
HAL Id: lirmm-00839381
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00839381

Submitted on 27 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sub-Computabilities
Fabien Givors, Grégory Lafitte

To cite this version:
Fabien Givors, Grégory Lafitte. Sub-Computabilities. FCT 2011 - 18th International Symposium
on Fundamentals of Computation Theory, Aug 2011, Oslo, Norway. pp.322-335, �10.1007/978-3-642-
22953-4_28�. �lirmm-00839381�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00839381
https://hal.archives-ouvertes.fr


Sub-Computabilities

Fabien Givors and Gregory Lafitte?

Laboratoire d’Informatique Fondamentale de Marseille (LIF),
CNRS – Aix-Marseille Université,

39, rue F. Joliot-Curie, 13453 Marseille Cedex 13, France
{Fabien.Givors,Gregory.Lafitte}@lif.univ-mrs.fr

Abstract. Every recursively enumerable set of integers (r.e. set) is enu-
merable by a primitive recursive function. But if the enumeration is re-
quired to be one-one, only a proper subset of all r.e. sets qualify. Starting
from a collection of total recursive functions containing the primitive re-
cursive functions, we thus define a sub-computability as an enumeration
of the r.e. sets that are themselves one-one enumerable by total functions
of the given collection. Notions similar to the classical computability ones
are introduced and variants of the classical theorems are shown. We also
introduce sub-reducibilities and study the related completeness notions.
One of the striking results is the existence of natural (recursive) sets
which play the role of low (non-recursive) solutions to Post’s problem
for these sub-reducibilities. The similarity between sub-computabilities
and (complete) computability is surprising, since there are so many miss-
ing r.e. sets in sub-computabilities. They can be seen as toy models of
computability.

Introduction

Many proofs in (basic and also more involved) computability rely on the algebraic
structure of the enumeration of r.e. sets, partial functions, etc., and not really
per se on the notion of “being computable”. The structure is provided by the
properties of an acceptable enumeration, and consequences of being acceptable,
e.g., Kleene’s second recursion theorem. One motivation behind the work of this
article is to develop results similar to the classical computability ones (from
basic results to Turing completeness issues) but in a setting verifying only a
proper subset of the elementary properties of classical computability. In our
case, this translates as the quest of developing computabilities with most of the
nooks and crannies of classical computability without being all of computability.
Here, a computability is meant to be collections of sets and functions which
portray what we consider in this setting to be the r.e. sets and partial computable
functions. Sub-computabilities are computabilities where these collections are
a proper subset of the classical ones and is the focus of this article. Higher

? The research presented in this paper has been made possible by the support of the
French ANR grants NAFIT (ANR-08-DEFIS-008-01) and EMC (ANR-09-BLAN-
0164-01).



computability could also be cast in this setting and it will be the subject of a
subsequent article. Our setting can be seen as a toy model for computability, not
based on models of machines, but on the algebraic structure of computability.

A sub-computability c is a pair (φc
· ,Wc

· ) of enumerations of a sufficiently
closed collection Fc (called the foundation of c) of total recursive functions (called
c-fundamental), and of a collection Ec (called the support of c) of r.e. sets (called
c-enumerable), which are one-one enumerated1 by functions in Fc. These funda-
mental functions somehow measure the effectiveness of the constructions used in
computability. A partial recursive function is said to be somewhat c-computable
if its graph is c-enumerable. Building on an enumeration φc

· , we can respectively
build canonical enumerations Wc

· (resp. ϕc
· ) of c-enumerable sets (resp. some-

what c-computable functions). Since the collection of c-enumerable sets (and
somewhat c-computable functions) is completely and uniquely determined by
the collection Fc, we will identify c with the foundation (c = Fc). What could
vary is the enumerations of Fc and Ec, but we will see with the isomorphism
theorem à la Rogers (Theorem 5) that there is no confusion here.

An example of a sub-computability is p, the r.e. sets one-one enumerated
by primitive recursive functions. Koz’minyh [2] in 1972 proved a key lemma
on p. We generalize this lemma (Lemma 1) to any sub-computability. It gives
insights into the behavior of c-enumerable sets and somewhat c-computable
functions. Its corollaries make classical constructions possible, even if we do not
have the general µ recursion operator. The (primitive recursive) effectivity of
these corollaries (and of most of our theorems) is especially useful.

Other sub-computability foundations (and thus sub-computabilities) stem
from the field of subrecursion. It provides a great number of examples of closed
collections of ever more increasing total functions which do not contain all of the
total recursive functions. This study is strongly entangled with proof theory and
provides a clear picture of “what is provable and what is not” in a theory for
which one is able to construct an ordinal analysis. In particular, proof theory has
identified for many theories T the set of total recursive functions whose totality
is provable in T . This connection gives another motivation to our work.

Studying sub-computabilities amounts to classifying r.e. sets by measuring
the difficulty of enumerating them by way of subrecursion. On that quest, one
stumbles with the well-known at first surprising result that all r.e. sets are enu-
merable by primitive recursive functions. But if the enumeration is required to
be one-one, the triviality evaporates: some r.e. sets are not one-one enumerable
by primitive recursive functions, e.g., the Ackermann function’s range, but still
many r.e. sets are primitively one-one enumerable, e.g., the graph of the char-
acteristic function of the range of the Ackermann function or the graph of a
universal function.

If a set of integers is enumerable in a sub-computability, then it is recursively
enumerable. If it is not enumerable, then it is either not recursively enumer-
able, or not feasibly enumerable in this sub-computability and necessitates more
power to be seen as effectively enumerable. Thus, a sub-computability is an ap-

1 The complete definition (Def. 2) also incorporates finite sets and ∅.



proximation of the classical computability: we have the same kind of results than
in computability but with variations on the notions used; Classical (complete)
computability is the union of all sub-computabilities.

For example, Post’s theorem —stating that a set is recursive if and only
if it is both recursively enumerable and co-recursively enumerable— does not
hold anymore, leading the way to more restrictive notions of “being recursive”.
Another example is Kleene’s second recursion theorem, which only partially
holds in various ways in our sub-computabilities (Theorem 3).

We also define reducibilities which are refinements of Turing (or stronger)
reducibilities and yield a structure of the associated degrees that looks very
similar to the classical structure of the Turing degrees. Two of the interesting
aspects of this study are the simplicity of some of the proofs of the degree
structure, and the existence of natural (recursive) sets which play the role of low
(non-recursive) solutions to Post’s problem for these sub-reducibilities. To have
this setting as a real toy model for computability, it would be nice to be able to
have ways of transferring those results back in classical computability.

Our study is different from other subrecursive degree theories, especially when
considering the fact that our objects of study are not necessarily recursive. Never-
theless, one of our future goals is to build bridges with these theories, e.g., honest
elementary degrees (see [3–5]), to be able to use their techniques and have their
applications, especially the minimal pairs result with a proof-theoretical twist in
[6].

1 Sub-computability basics

We consider a sub-computability c to be a pair (φc
· ,Wc

· ) of enumerations of the
foundation Fc and of the support Ec of the sub-computability. A support Ec is a
collection of r.e. sets (the c-enumerable sets). It is constituted by sets one-one
enumerated by total recursive functions (the c-fundamental functions) belonging
to Fc. Since the Ec is uniquely determined by this foundation, c will denote both
the sub-computability and the foundation. It will always be easy to distinguish
between those two uses of notation.

We start with the definition of a sub-computability foundation.

Definition 1. A sub-computability foundation c is a set of recursive total func-
tions, called the fundamental functions, containing (at least) the primitive recur-
sive initial functions, closed by composition and primitive recursion, along with
a coding scheme providing fundamental-functions indices in N for the fundamen-
tal functions, such that we can primitively compute a recursive-functions index
from any fundamental-functions index, and such that the characteristic function
of the set {x : x is an index for fundamental f} is primitive recursive, with a
primitive recursive padding function p (pn(x) gives an index for the fundamen-
tal function for which x is an index, which is different from all n previous indices,
x, p(x), . . . , pn−1(x)), and with a primitive recursive composition function2 c.

2 c(x, y) gives an index for the fundamental function which is the composition of the
two fundamental functions for which x and y are respectively indices.



c[F ] designates c∪F (the foundation c to which the functions of F are added)
closed under composition and primitive recursion. c[f ], c[f, g], etc., designate
respectively c[{f}], c[{f, g}], etc.

φc
e(x) designates the computation on x of the c-fundamental function whose

index is e.

On top of foundations, we build sub-computabilities.

Definition 2. A set of integers X is a c-enumerable set if there is a function
f ∈ c such that the maximal initial one-one part3 of f enumerates X.

A sub-computability is a pair (φc
· ,Wc

· ) of enumerations of a foundation c
and of a collection Ec of recursively enumerable sets, the c-enumerable sets.

Ec is called the support of the sub-computability. c will also denote the sub-
computability.

In the following, we will denote by p the collection of primitive recursive
functions and the sub-computability based on this foundation.

A partial function is somewhat c-computable if its graph is c-enumerable.
A partial somewhat c-computable function f is said to converge on x if f(x)

is defined. It is denoted by f(x) ↓. Otherwise, it is said to diverge on x and is
denoted by f(x) ↑.

e is a c-index for a c-enumerable set W if e is a fundamental index for
a c-fundamental function that one-one maximally initially enumerates W . We
denote W by Wc

e.
e is a c-index for a somewhat c-computable function f if e is a c-index for

the graph of f . We denote f(x) by ϕc
e(x).

Notice that the honest functions (see for example [3]) are somehow defined in
a similar way, but with an elementary foundation (which does not make possible
enumerations of non recursive graphs). Notice also that there are indices for the
empty set (and thus the nowhere-defined function).

Without the c, (We)e∈N denotes the classical enumeration of recursively enu-
merable sets, and (ϕ)e∈N the classical enumeration of recursive functions.

Definition 3. A universal function uc over a sub-computability support c is
a partial function (c, x) 7→ uc(c, x) such that for each somewhat c-computable
function ϕc

e, for all x, if ϕc
e(x) ↑, then uc(e, x) ↑, else uc(e, x) ↓ and = ϕc

e(x).

A c-fundamentally universal function uφc is a function (c, x) 7→ uφc (c, x) such

that for each c-fundamental function φc
e, for all x, φc

e(x) = uφc (e, x).

As we will see later, a universal function over a sub-computability support c
will surprisingly be somewhat c-computable. The notation uc will at the same
time designate the afore defined partial function uc and its c-index.

3 f is said to one-one maximally initially enumerate (in short, one-one enumerate) X

if X =

{
f“Y if Y = N,

f“Y \ {f(max(Y )} otherwise, that is Y is finite,
where Y is the greatest

initial subset of N (Y is equal to N or to some n ∈ N) such that f � Y is one-one.



Definition 2 involving discarding the last enumerated element of the finite
set is a better choice than having the empty set represented artificially because
we want the set of indices of nowhere-defined somewhat c-computable functions
to be as less4 c-computable as possible.

Our enumerability notion sticks well with the intuition adopted in classical
computability: a set is c-enumerable if and only if it is the domain of a somewhat
c-computable function. This property and Definition 2 call for the following
result: a c-enumerable set W , for which x is a c-index, has infinitely many other
indices computable from x in a p-fundamental computable way. To prove it,
we naturally use the padding function p for the indices of the c-fundamental
functions. The s-m-n theorem also still holds for fundamental functions.

Universal functions are absent of the fundamental functions. Therefore, even
if we have s-m-n, we cannot prove Kleene’s second recursion theorem for fun-
damental functions. It will however partially hold for somewhat c-computable
functions (Theorem 3), for which s-m-n does not hold anymore.

Koz’minyh [2] in 1972 proved the following lemma (for the p part), which
constitutes a mile stone for understanding sub-computabilities. We call it the
heredity lemma.

Lemma 1. If We is an infinite c-enumerable set, and Wi ⊃ We is recursively
enumerable, then Wi is c-enumerable.

The following useful corollaries come to mind when proving this lemma.
First, there exists a primitive recursive function hc such that Wc

hc(〈i,j〉) = Wc
i ∪

Wc
j . Also, if X is a c-enumerable set and g a c-fundamental function, then the

following function is somewhat c-computable: f(〈x, y〉) = g(〈x, y〉) if x ∈ X, ↑
otherwise.

The first idea to build sub-computabilities is to define a set of total recursive
functions, called fundamental. From these total functions, we can define a col-
lection of sets, called support, that can each be enumerated in a non-repetitive
way5. Finally, thinking of this support as a collection of graphs of partial func-
tions gives rise to a notion of somewhat computable functions. We review these
notions below.

c-fundamental functions As they will be our raw material, it is important to
see what are their capabilities, and limitations. In general, there will not be any
universal function among the fundamental functions. However, thanks to the
Normal Form Theorem, we know we can primitively simulate any finite number
of step of any recursive function ϕe: there is a primitive recursive, function simp
such that simp(e, i, s) = 〈e, i, ϕe(i)〉+1 for at most a unique s, and 0 otherwise.

4 It is not χ-c-computable, but nonetheless c-enumerable and weakly-c-computable.
(See Def. 4.)

5 As indicates the Normal Form theorem, every recursively enumerable set is enu-
merable by a primitive recursive function. For example, fe : 〈n, s〉 7→ ϕe(n) if it
converges in less than s steps, ϕe(0) otherwise. However, such a function will not be
one-one in general.



c-computable sets The recursiveness of a set in classical computability has many
characterizations. These definitions are no longer equivalent in sub-computabili-
ties.

Definition 4. Let E be a set of integers, E is weakly c-computable if E and E
are c-enumerable. E is somewhat c-computable if χE is somewhat c-computable.
E is strongly c-enumerable if E is c-enumerable, enumerated by an increasing
one-one c-fundamental function φc

e. E is strongly c-computable if E and E are
strongly c-enumerable and χ-c-computable if E has a c-fundamental character-
istic function.

It is easy to see that each of these sub-recursive notions implies classical com-
putability: for a set, being strongly c-enumerable, strongly c-computable, weakly
c-computable, somewhat c-computable or χ-c-computable implies being recur-
sive. There are also straightforward implications between these sub-recursive
notions: if E is a strongly c-enumerable (resp. strongly c-computable) set, then
E is c-enumerable (resp. weakly c-computable) and χ-c-computable. Then, if E
is strongly c-computable then E is weakly c-computable and χ-c-computable. If
E is a weakly c-computable set or a χ-c-computable set, then E is somewhat c-
computable. Hence, all our sub-recursive notions for sets imply being somewhat
c-computable.

Notice that, as in the classical setting, every infinite c-enumerable set A
contains an infinite strongly c-enumerable set E. Moreover, E is χ-c-computable.

Somewhat c-computable functions First, recall that a partial function is some-
what c-computable if its graph is c-enumerable. Using our simulation function
simp, it is not too difficult to create a one-one enumeration of the graph of an uni-
versal function for all recursive functions. Hence, it is easy to prove, as a corollary
of the heredity lemma (Lemma 1), that there is a somewhat p-computable func-
tion uT,p universal for all recursive functions. The following theorem legitimates
the notion of an effective enumeration of somewhat c-computable functions:

Theorem 2. There exists a somewhat p-computable universal function uc over
c.

Remarkable functions There is a universal function among the somewhat c-
computable functions. However, not all recursive functions belong to that class.
As expected, the Ackermann function is not part of the fundamental functions of
our primitive computability. It is not even somewhat p-computable. This result
may seem contradictory with Theorem 2. It just shows again that enumerating
all functions in one is easier than enumerating some. It also shows that the
somewhat computable functions are not closed by composition. Nevertheless, the
Ackermann function range is χ-p-computable, because its inverse does belong to
p. Thus, the Ackermann function is linked to somewhat p-computable functions:
if a recursive function f is somewhat p-computable, then it is less than the
Ackermann function on an infinite subset of the domain.



Halting problem for different classes of function of sub-computabilities The halt-
ing problem is central in classical computability and is linked to the diagonal
set K = {e : ϕe(e) ↓}. In our sub-computabilities, we can define a couple of
different K’s depending on the set of functions we are interested in (all re-
cursive functions: K = {e : ϕe(e) ↓}, somewhat computable (partial) functions:

Kc = {e : uc(e, e) ↓} = {e : ϕc
e(e) ↓}, fundamental functions: Kφ

c = {e :

uφc (e, e) > 0} = {e : φc
e(e) > 0}). Notice that the hardness of the different halt-

ing problems gives more sense to the distinctions between our sub-computability
notions.

K is p-enumerable but not strongly p-enumerable. For every sub-computabi-

lity c, K is not c-enumerable, the set Kφ
c is weakly p-computable but not χ-

c-computable and the set Kc is p-enumerable but not strongly p-enumerable,

nor recursive and Kc is not c-enumerable. Finally, the diagonal set on somewhat
functions is complete: Kc ≡m K. The proof6 of the Turing (many-one really)
completeness uses the Half recursion theorem (Theorem 3).

Strong c-enumerability implies χ-c-computability, thus we have that there
exists a weakly c-computable but not strongly c-enumerable set. We summarize
the properties of these sets in table 1.

r.e co-r.e p-r.e s-c-r.e co-c-r.e co-s-c-r.e w-c-comp s-c-comp χ-c-comp

K X × X × × × × × ×
Kφ

c X X X × X × X × ×
Kc X × X × × × × × ×

Table 1: Properties in c of particular sets

c-computabilities’ specimens It is possible to exhibit an infinite family of different
c-computabilities using a natural extension of the primitive recursive recursion:
α-recursion7. The different growing hierarchies give us an easy way to exhibit
functions that require a given α-recursion operator. For example, the Ackermann
function does not belong to p, but it belongs to8 cωω . And Goodstein’s sequences

6 Let a be the c-fund. index of a nowhere null function. Show that there is fx ∈ c such

that ϕcfx(e) : y 7→
{
ϕx(x) if y = a or y = e

0 otherwise.
. Use the set A =

{
p(n)(z) : z > 1

}
to

apply the Half recursion part of Theorem 3 and effectively obtain a fixed-point n of
fx. Notice that ϕcfx(n)

∼= ϕcn since a 6∈ A. Then, n ∈Kc iff x ∈K, for n c-computable
from x.

7 Let 〈A, /〉 an elementary ordinal representation system (EORS) and α ∈ A such that
0 / α. A function f on natural numbers is called α-recursive if it can be generated
like the primitive recursive functions albeit plus the following operation:

f(m,n) =

{
h(m,n, f(θ(m,n),n)) if 0 / m / α and θ(m,n) / m,

g(m,n) otherwise,

where g,h,θ are α-recursive. See [1, 10] for more details.
8 Denote by cα the set of total α-recursive functions based on EORS’ provided by

proof theory.



function will only appear in cε0 . Using fundamental sequences, we can easily
design other such examples up to Γ0 thanks to Veblen’s hierarchy (See [12]) and
even beyond.

2 Common sub-computability

Apart from the particular functions (like the diagonal Ackermann function9 Ack
or the ones built in the previous section), that dominate every c-fundamental
functions, which we have for certain sub-computabilities c, there is a simple way
to build for every c a total recursive function which is not c-fundamental. The

function x 7→ uφc (x, x) is a total recursive function that is not c-fundamental,
but is somewhat p-computable. Also, apart from the diagonal set adapted to c-
computability, Kc, we can define c-versions of the busy beaver functions of Tibor

Radó: bbc(x) = max{ϕc
i (0) : i 6 x} and bbφc (x) = max{φc

i (0) : i 6 x}+x. The
classical results and proofs carry through: bbc is not somewhat c-computable.

Moreover, graph(bbc) is not c-enumerable. bbφc is recursive, but not somewhat
c-computable.

There is a natural superset of the foundation c of a sub-computability c: De-

note by c the sub-computability of foundation c[bbφc ]. Notice that for any sub-
computability c, f ∈ c does not necessarily10 imply f−1 ∈ c. Notice also that,
for any sub-computability c, all the functions in c stay recursive. This operation
can be seen as some kind of jump since it provides a new sub-computability c
in which there is a fundamental universal function for c-fundamental functions:
There is a c -fundamental universal uφc function for c-fundamental functions. As

a corollary, we have that χKφc
∈ c[bbφc ] but bbφc 6∈ c[χKφc

].

It is easy to see that the fundamental functions of p are exactly the func-
tions of p[Ack]. First, notice that Ack is in p since the p-fundamental index
of m 7→ Ack2(n,m) is computable from n and can be simulated with the uni-
versal function for p-fundamental functions. The converse is true since for any
acceptable enumeration φc

. of p-fundamental functions, there exists a primitive
recursive function f such that ∀e, ∀n,Ack2(f(e), n) 6 φc

e(n)11. Hence, the Ack-
ermann function permits us to compute the p-fundamental busy beaver.

Following our s-m-n theorem for c-fundamental functions, we obtain gener-
alizations of Kleene’s second recursion theorem to sub-computabilities.

Theorem 3 (Recursion theorem à la Kleene). Let f be a c-fundamental
function.

1. (Unbalanced fundamental recursion) There is an n ∈ N such that φ c
n
∼=

φc
f(n).

9 Ack2 denotes the classical binary function and Ack the diagonal unary version.
10 For example, take f a total computable function not in c. Transform it into f ′ such

that ∀n, f ′(n) = 〈f(n), steps(f, n)〉 (where steps(f, n) is the number of steps needed
by f on the input n to halt). f ′ still does not belong to c, but f ′

−1
does.

11 This function works by recursion on the code of φc
e, see [9], thm VII.8.10 p299-300.



2. (Unbalanced recursion) There is an n ∈ N such that ϕc
n
∼= ϕc

f(n).

3. (Half recursion) Let h be a somewhat c-computable function defined on an
infinite c-enumerable and co-r.e. set A. There is an n ∈ N such that ϕc

n|A ∼=
ϕc
f(n)|A and ϕc

n|A ∼= h.

Proof. The function u 7→ gx(u) =

{
ϕc
a(u) if u ∈ A,

ϕc
φc
x(x)

(u) otherwise, (where a is a c-index

for h) is somewhat c-computable and of c-index computable from x by da ∈ c.
Let ea be a c-fundamental index for f ◦da. Choose n = da(ea), since ϕc

da(ea)
(u) ∼=

ϕc
a(u) if u ∈ A, and ϕc

da(ea)
(u) ∼= ϕc

φc
ea

(ea)
(u) ∼= ϕc

f◦da(ea)(u) otherwise.

We also have the usual corollary of a c-recursion theorem with parameters.
As it is visible in the various proofs of Theorem 3, the function providing the
fixed point for each parameter is a c-fundamental function.

As we have already remarked, we do not have a general s-m-n theorem for
somewhat computable functions, only one for fundamental functions12. The prin-
cipal reason is the fact that somewhat computable functions are not closed by
composition13. And at the same time, there is no14 (balanced) full fixed-point

12 There is a duality at play between the fundamental functions and the somewhat c-
computable functions. Duality both in their use in theorems, usually generalizations
(or really restrictions) of classical computability theorems, and in the theorems they
verify. The former is used to construct the latter and verifies padding and s-m-n (or
composition) but not fixed-point, nor universality, while the latter verifies padding,
fixed-point and universality, but not s-m-n (nor composition). An example of the use
in theorems is the fixed point theorem: the fixed point is of a fundamental function
over the enumeration of the somewhat computable functions. These facts are to be
put in perspective with the classical results that enumeration alone or even enumer-
ation and fixed point are not enough to ensure having an acceptable computation
system, i.e. a computation system isomorphic to the canonical enumeration of all r.e.
sets, while enumeration and composition are sufficient: Enumeration is not enough
since a Friedberg enumeration, i.e., without repetition, of r.e. sets will obviously not
verify the padding lemma. Enumeration and fixed point is not enough by the follow-
ing counter-example: if e 7→ ϕh(e) is a Friedberg enumeration without repetition of
the partial recursive functions, then consider the enumeration e 7→ ψe = ϕh(ϕe(0)). It
is not hard to show that ψ· verifies the fixed-point theorem (∃ recursive f , ∀ total ψi,
ψψi(f(i))

∼= ψf(i)) but each partial recursive function is equal to a ϕh(i) for a unique
i and thus equal to a ψe only if ϕe(0) = i. Thus, the set of ψ-indices of each partial
recursive function is r.e., which is in opposition to the fact that the nowhere-defined
function (x 7→↑) cannot have an r.e. set of indices in an acceptable enumeration.

13 For well-behaving functions, composition is still possible and in a primitively effective
way. For example, composition f ◦g is possible for somewhat c-computable functions
f and g such that g−1 is c-fundamental and there is a c-enumerable subset of
the intersection of the range of g and the graph of f . If you take the function
Jc : x 7→ ϕcx(x) as f , then f being somewhat p-computable and having a graph
containing many p-enumerable subsets, many functions g will make f ◦ g somewhat
c-computable.

14 Both fundamental and somewhat (balanced) full fixed-point theorems for p would
provide fixed points which would be indices of the Ackermann function. The function



theorem on fundamental or somewhat computable functions (staying in a par-
ticular sub-computability and not using higher sub-computabilities in an unbal-
anced way like in Theorem 3).

Even though, several corollaries of s-m-n still carry through: the effective
union given by hc and the following corollary of the existence of a c-universal
function in c : if f is a c-fundamental function, then there exists a c -fundamental
function g such that for all x, Wc

g(x) = f“Wc
x.

It is worthwhile to remark that a universal function (for fundamental func-
tions) and x 7→ φc

x(x) provide examples of functions which are not c-fundamental
but which are total and somewhat c-computable. Notice also that fundamentals

go beyond total somewhat c-computable functions: bbφc is not somewhat c-
computable but is c -fundamental.

We should also notice that as in classical computability, not all partial some-
what c-computable functions are extendible to total somewhat c-computable
functions. A counterexample is the function x 7→ ϕc

x(x) + 1, since it is somewhat
c-computable and differs with all somewhat c-computable functions and thus
also with all total ones.

We generalize Rice’s theorem to sub-computabilities. To this end, we define
the following reducibility and notion of set of indices: a set A is somewhat c-
reducible to a set B (designated by A 4c

∼ B) if there is a somewhat c-computable
function f such that x ∈ A if and only if f(x) ∈ B. A set A ⊆ N is a set of
c-somewhat indices (resp. a set of c-fundamental indices ) if for all x, y, (x ∈
A and ϕc

x
∼= ϕc

y) =⇒ y ∈ A, (resp. (x ∈ A and φc
x
∼= φc

y) =⇒ y ∈ A).

Theorem 4 (Rice for sub-computabilities). If A is a non-trivial (A 6=
∅,N) set of c-indices (resp. c-fundamental indices), then we have either Kc 4c

∼
A or Kc 4c

∼ A (resp. Kφ
c 4

c
1 A or Kφ

c 4
c
1 A).

Productivity and creativity can also be non-trivially ported to our setting: A
set X is c-productive if there exists a one-one c-fundamental function ψ, called
the productive function for X, such that ∀x, Wc

x ⊆ X =⇒ ψ(x) ∈ X \Wc
x. A

c-enumerable set X is c-creative if X is c-productive.

It is a non-trivial generalization of the classical notion, since Ack “K is pro-
ductive, but not p-productive. As expected, Kc is still c-creative. And vari-
ants of the properties carry through: If X is c-productive, then X is neither

c-enumerable nor weakly c-computable. (Hence Kφ
c is not c-creative.) If X

is c-productive, then X contains a c-enumerable infinite subset. And, if X is
c-productive and X 4c

1 A by a function f such that f−1 is also one-one c-
fundamental, then A is c -productive15.

n 7→ fundamental c-index of y 7→
∑
x6yφc

n(x) + 1 is also designed not to have any
of those full fixed-points.

15 Kφ
c is not c-creative, but it is φc-creative where

(
Wc

n

)
n∈N is replaced by(

φWc
n = {y :φc

n(y) > 0}
)
n∈N

in the definition of productivity.



We would like to carry through the characterization of creativity by K (cre-
ativity is equivalent16 to m-completeness) to sub-computabilities but we need for
that to have the right notion of m-reducibility. The third property above hints
that it could be challenging.

We now generalize Rogers’ isomorphism theorem to sub-computabilities. To
this end, we first show that the constructive version, due to Myhill, of the Cantor-
Schröder-Bernstein Theorem can be adapted to c-computabilities: (Myhill for
sub-computabilities)17 A ≡c

1 B ⇐⇒ A ≡c B.
We can generalize the notion of “acceptable system of indices” to sub-compu-

tabilities:

Definition 5. An acceptable system of c-computability is a pair (ψc
· , ψ

c
· ) provid-

ing maps from N onto the set of c-fundamental functions and the set of somewhat
c-computable functions such that there are c-fundamental functions f , g, f and
g such that for all e ψc

e
∼= ϕc

f(e) and ϕc
e
∼= ψc

g(e), ψc
e
∼= φc

f(e) and φc
e
∼= ψc

g(e)

and g is one-one on indices of finite domain functions.

An acceptable system of sub-computability inherits many properties of the
respective canonical sub-computability. In particular, the Half recursion18 for
sub-computabilities (Theorem 3), parametrization19 for fundamentals and the
padding lemma20 for somewhat c-computable functions holds in any acceptable
system of sub-computability.

Theorem 5 (Isomorphism theorem à la Rogers). Let c be a sub-compu-
tability. For any acceptable system of c-computability, (ψc

· , ψ
c
· ), there is a c-

fundamental permutation h of ω such that for all e, ϕc
e
∼= ψc

h(e).

We thus notice that acceptable systems of indices provide the same structure
theory for a sub-computability as the standard one we have defined and been
using. Things happen not because of the coding used: a foundation induces a
unique sub-computability.

16 If X is productive and X 41 A, then A is productive. And if X is productive then

K 41 X.
17 A set A is c-reducible to a set B (designated by A 4c

1 B) if there is a one-one
c-fundamental function f such that x ∈ A if and only if f(x) ∈ B. A set A is c-
equivalent to a set B (designated by A ≡c

1 B) if A 4c
1 B and B 4c

1 A. A set A is
c-isomorphic to B (designated by A ≡c) if there exists a c-fundamental permutation
p such that p′′(A) = B.

18 There is a ψc
· -fundamental index Kleeneψ such that for all i, j, if domain(ψc

i ) is

infinite and co-r.e., then ψc
ψc

Kleeneψ
(i,j)|domain(ψc

i)
∼= ψc

ψc
j
(ψc

Kleeneψ
(i,j))|domain(ψc

i)
and

ψc
ψc

Kleeneψ
(i,j)
∼= ψc

i .

19 There is a ψc
· -fundamental index paramψ such that for all i0, i1, j, the function

ψc
ψc
ψcparamψ

(〈i0,i1,j〉)
(e) is equal (when defined) to

{
ψc
i0

if ψc
j (e) = 0,

ψc
i1

otherwise.
20 In any acceptable system of c-computability, given one index of a somewhat c-

computable function with infinite domain, we can c-fundamentally generate in-
finitely many indices of the same function.



3 Sub-reducibilities

Our interest in sub-reducibilities in the context of sub-computabilities is twofold.
As we have already seen with the previous theorems, the same kind of results

than the classical ones appear in most sub-computabilities. For example, we
have recursion theorems à la Kleene and an isomorphism theorem à la Rogers.
It is even more striking with the degree structure as will be outlined in this
section. We will see in particular that each Turing degree is divided into infinitely
many different degrees, our sub-reducibilities being a recursive refinement of the
classical ones. Some computable sets are shown to play a role similar to the
classical solutions of Post’s problem, from our sub-reducibilities point of view.
As these results are quite natural and easy to prove, it would be interesting,
and it is one of our goal for the future, to prove some kind of degree-structure
homogeneity theorem to be able to somehow carry the sub-computability proofs
back to the classical computability setting.

Another goal in the study of sub-computabilities is to find real classical
computability sets, e.g., solutions to Post’s problem, that are already in a sub-
computability but not in weaker sub-computabilities, i.e., a r.e. set ∅ <T X <T
∅′ that first appears in the c-r.e. sets.

Since A 4T B means that A is computable in B (really, computable in χB),
and in sub-computabilities, we have several notions of recursiveness (for a set),
we now introduce several associated Turing (or stronger) reducibilities:

Definition 6 (Sub-reducibilities). A function f is χ-c-Turing reducible to
B (f 4χc-T B) if f is in c[χB ].21 A set A is χ-c-Turing reducible to B if its
characteristic function is.

A function f is somewhat c-Turing reducible to B (f 4∼c-T B) if f is somewhat
computable over c[χB ]. A set A is somewhat c-Turing reducible to B if its
characteristic function is.

A set A is χ-c-r.e. in B if A is one-one enumerable by a function χ-c-Turing
reducible to B.

A set A is weakly c-Turing reducible to B (A 4w
c-T B) if A and A are one-

one enumerable by functions in c[eB , eB ], for any function eX which one-one
enumerates X.

A set A is strongly-c-Turing reducible to B (A 4s
c-T B) if A is enumerable

by an increasing function in c[pB , pB ], where pX is the increasing enumeration
of X.

A function is reducible to B if its graph is reducible to B.
When the type of c-reducibility is not specified, it usually means that it is

true for each of these reducibilities.

Kc is (weak/strong/χ) c-Turing complete: K ≡c-T Kc ≡c-T ∅′. There are
also new incomparable sets: for some A and some c, A 64χc-T A′, for example, for
A = range(Ack) and c = p.

21 c[g] is the primitive closure of c ∪ {g} (See Definition 1). We could take a stronger
closure since c could be closed by more than composition and primitive recursion
but for our purposes, taking the primitive closure seems to be enough.



4χc-T is strictly stronger than the truth table reducibility 4tt (and thus also
than the weak truth table reducibility 4wtt and the Turing reducibility 4T).
4w

c-T and 4s
c-T are strictly stronger than the Turing reducibility (the inclusion is

trivial and range(Ack) 4T ∅ but range(Ack) 64w, s
c-T ∅). 4w

c-T is incomparable22

with 4tt and 4wtt. Ack 4χc-T ∅ but Ack 64s
c-T ∅, thus 4χc-T does not imply 4s

c-T.
4χc-T implies 4∼c-T, which in turn implies 4wtt.

A generalization of Martin-Arslanov-Lachlan’s completeness criterion holds:
Given a c-enumerable set A, ∅′ 4∼c-T A is equivalent to the existence of a weakly
c-computable set B and function f 4∼c-T A, such that f is FPF[B]23.

One of the interests of considering these reducibilities is to see what sub-
computabilities have to say about the computability of sets of integers that are
not necessarily recursively enumerable. A lot of results of classical computability,
especially concerning ∆0

2 sets, can be extended (or really restricted) to sub-
computabilities but we will only consider here ways of providing solutions to
Post’s problem of finding an incomputable yet incomplete recursively enumerable
set.

When considering Post’s problem with regard to these strong reducibilities
4c-T, it becomes fast obvious that finding solutions is very simple.

Theorem 6 (Solutions to Post’s sub-problem). There exists an r.e. set X
such that ∅ ≺c-T X ≺c-T ∅′ for ≺c-T=≺χc-T or ≺s

c-T.

A proof of this theorem may use the fact that the χ-c-jump24 of Kφ
c is χ-c-

reducible to K ≡χc-T Kc ≡χc-T ∅′. Kφ
c is thus a c-low c-r.e. set; it represents a low

r.e. set in the c sub-computability. The set graph(bbφc ) is another example of a
c-low set, albeit not c-r.e.

There are obvious solutions to Post’s (real) problem in our sub-computabili-
ties, i.e., a c-r.e. set X such that ∅ <T X <T ∅′. But the nice thing is that we
can manage to make them appear only starting from a given c-computability.
And the same goes for c-r.e. low degrees.

These results put together hint to the following lemma: in each 1-degree,
one can find a set as high in the sub-computability hierarchy as desired. More
generally, for any sub-computability c, each r.e. 1-degree has a non-c-enumerable
r.e. member and a c-enumerable member.

A corollary that completes the previous result is that, there exists a non-c-
enumerable r.e. set X, such that ∅ <T X <T ∅′. A consequence is that there
exists a low r.e. set W which is not c-enumerable.

22 Let A be a set having the property of being Turing complete but not truth table com-
plete, e.g., an effectively hypersimple set. Then, B = {3a : a ∈ A}∪{3n+ 1 : n ∈ N}
is weakly c-Turing complete and not truth table complete.

23 f is fixed point free relatively to B (FPF[B]) if ∀x,∃n ∈ B,ϕcx(n) 6= ϕcf(x)(n).
24 Since this section is, for now, only an introduction to sub-reducibilities in sub-

computabilities, we will only introduce the χ-c-jump in this footnote. The (degree of
the) χ-c-jump of A, denoted by A′c, is the 4χc-T maximal equivalence class containing
a set which is χ-c-r.e. in A.



Using a priority argument, we can even ensure the low promptly simple set
X to be c-low (X ′c 4c-T ∅′) but not c−-low for sub-computabilities c− weaker25

than c, in the same way we can build a low simple set that is not superlow (see
[7, Ex. 1.6.7, p. 386]).

As we saw multiple times in this paper, sub-computabilities are strongly
linked with fast growing functions, which gives evidence of their recursive power.
As this kind of reasoning also appears in honest elementary degrees theory we
hope to soon be able to develop the links between these degree theories.

Other immediate goals are to port some essential computability results to
sub-computabilities, especially various characterization of r.e. sets and reducibil-
ities.

Acknowledgements

We would like to thank Bruno Durand for many challenging discussions on the
ideas of this paper. Many thanks also to the anonymous referee whose comments
and remarks have helped us to clarify its presentation.

References

1. Friedman, H., Sheard, M.: Elementary descent recursion and proof theory. Annals
of Pure and Applied Logic 71(1), 1–45 (1995)

2. Koz’minyh, V.V.: On a presentation of partial recursive functions by compositions.
Algebra i Logika 11(3), 270–294 (1972), in Russian

3. Kristiansen, L.: Papers on subrecursion theory. Ph.D. thesis, Department of Infor-
matics, University of Oslo (1996)

4. Kristiansen, L.: A jump operator on honest subrecursive degrees. Archive for Math-
ematical Logic 37(2), 105–125 (1998)

5. Kristiansen, L.: Lown, highn, and intermediate subrecursive degrees. In: Calude,
Dinneen (eds.) Combinatorics, computation and logic, pp. 286–300. Springer, Sin-
gapore (1999)

6. Kristiansen, L., Schlage-Puchta, J.C., Weiermann, A.: Streamlined subrecursive
degree theory. Annals of Pure and Applied Logic (2011), to appear

7. Nies, A.: Computability and Randomness. Oxford University Press (2009)
8. Odifreddi, P.: Classical Recursion Theory. North Holland - Elsevier (1988)
9. Odifreddi, P.: Classical Recursion Theory. Volume II. North Holland - Elsevier

(1999)
10. Rathjen, M.: The realm of ordinal analysis. In: Cooper, S.B., Truss, J. (eds.) Sets

and Proofs, pp. 219–279. Cambridge University Press (1999)
11. Rose, H.E.: Subrecursion: Functions and Hierarchies, Oxford Logic Guides, vol. 9.

Oxford University Press, USA, New York, NY (1984)
12. Veblen, O.: Continuous increasing functions of finite and transfinite ordinals. Trans.

Amer. Math. Soc. 9, 280––292 (1908)

25 In the sense that c− is strictly included in c.


