looking for the first agent it finds that its reassignment could lead to a full
assignment with a cost lower than UBj . This agent is the latest assigned agentAi where
lb(Y)[i−1] < UBj (line 33). If such an agent exists, Aj sends him a back message
(line 34). Otherwise, Aj reports this to other agents through stp messages (line 35) and
terminates its execution.

6 In our implementation the fb? messages are sent under certain conditions to avoid redundancy,
see Section 3.3.

4 Correctness proofs

Lemma 1. AFB BJ+ is guaranteed to terminate.

Proof. (Sketch) The proof is close to the one given in [19]. It can easily be obtained
by induction on the agent ordering that there will be a finite number of new generated
CPAs (at most dn, where n is the number of variables and d is the maximum domain
size), and that agents can never fall into an infinite loop for a given CPA. ut

To prove that AFB BJ+ is correct, we need to prove that the correctness inherent
to AFB BJ is not violated by the lower bound refinements and the non-broadcasting of
solution messages.

(Sketch) Assuming the correctness of AFB BJ, the lower bounds without refinement
terms are consistent. It is thus enough to prove that the costs included in the refinement
terms are not redundant. All constraints considered in the calculation of the second and
third terms of Eq. 10 have not been included in the first and fourth terms. Moreover,
these constraints are not included in the lower bounds computed by other lower priority
agents. Therefore, costs added by refinement terms are not redundant and then Eq. 12
is a lower bound on Y j .

Lemma 2. By the end of AFB BJ+, each agent stores in its UBj the cost of the optimal
solution Y ∗ and in v∗j its value on Y ∗.

Proof. (Sketch) In agent An, lb(Y n) equals gc(Y n) because it does not have lower
priority agents (Eq. 12). An updates its UBn and v∗n only when it generates a full CPA
(Y n) with gc(Y n) smaller than its current upper bound (lines 23-24). Thus, UBn only
decreases. Let σ be the smallest generated UBn, i.e., σ is the cost of the latest generated
full CPA Y n. In AFB BJ+, (i) each agentAj attaches to each message it sends its UBj .
Agent Aj only updates its UBj and its v∗j when the upper bound carried in a received
message is smaller than the stored one (line 8, Fig. 2). (ii) All agents will receive at least
one message after the generation of σ (at least they will receive stp messages before
they stop their execution). (iii) Messages are only sent after receiving and processing
other messages.An attaches σ to each message it sends. Hence, all messages that follow
the generation of σ will contain it. Because σ is the smallest generated upper bound and
following (i), (ii) and (iii), when the search is ended, UBj of each agent Aj equals σ
and its v∗j equals that assigned to xj in Y n. Now, one needs to prove that σ is the cost
of the optimal solution Y ∗ (i.e., σ equals gc(Y ∗) and Y n equals Y ∗). To prove that σ
equals gc(Y ∗), it is enough to demonstrate that during search no CPA that can lead to a
solution of lower cost than σ is discarded. In AFB BJ+, the CPAs are discarded only in
three places (line 19, procedure ExtendCPA(), line 38, procedure ProcessLB(), and
line 33, procedure Backtrack()). In all cases above, we are ensured that the lower
bound of the discarded CPAs exceeds UBj . Thus, they cannot lead to a solution with
a cost smaller than UBj . Now, since σ ≤ UBj when discarding those CPAs, we are
ensured that they have a cost larger than σ. Thus, σ is the cost of the optimal solution
Y ∗ and then Y n equals Y ∗. Therefore, when AFB BJ+ terminates, v∗j is the assignment
of xj on Y ∗. Then, the lemma is proved. This also completes the correctness proof of
the AFB BJ+ algorithm. ut
Corollary 1. AFB BJ+ is sound, complete, and terminates.

5 Experiments

In this section we experimentally compare AFB BJ+ to AFB BJ [7], BnB-Adopt+

[8], and BnB-Adopt-DP2+ (BnB-Adopt+ combined with DP2 value ordering heuris-
tic [1]). Algorithms are evaluated on four commonly used benchmarks: binary random
Max-DisCSPs, binary random DCOPs, meeting scheduling and sensor networks. All
experiments were performed on the DisChoco 2.0 platform7 [18], in which agents are
simulated by Java threads that communicate only through message passing. We evalu-
ate the performance of the algorithms by communication load and computation effort.
Communication load is measured by the total number of exchanged messages among
agents during algorithm execution (#msg) [13]. Computation effort is measured by
the number of non-concurrent constraint checks (#ncccs) [22]. #ncccs is the metric
used in distributed constraint solving to simulate the computation time.

We simulate two scenarios of communication: fast communication (where message
delay is null), and slow communication with uniform random message delay, where
the delay costs between 0 and 100 #ncccs for each message. On slow communication,
the trends are similar to those observed for fast communication, so the results are not
reported here.

5.1 The benchmark settings

Uniform binary random Max-DisCSPs are characterized by 〈n, d, p1, p2〉, where n is
the number of agents/variables, d is the number of values per variable, p1 is the network
connectivity defined as the ratio of existing binary constraints, and p2 is the constraint
tightness defined as the ratio of forbidden value pairs (with a cost of 1). We solved
instances of two classes of constraint graphs: sparse graphs 〈10, 10, .4, p2〉 and dense
graphs 〈10, 10, .7, p2〉. We varied the tightness from 0.6 to 0.9 by steps of 0.1 and from
0.9 to 0.98 by steps of 0.02. For each pair of fixed density and tightness (p1, p2) we
report average over 50 instances.

Binary random DCOPs are characterized by 〈n, d, p1〉, where n, d and p1 are as in
Max-DisCSPs [8]. For each value combination a cost is selected randomly from the set
{0, . . . , 100}. For each p1 = 0.4, . . . , 0.8, we have generated 50 instances in the class
〈n = 10, d = 10, p1〉.

The meeting scheduling consists of a set of agents, each having a personal private
calendar and a set of meetings each taking place in a specified location. The meet-
ing scheduling is encoded as follows. Variables/agents represent meetings. Each meet-
ing/variable has as domain the time slots possible for it. There are constraints between
meetings that share participants. We present here 4 cases each with different hierarchi-
cal scenarios [21].

The sensor network problem consists of a set of sensors that track a set of mobiles.
Each mobile must be tracked by 3 sensors. Each sensor can track at most one mobile.
The sensor network problems are encoded as follows. Variables/agents represent mo-
biles. The possible values of a variable/mobile are all combinations of three sensors that
are able to track it. There are constraints between adjacent mobiles. Details are given in
[1,11,2]. We present here 4 cases with different topology scenarios [21].

7 http://dischoco.sourceforge.net/

0.
60

0.
70

0.
80

0.
90

0.
92

0.
94

0.
96

0.
98

104

105

106

p2

AFB BJ+ AFB BJ

BnB-Adopt+ BnB-Adopt-DP2+

(a) #ncccs where p1 = .4

0.
60

0.
70

0.
80

0.
90

0.
92

0.
94

0.
96

0.
98

103

104

105

p2

AFB BJ+ AFB BJ

BnB-Adopt+ BnB-Adopt-DP2+

(b) #msg where p1 = .4

0.
60

0.
70

0.
80

0.
90

0.
92

0.
94

0.
96

0.
98

105

106

107

108

p2

AFB BJ+ AFB BJ

BnB-Adopt+ BnB-Adopt-DP2+

(c) #ncccs where p1 = .7

0.
60

0.
70

0.
80

0.
90

0.
92

0.
94

0.
96

0.
98

104

105

106

p2

AFB BJ+ AFB BJ

BnB-Adopt+ BnB-Adopt-DP2+

(d) #msg where p1 = .7

Fig. 3: Total number of messages sent and #ncccs performed on Max-DisCSP problems in log-
arithmic scale.

Table 1: Total number of messages sent and #ncccs performed on binary random DCOPs where
costs are randomly selected from 0 to 100.

#ncccs× 103 #msg × 103

p1 0.4 0.5 0.6 0.7 0.8 0.4 0.5 0.6 0.7 0.8
AFB BJ+ 31 77 148 299 554 3 7 14 27 48
AFB BJ 122 308 654 1,601 3,442 54 111 186 379 658
BnB-Adopt+ 617 3,193 15,436 61,938 98,684 102 419 1,552 5,289 6,312
BnB-Adopt-DP2+ 180 958 5,266 25,869 75,414 34 151 636 2,549 5,864

5.2 Results & Discussion

The results on instances of the first set of experiments (Max-DisCSPs) are illustrated
in Fig. 3. In terms of computational effort (Figs. 3a and 3c), AFB BJ+ improves the
AFB algorithms and performs faster than both BnB-Adopt+ algorithms. The factor of
improvements is 5 for sparse graphs and 7 for dense graphs. Concerning communi-
cation load (Figs. 3b and 3d), AFB BJ+ requires few messages compared to others
algorithms. AFB BJ+ improves AFB BJ by a factor of 20 (resp. 15) in sparse (resp.
dense) instances. In dense instances, AFB BJ+ outperforms BnB-Adopt-DP2+ by a
large scale. BnB-Adopt+ and BnB-Adopt-DP2+ are the less efficient algorithms for
solving Max-DisCSPs, and their performance dramatically deteriorates on dense Max-

Table 2: Total number of messages sent and #ncccs performed on Meeting Scheduling.
#ncccs #msg

cases A B C D A B C D
AFB BJ+ 4,987 6,536 2,789 2,206 373 871 536 582
AFB BJ 30,332 101,206 15,841 32,364 7,944 32,262 9,441 17,443
BnB-Adopt+ 272,490 63,352 51,134 30,030 15,507 10,472 8,717 8,278
BnB-Adopt-DP2+ 5,371 4,224 2,165 1,647 636 749 511 485

Table 3: Total number of messages sent and #ncccs performed on Sensor Network.
#ncccs #msg

cases A B C D A B C D
AFB BJ+ 5,599 6,182 2,395 4,869 2,043 1,999 325 1,430
AFB BJ 167,862 190,423 12,084 33,988 127,544 145,421 7,853 33,280
BnB-Adopt+ 4,052 6,337 6,561 8,982 876 1,215 1,198 2,072
BnB-Adopt-DP2+ 992 1,046 982 1,278 195 238 176 323

DisCSP problems. The DP2 heuristic improves the performance of BnB-Adopt+. This
improvement is clearer in the sparse problems than in dense ones.

For binary random DCOPs, the results are presented in Table 1. Both versions of
BnB-Adopt+ dramatically deteriorate compared to algorithms performing assignments
sequentially. Again, the DP2 heuristic improves the performance of BnB-Adopt+.
AFB BJ+ improves the speed-up of AFB BJ by a factor of 6 in dense instances. Re-
garding the #msg, the factor of improvement is 13.

Table 2 presents the results on meeting scheduling problems. Comparing AFB BJ+

to AFB BJ, the obtained results show that AFB BJ+ reduces the number of #ncccs
by a factor of 10 and the number of required messages by a factor of 50 in all classes.
AFB BJ+ outperforms BnB-Adopt+ by a large factor on both considered measures.
However, BnB-Adopt-DP2+ benefits from its preprocessing step and performs faster
than AFB BJ+.

For sensor networks, the results are presented in Table 3. Again, AFB BJ+ im-
proves the performance of AFB BJ by a large scale. Compared to AFB BJ, AFB BJ+

reduces the #ncccs by a factor of 15 and the number of messages by a factor of 50.
BnB-Adopt+ performs almost the same #ncccs and the same number of messages as
AFB BJ+. BnB-Adopt-DP2+ outperforms all other algorithms since it needs very few
messages and #ncccs to resolves sensor networks instances.

Looking at all results together, we come to the straightforward conclusion that
AFB BJ+ performs very well compared to its forward bounding counterparts. The rea-
son for that amounts mainly to refined lower bounds and their use as value ordering
heuristic. This guides the search first to promising assignments. The large gap in com-
munication load can be explained by the fact that when an AFB BJ+ agent has the token
to assign, it sends at-most one request to each lower agent, whereas other AFB algo-
rithms need one message for each lower agent for each possible assignment. In addition,
AFB BJ+ stores and maintains valid lower bounds to avoid redundant messages.

Both versions of BnB-Adopt+ perform very poorly when solving Max-DisCSPs
and random DCOPs. One possible reason is that in both algorithms, agents have a
strongly asynchronous assignments policy. However, for structured problems, BnB-
Adopt-DP2+ has performance close to AFB BJ+. On some highly structured problems
(sensor networks), it performs well. When we checked these instances, we found them
very sparse with very few constraints. The constraint tree structure used in BnB-Adopt+

combined with the very informed DP2 heuristic allows agents, in such very sparse in-
stances, to initialize their lower bounds of values to a cost close to that of the solution.

Our experiments show that AFB BJ+ needs less messages than other algorithms.
However, AFB BJ+ messages can be longer than those sent by other algorithms. The
largest messages in AFB BJ+ (lb messages) are in O(nd). To see the practical impact
of these larger messages, we computed the total number of bytes exchanged by all
algorithms.8 AFB BJ+ is improved by BnB-Adopt-DP2+ by a factor up to 2 on meeting
scheduling and 47 on sensor networks. Except for these two cases, AFB BJ+ improves
other algorithms in all benchmarks by a factor up to 94 (instead of factor 73 for #msg)
for AFB BJ, 144 (instead of 236 for #msg) for BnB-Adopt+, and 80 (instead of 203
for #msg) for BnB-Adopt-DP2+.

In all our experiments, the longest message sent by AFB BJ+ was of size 366 bytes.
The minimum datagram size that we are guaranteed to send without fragmentation of
a message (in one physical message) is 568 bytes for IPv4 and 1,272 bytes for IPv6
when using either TCP or UDP [3]. Thus, counting the number of exchanged messages
is equivalent to counting the number of physical messages.

6 Conclusion

We have proposed AFB BJ+, a revisited version of the AFB BJ algorithm in which
we refine the computations of lower bounds by future agents. In AFB BJ+, the lower
bounds are computed for the whole domain of the last assigned agent providing him
with a very informed value ordering heuristic. Our experiments show that AFB BJ+

improves the current state of the art in terms of runtime and number of exchanged mes-
sages on different distributed problems. The present work is a step forward in order
to address real world applications in multi-agent coordination. Several directions need
to be explored in the AFB family. A promising direction is that of variable ordering
heuristics. Another direction will be to try to maintain consistencies stronger than for-
ward bounding.

References

1. Ali, S., Koenig, S., Tambe, M.: Preprocessing techniques for accelerating the dcop algorithm
adopt. In: Proceedings of the fourth international joint conference on Autonomous agents
and multiagent systems. pp. 1041–1048. AAMAS’05, ACM, New York, NY, USA (2005)

2. Béjar, R., Domshlak, C., Fernández, C., Gomes, C., Krishnamachari, B., Selman, B., Valls,
M.: Sensor networks and distributed csp: communication, computation and complexity. Ar-
tif. Intel. 161, 117–147 (2005)

8 In our implementation we do not perform any message compression.

3. Bessiere, C., Bouyakhf, E.H., Mechqrane, Y., Wahbi, M.: Agile Asynchronous Backtracking
for Distributed Constraint Satisfaction Problems. In: Proceedings of the IEEE 23rd Interna-
tional Conference on Tools with Artificial Intelligence. pp. 777–784. ICTAI’11, Boca Raton,
Florida, USA (November 2011)

4. Bonnet-Torrés, O., Tessier, C.: Multiply-constrained dcop for distributed planning and
scheduling. In: AAAI Spring Symposium: Distributed Plan and Schedule Management. pp.
17–24 (2006)

5. Chechetka, A., Sycara, K.: No-Commitment Branch and Bound Search for Distributed Con-
straint Optimization. In: Proceedings of AAMAS’06. pp. 1427–1429 (2006)

6. Gershman, A., Meisels, A., Zivan, R.: Asynchronous Forward-Bounding for Distributed
Constraints Optimization. In: Proceedings of ECAI’06. pp. 103–107 (2006)

7. Gershman, A., Meisels, A., Zivan, R.: Asynchronous Forward Bounding for Distributed
COPs. JAIR 34, 61–88 (2009)

8. Gutierrez, P., Meseguer, P.: Saving redundant messages in bnb-adopt. In: AAAI’10 (2010)
9. Gutierrez, P., Meseguer, P.: Removing redundant messages in n-ary bnb-adopt. J. Artif. Intell.

Res. (JAIR) 45, 287–304 (2012)
10. Hirayama, K., Yokoo, M.: Distributed partial constraint satisfaction problem. In: Principles

and Practice of Constraint Programming. pp. 222–236 (1997)
11. Jung, H., Tambe, M., Kulkarni, S.: Argumentation as Distributed Constraint Satisfaction:

Applications and Results. In: Proceedings of AGENTS’01. pp. 324–331 (2001)
12. Léauté, T., Faltings, B.: Coordinating Logistics Operations with Privacy Guarantees. In: Pro-

ceedings of the IJCAI’11. pp. 2482–2487 (2011)
13. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Series (1997)
14. Maheswaran, R.T., Tambe, M., Bowring, E., Pearce, J.P., Varakantham, P.: Taking DCOP

to the real world: Efficient complete solutions for distributed multi-event scheduling. In:
Proceedings of AAMAS’04 (2004)

15. Modi, P.J., Shen, W.M., Tambe, M., Yokoo, M.: ADOPT: Asynchronous Distributed Con-
straint Optimization with Quality Guarantees. Artif. Intel. 161, 149–180 (2005)

16. Nguyen, V., Sam-Haroud, D., Faltings, B.: Dynamic Distributed BackJumping. In: Faltings,
B., Petcu, A., Fages, F., Rossi, F. (eds.) Recent Advances in Constraints, Lecture Notes in
Computer Science, vol. 3419, pp. 71–85. Springer Berlin Heidelberg (2005)

17. Petcu, A., Faltings, B.: A Value Ordering Heuristic for Distributed Resource Allocation.
In: Proceedings of Joint Annual Workshop of ERCIM/CoLogNet on CSCLP’04. pp. 86–97
(2004)

18. Wahbi, M., Ezzahir, R., Bessiere, C., Bouyakhf, E.H.: DisChoco 2: A Platform for Dis-
tributed Constraint Reasoning. In: Proceedings of the IJCAI’11 workshop on Distributed
Constraint Reasoning. pp. 112–121. DCR’11, Barcelona, Catalonia, Spain (2011), http:
//dischoco.sourceforge.net/

19. Wahbi, M., Ezzahir, R., Bessiere, C., Bouyakhf, E.H.: Nogood-Based Asynchronous
Forward-Checking Algorithms. Constraints 18(3), 404–433 (2013)

20. Yeoh, W., Felner, A., Koenig, S.: BnB-ADOPT: An Asynchronous Branch-and-Bound
DCOP Algorithm. J. Artif. Intell. Res. (JAIR) 38, 85–133 (2010)

21. Yin, Z.: USC dcop repository (2008), http://teamcore.usc.edu/dcop
22. Zivan, R., Meisels, A.: Message delay and DisCSP search algorithms. Annals of Mathemat-

ics and Artificial Intelligence 46(4), 415–439 (2006)

http://dischoco.sourceforge.net/
http://dischoco.sourceforge.net/
http://teamcore.usc.edu/dcop

	Asynchronous Forward Bounding Revisited
	 Mohamed Wahbi, Redouane Ezzahir, Christian Bessiere mohamed.wahbi@emn.fr, red.ezzahir@gmail.com, bessiere@lirmm.fr

