Segmentation Through DWT and Adaptive Morphological Closing
Nuhman Ul Haq, Syed Hamad Sherazi, Khizar Hayat, William Puech

To cite this version:

HAL Id: lirmm-00839413
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00839413
Submitted on 2 Jul 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
SEGMENTATION THROUGH DWT AND ADAPTIVE MORPHOLOGICAL CLOSING

Nuhman ul Haq a, Khizar Hayat a, Syed Hamad Sherazi a and William Puech b

a COMSATS Institute of Information Technology
University Road, 22060 ABBOTTABAD, PAKISTAN
b LIRMM, UMR CNRS 5506, University of Montpellier II
161, rue Ada, 34095 MONTPELLIER CEDEX 05, FRANCE
{nuhman, khizarhayat, syedhamad}@ciit.net.pk, william.puech@lirmm.fr

ABSTRACT

Object segmentation is an essential task in computer vision and object recognitions. In this paper, we present an image segmentation technique that extract edge information from wavelet coefficients and uses mathematical morphology to segment the image. We threshold the image to get its binary version and get a high-pass image by the inverse DWT of its high frequency subbands from the wavelet domain. This is followed by an adaptive morphological closing operation that dynamically adjusts the structuring element according to the local orientation of edges. The ensued holes are, subsequently, filled by a morphological fill operation. For comparison, we are relying on the well-established Canny’s method and show that in special cases, our method perform better.

1. INTRODUCTION

Image segmentation is the process of partitioning a digital image into multiple regions or sets of pixels [10]. These partitions represent different objects in the image, usually having the same texture or color. Segmentation is central to the extraction of image features and their subsequent classification. As a central step in computer vision and image understanding, image segmentation has been extensively investigated in the literature. We have different categories of image segmentation techniques like amplitude thresholding, component labeling, boundary based segmentation, template matching and texture segmentation. Image segmentation also involves techniques like image enhancement, restoration and simple representation of data. However, we still lack reliable ways in performance evaluation for quantitatively positioning the state of the art of image segmentation.

The edges normally concentrate in the high frequency components of the image. Thus if we can extract high frequencies from the image, then we can get edge information of that image. Wavelet domain provides frequency information that is mappable in localization in the corresponding spatial domain, leading us to believe that high frequency details pertain to high pass information. In this paper, we extract the edge details of an image by employing the discrete wavelet transform (DWT). This is followed by the application of adaptive morphological closing that adjusts the structuring element according to the local orientation of edges in the image.

The rest of the paper is arranged as follows. Section 2 briefly describes the state of-the-art. We elaborate our method in Section 3 followed by the analysis of results in Section 4. The paper is concluded in Section 5.

2. RELATED WORK

Most of the contemporary works are focused on finding the methods to measure the accuracy/error of the segmentation. Some of them do not require the ground truth image segmentation and in these methods, the segmentation performance is usually measured by some contextual and perceptual properties, such as homogeneity within the resulting segments and the heterogeneity across neighboring segments. Image segmentation and grouping have always been great challenging problems in computer vision. It has been known that perceptual grouping plays a powerful role in human visual perception. A wide range of computational vision problems could, in principle, make good use of segmented images, were such segmentations reliably and efficiently computable.

Currently, powerful segmentation techniques are available but these techniques are specific to specific applications. In [1, 9] several techniques are cited for edge detection and segmentation. These include spatial domain filters like Sobel, Prewitt, Kiresh, Laplacian, Canny, Roberts and Edge Maximization (EMT) which have been extensively employed for edge detection and image segmentation. During segmentation, sometimes, the image is subdivided to read the objects from background and for this purpose two techniques are mainly employed, namely the discontinuity detection technique and the similarity detection technique. In the first technique, the image is partitioned on the basis of abrupt changes in Gray level, whereas the second technique is based on thresholding and region growing [10, 1]. In [2], image segmentation is performed through mathematical morphology. The segmentation is based on the watershed transformation followed by region merging with the procedure being formalized as basin morphology, where regions are eroded, in order to form greater catchment basins. An automated color segmentation procedure, designed for polar color spaces based on morphological operators is also given. In [4], a predicate for measuring the evidence for a boundary between two regions, using a graph-based representation of the image, is defined. The authors have developed an algorithm for image segmentation which makes greedy decisions and if apply the algorithm to image segmentation using two different kinds of local neighborhoods in constructing the graph, and the results are illustrated with both real and synthetic images. This method has the ability to preserve the details in low variability image regions and ignores the detail of high variability regions.

Pun and Zhu [6] propose an approach for image segmentation that uses adaptive tree-structured wavelet transform for texture analysis. They first split the input image into $N \times N$ blocks and then calculate the distances between
neighboring blocks by the energy signatures of the coefficients of the adaptive tree-structured wavelet transform of each block. Thereafter, they merge blocks with smallest distances to form larger regions. The process is repeated till the desired number of regions are extracted. In [8] the authors present the results of an objective evaluation of two popular segmentation techniques, viz. water-shed segmentation and mean-shift segmentation. They use a hybrid variant that combines these algorithms. They have analyzed the correctness and consistency of these techniques with wide range of parameters and images. A computational efficient approach is proposed, in [7], on the basis of texture analysis wherein a 2D discrete cosine transform (DCT) is utilized to extract texture features in each image block. They first split the input image into \(M \times N \) blocks, and then the distance between neighboring blocks is calculated by using a set of largest energy signatures from DCT for each block. These blocks are thereafter merged with smallest distance to form a large region. The process is repeated until the desired number of regions are obtained. In [8] a watershed transform computes the catchments basins and ridge lines, with the former corresponding to image regions while the latter relating to region boundaries.

Canny’s algorithm [3] uses an optimal edge detector based on a set of criteria which includes finding most of the edge details by minimizing the error rate, marking edges as closely as possible to the actual edges to maximize localization, and marking edges only once when a single edge exists for a minimal response. Canny’s technique is a very important method that removes noise from the image before finding the edges, without affecting their features, and then apply the tendency to find the edges and the critical value for threshold [10, 1]. Shape based object segmentation has been cited in [5] where Bayesian model is used to estimate the object shape on the basis of prior knowledge about the shape and thus provides a methodology that uses some prior knowledge about the shape. In the method cited in [11], the image is divided into two regions on the basis of focus values - focused area is considered to be the object and defocused part is taken as the background.

3. THE PROPOSED METHOD

The edges normally concentrate in the high frequency components of the image. Hence if we can extract high frequencies from the image then we can get its edge information. Wavelet domain provides frequency information that is mapable in localization in the corresponding spatial domain, leading us to believe that high frequency details pertain to high pass information. Our proposed method extracts edge information using the DWT and performs the following steps to segment the image, as illustrated in the form of the diagram shown in Fig. 1:

1. The input image is first preprocessed by using level setting and normalize the image by using 10% black and 90% white on the basis of expansion limit of 130 gray value in order to highlight the edge information in the image.
2. A high-pass image, extracted from the wavelet domain, has low signal to noise ratio and only strong edges may be extractable leading to high probability of broken edges. To extract a good subset of edges, we first convert the image into its binary form by using a threshold \(T \).
3. Decompose the image into wavelet domain by using DWT in order to extract the edge information contained in the original image.
4. The wavelet decomposed image is subjected to inverse DWT after setting the approximation coefficients, i.e. the lowest energy subband, to zero. The resultant image may contain a good deal of the edge information of the input image.
5. The edges obtained after the preceding step may still have gaps corresponding to the original. In this step we try to complete these edges on the basis of 8-connected neighbors.
6. To remove the boundary distortion, a morphological close operation is applied. The process is adaptive in the sense that the structuring element (SE) is adjusted dynamically according to the situation. The SE’s are shown in Fig. 2.
7. To extract the object a morphological hole filling operation is performed to fill holes in the image.
8. In the last step, the objects’ boundaries are extracted.

![Figure 2: Structuring Elements used.](image)

By applying the above procedure, we believe, a good deal of segmentation can be realized. This may specially be beneficial in those cases where established methods, like Canny’s, may have a tendency of over-segmentation.

4. EXPERIMENTAL RESULTS

We have applied our method to a number of images, from an online database\(^\dagger\), with varying object sizes and shapes in mind. Due to space limitation we are dwelling on few of these examples with the detailed discussion being focused on the input image given in Fig. 3(a). The said image results, by our method of segmentation, in the image given in Fig. 3(b). We compare our results with the results obtained from the Canny’s method, as illustrated in Fig. 3(c). A comparison of Fig. 3(b) and (c) suggests that in the latter the edges are incomplete. These incomplete portions are highlighted by the red circles drawn in the figure. Our proposed method results in a more complete edge information, as shown in Fig. 3(b). Fig. 4 illustrates the stepwise application of our method to Fig. 3(a).

It is pertinent to note that, without adaptation of the SE, our technique may not fair badly for larger objects and for objects with low background texture. Partitioning the image by a grid, to extract the local structure, works well for large segments but tiny sized objects may not be optimally segmented, especially for overlapped objects. To avoid this we extract the local structure at a 3 x 3 window, using an adaptive SE, to improve the segmentation results for smaller objects. Thus an adaptive SE is dependent on the size of the

\(^\dagger\)http://www.wisdom.weizmann.ac.il/ vision/Seg_Evaluation_DB
cell of the grid. In case of the image, shown in Fig. 3(a), we have an object large enough to allow the grid to partition the image into small portions and thus provide better adaptability of the SE. Note that a 3×3 SE is the smallest optimal grid cell size that can work well for almost all object sizes. Another problem may arise with the images having objects with complex background, which may cause the DWT to interpret, as edge, erroneous information from the background and thus disturb the actual object segmentation.

Another example is taken in Fig. 5, where Fig. 5(a) is the original. For the sake of comparison we are zooming in on one of the object. In Fig. 5(b) it is seen that our method provides better recognition description than produced by Canny’s method in Fig. 5(c). In the said example, the object is an aeroplane and the Canny’s method gives an occluded object data and it is a well-established fact that occlusion reduces the recognition capability. On the other hand, our method provides better information and good image descriptor information. It can be readily seen from Fig. 5(b) and (c), especially in those parts which are marked with red circles; these are the boundary points where image descriptors are clearly defined by our method. The tendency of Canny’s method to oversegment is observable in Fig. 7 where the smaller object has many unnecessary details. Our method, in contrast, avoid any such tendency. With the example, given in Fig. 6, our results are a bit dilated but we believe that the center of gravities of the objects are intact.

5. CONCLUSIONS

We presented an image segmentation technique that extracts edge information from wavelet coefficients and uses mathematical morphology to segment the image. The method is intelligent in the sense that the SE selection is adaptive. The results have been interesting and it can be observed that with our method one may get a more complete and closed boundary as compared to the Canny’s method. Although Canny’s method is well-established, it usually ignores weak edges that may play an important role in some object segmentation scenarios. We have not paid much attention to images with complex backgrounds in this present work but our future work focuses in this direction.

REFERENCES

Figure 4: Example Stepwise Application of the Proposed Algorithm.

(a) Image after Preprocessing
(b) Binary image
(c) High Pass Image
(d) Connected image
(e) Image after applying adaptive MM closing
(f) Image after hole filling
(g) Boundary of the objects

Figure 5: Two object image

(a) Input image
(b) By our Proposed method
(c) By Canny method

Figure 6: Two planes image.

Figure 7: Screws image
