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From Functional to Distributional Models

Anne Preller
∗ †

Abstract

This paper defines logical functional models in the category of finite

dimensional vector spaces over the field of real numbers. The functional

models are given by functors from the free compact closed lexical cate-

gory associated to a pregroup grammar. Any functional model is com-

pletely compositional and includes first order predicate logic. Each func-

tional model is mapped to a vector space model in the sense of Kart-

saklis, Sadrzadeh, et al. via a ‘canonical’ probability of the functional

model. The logical connectives of the functional model are transferred

to the vector space model where they become algebraic operators. The

algebraic logical operators subsume the quantum logical operators of van

Rijsbergen. The transfer provides an insight into how logical operators

and other function words interpreted in abstract semantics change when

implemented in vector space semantics.

Keywords:compositional semantics for natural language logical models vector space models

compact closed category quantum logic

1 Content, Definitions and Context

Semantic models for natural language vary from logical functional models, such
as first-order models or Montague models, to conceptual models. Conceptual
models comprise variants of higher order type theory, (Asher 2011) and vec-
tor space models based on the geometry of quantum logic, (Widdows 2004),
(Rijsbergen 2004). They all involve reasoning, an essential ingredient of any
compositional semantics according to (Kracht 2007).

This paper traces the switch from the logical functional models based on pre-
group grammars to the distributional vector space models considered in (Kart-
saklis et al. 2013) and shows how the classical logic of functional models changes
to the quantum logic of vector space models. It also proposes a guideline helping
to extend distributional vector semantics to function words.

A compact closed category is a monoidal category in which every object has
a right and left adjoint. It is not required to be symmetric. A lexical category
is the free compact closed category L(B) generated by a partially ordered set B
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and a finite number of new, ‘distinguished’ morphisms occurring in the lexicon
of a pregroup grammar. A functor from a lexical category to the category of
finite dimensional vector spaces VectR is always a functor that commutes with
the tensor product and maps the right and left adjoints to the dagger. Moreover,
a concept word is a noun, an adjective or a verb. Any word that is not a concept
word is called a noise word. The notation VA designates a vector space with a
fixed set A of orthogonal basis vectors.

The pregroup grammar defines the meaning of a grammatical string of words
as that morphism of the lexical category that is the composition of the reduction
of the string with the tensor product of the words. An example of this definition
is given at the end of (Preller 2005). Obviously, any functor that is defined for all
words in the lexicon provides a compositional interpretation for all grammatical
strings of words.

The important question concerning compositional semantics is how it han-
dles the logical content of words and reasoning. To compare the logical models
with vector space models I show that any logical model ‘lives’ in FVectR under
the form of a functor. A functional vector space model interprets the sentence
type by a two-dimensional space S, the noun phrase type by an arbitrary space,
say VA, and every noise word in the lexicon by a linear map. In particular,
propositional connectives and quantifiers are rendered by linear maps. For any
functional vector model F and any set of concept words in the lexicon there
is a vector space model VC and a map JC that assigns to every F-value of a
concept word a vector in VC . The coefficients of this vector are conditional
probabilities with respect to the elements of C. The propositional connectives
on VC are given as algebraic operators, both for vectors and for self-adjoint
endomorphisms. They subsume the quantum logical operations of (Rijsbergen
2004) and generalise the logical operators of predicate logic, because the choice
C = A makes JA an isomorphism from the Boolean algebra of predicates on
VA onto the Boolean algebra of projectors of VA for which A forms a set of
eigenvectors. For any C, JC reflects the consequence relation and commutes
with negation.

Under sufficient conditions, it commutes with the binary operators and re-
places composition of endomorphisms by the pointwise product ⊙ of vectors
JC(F(w1 ◦ w2)) = JC(F(w1))⊙ JC(F(w2)).

For any space VC there is a unique functor defined on the free pregroup
generated by a partially ordered set B that maps all elements in B to VC and
all inequalities of basic types to the identity of VC . The free pregroup is a strict
subcategory of every lexical pregroup category. Hence, (Kartsaklis et al. 2013)’s
claim that they use a functor from the free pregroup can be strengthened: For
any set W of concept words and any map F from W into the set of vectors
ofVC , they use a functor GF from the lexical category defined by the pregroup
lexicon listing the words in W . The functor is determined by the requirement
that it extends the unique functor and satisfies F = I(G(w)) for all w ∈ W .
The map I is essentially the one-to-one correspondence of diagonal matrices
and vectors. The existence of GF is based on two facts. A grammatical string
of words yanks in lexical category to a composition on basic morphisms and,
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second, I(G(w1 ◦w2)) = I(G(w1))⊙I(G(w2), where the wi is the morphism given
to the concept word wi by the lexicon. The functions F considered by the
authors are determined by a probability distribution based on context. Any
functional vector model F defines a functor GF via the restriction F of JC ◦ F
to W . If F renders the statements of the text true the GF -values for words
in W have truth-theoretical probabilistic content. This extends distributional
vector semantics to vector semantics based on a contextual probability and
vector semantics based on a truth-theoretical probability.

Lifting the ‘yanking’ to the level of the lexical category also gives an insight
into how noise words work in different kinds of semantics. For example, the
distinguished morphism and : s⊗s → s occurring in the lexicon for the function
word and becomes the linear map µVC

given by the Frobenius algebra, because

JC(F(and ◦ (w1 ⊗ w2))) = JC(F(w1)) ∧ JC(F(w2))) = JC(F(w1))⊙JC(F(w2)).

On the other hand, such a functor cannot be extended to include the basic
morphism not : s → s intervening in the lexical entries of not, no. Any functor
maps it to an endomorphism of VC . This would result in a logic where the nega-
tion of false is false, because the zero-map when composed and endomorphism
is again the zero-map.

2 Syntactic and semantic graphs for pregroup

grammars

A pregroup grammar is determined by a partially ordered set B and a lexicon.
The lexicon of a pregroup grammar is a finite list of pairs word :: word : I → T ,
where word : I → T designates a morphism in the language of compact closed
categories and T is an object of the free pregroup introduced in (Lambek 1999).
The free pregroups and the pregroup dictionaries in (Lambek 2008) consisting
of word : T do not provide semantics for pregroup grammars. The semantics of
(Clark et al. 2008) interprets every entry conceptword : T by a vector in VectR.
This is a special case of the semantics provided by the lexical category L(B)

The objects of L(B) are called types, among them are the elements of B,
called basic types. The simple types are the basic types and their iterated right
and left adjoints. Any object of L(B) can be written as a finite tensor product
of simple types.

The basic morphisms are the (in)equalities inab : a → b between elements
of B and the distinguished morphisms given by the lexicon. Every morphism
of the free category can be designated by a graph where all links are labelled
by basic morphisms. The overlinks represent names of basic morphisms and
the underlinks conames of basic morphisms. All paths of the graph have length
1. By convention, the graph displays the domain at the top, the codomain at
the bottom. If the label is an (in)equality of B it is omitted. For example, a
basic morphism f : A → B and its right and left adjoint are represented by the
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graphs

f : A → B =

A

B

f

��
fr : Br → Ar =

Br

Ar

OO

f f ℓ : Bℓ → Aℓ =

Bℓ

Aℓ

OO

f

The tensor product is not required to be symmetric so that any object A has a
right unit ηA : I → Ar ⊗A and a left unit, ηAℓ : I → A⊗Aℓ and any morphism
f : A → B has two names

right name

I

f

##
Ar ⊗ B

= ηf = (fr ⊗ 1B) ◦ ηB =

I

OO

f

��

!!
Br ⊗ B

Ar ⊗ B

left name

I

{{
f

B ⊗ Aℓ

= ηfℓ = (f ⊗ 1Aℓ) ◦ ηAℓ =

I

f

��

OO
{{

A ⊗ Aℓ

B ⊗ Aℓ

.

The lefthand graphs above are the connection-free abbreviations for the right-
hand graphs, which connects the graph of a unit with the graph of a tensor
product. Similarly, the algebraic name is a composition-free abbreviation for a
compound algebraic expression with one composition symbol. Analogous defi-
nitions and notations apply to counits and conames.

Composition of morphisms is computed graphically by connecting the corre-
sponding graphs at their joint interface and replacing every maximal path by a
simple link, labelled by the composition of the labels. The paths of the resulting
graph have length 1 and every link is a name, a coname or an eventually iterated
adjoint of basic morphisms.

The lexicon of a pregroup grammar is a list of pairs word :: word, where
word : I → T designates a morphism in the language of compact closed cate-
gories. For example,

new :: new : I →n2 ⊗ c2
ℓ

no :: no : I →s⊗ sℓ ⊗ n2 ⊗ c2
ℓ

triangles :: triangles : I →c2
are :: are : I →n2

r ⊗ s⊗ pℓ ⊗ n2

blue :: blue : I →nr ⊗ p

where c2 ≤ n2 ≤ n are the basic types for plural common nouns, plural noun
phrases and noun phrases where the number does not matter, in that order.
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The basic types p ≤ s correspond to predicative adjectives and to sentences.

no = ηnotℓ ⊗ ηinℓ =
I

s ⊗ sℓ ⊗ n2 ⊗ c2
ℓ��

not

~~
triangles =

c2
triangles

I

��

are = (1n2
r ⊗ ηinℓ

ps

⊗ 1n) ◦ ηn2
=

I

n2
r ⊗ n

""

n2
r ⊗ s ⊗ pℓ ⊗ n

||

DD

��
��

��

��3
33

33
3 =

I

n2
r ⊗ s ⊗ pℓ ⊗ n

$$~~

blue =

I

nr ⊗ p
!!

blue new =

I

n2 ⊗ c2
ℓ}}

new
.

The distinguished morphisms introduced by this lexicon are triangles : I →
c2, not : s → s, blue : n → p and new : c2 → n2.

Note that the distinguished morphism corresponding to a concept word is
entirely determined by the entry word : T in the pregroup lexicon. If T = ar⊗b

the expression word is the right name of a unique morphism word : a → b, if
T = a ⊗ bℓ it is the left name of a unique morphism word : b → a and so
on. In opposition, function words may introduce more that one distinguished
morphism. For example, the pregroup lexicon of (Preller & Sadrzadeh 2011)
defines the relative pronoun who as the name of (1n ⊗ who) ◦ (dn ⊗ 1s), hence
introduces two distinguished morphisms, who : n⊗ s → n and dn : n → n⊗n.
The latter is mapped by a functor to the ‘diagonal’ dF(n) : F(n) → F(n)⊗F(n),
which according to the definition (3) coincides with σF(gn).

A string of words word1 . . . wordn is grammatical if there are entries wordi ::
wordi : I → Ti in the lexicon, a basic type b and a reduction r : T1 . . . Tn → b.
Any successful syntactical analysis of a pregroup grammar results in a reduction
of compact bilinear logic or, equivalently, a morphism of the free compact closed
category involving counits and basic morphisms only. For example, the sentence
No triangles are grammatical is recognised by the morphism

r =

No triangles are blue

s ⊗ sℓ ⊗ n2 ⊗ n2
ℓ ⊗ c2 ⊗ c2

r ⊗ s ⊗ pℓ ⊗ n ⊗ nr ⊗ p

��
s

ee ::ee dd ==

The meaning of the string word1 . . . wordn recognised by the reduction r is

r ◦ (word1 ⊗ . . .⊗ wordn) .
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For example,

r ◦ (no⊗ triangles⊗ are⊗ blue) =

s ⊗ sℓ ⊗ n2 ⊗ n2
ℓ ⊗ c2 ⊗ c2

r ⊗ s ⊗ pℓ ⊗ n ⊗ nr ⊗ p

��
s

not

��
ee ::

~~
ee

I

��
triangles ##��

dd ==
!!

blue

= not ◦ blue ◦ triangles : I → s .

Clearly, a compact closed functor F from the lexical category into FVectR
preserves the graphical representation of the morphisms of the lexical category.
For example, if

N = F(n) = F(n2) = F(c2) S = F(s) = F(p)

and the inequalities are mapped to identities then F(not) : S → S, F(blue) :
N → S, F(triangles) : I → N and

F(r◦(no⊗triangles⊗are⊗blue)) = F(not)◦F(blue)◦F(triangles) . (1)

If all basic types are mapped to a single space W and the inequalities to the
identity of W then the functor maps the nouns to vectors of W , the adjectives
and verbs to endomorphisms of W , but also the noise-word not . Assume now
that the endomorphisms corresponding to adjectives and verbs are self-adjoint
and have a common orthonormal basis of eigenvectors. If I is the one-to-one
correspondence that maps vectors to diagonal matrices then the restriction of
F = I ◦ F is a map that assigns to every concept word w a vector in W .
The converse also holds due to the remark saying that basic morphisms are
determined by the entry w : T in the lexicon. Any map F from words to vectors
in W defines a functor F from the lexical category (defined by the pregroup
lexicon listing these words and nothing else) which maps every basic type to
W and every inequality of basic types to the identity and satisfies F = I ◦ F .
The functor F guarantees compositionality for grammatical strings consisting
of concept words only.

3 Functional Vector Semantics

In the following, all entries in the lexicon are interpreted in the category of
finite-dimensional vector spaces over the field of real numbers.

A compact closed functor is a functional vector space model if it maps s

and p to the two-dimensional space S = V{⊤,⊥} with orthogonal basis vectors
⊤ and ⊥, nouns to sums of basic vectors, verbs and predicative adjectives to
‘predicates’, logical words to ‘logical connectives’, determiners and attributive

6



adjectives to ‘projectors’, where the terms ‘predicates’ and ‘logical connectives’
are defined below. Functional vector space models extend first order predicate
logic as we will see.

Note that first order predicates extend to linear maps of vector spaces thus
predicates

Let A = {a1, . . . , an} be an orthogonal basis of R
n = VA . A linear map

p : VA → S is a predicate on VA if p(a) ∈ {⊤,⊥} for any a ∈ A.

Examples are the linear maps true : VA → S and false : VA → S satisfying

true(ai) = ⊤ respectively false(ai) = ⊥ for i = 1, . . . , n .

A predicate p on A ‘counts’ the number of basis vectors for which it takes
the value ⊤. Indeed, the subset of B = {ai1 , . . . , aim} ⊆ A identifies with the

vector
−→
B =

∑m
l=1 ail . Let npB be the number of elements of B for which p

returns the value ⊤. Then
counting property

p(
−→
B ) = npB⊤+ (m− npB)⊥ and ntrueB = |B| . (2)

The counting property gives us a clue how to generalise truth-values to real
vector spaces
truth-values

Let p be a linear predicate on VA and X any vector of VA. We say that
p(X) is true if p(X) is co-linear to ⊤ and p(X) 6= 0
p(X) is false if p(X) is co-linear to ⊥ and p(X) 6= 0
p(X) is mixed if p(X) = α⊤+ β⊥ for some α 6= 0, β 6= 0
p(X) is mute if p(X) = 0.

The corresponding logic has four truth values, namely ‘true’, ‘false’, ‘mixed’
and ‘mute’. Their intuitive meaning will be explained below. Truth-values are
invariant under scaling. The vectors X and λX have identical truth-values for
λ 6= 0. Saying ‘p is not true on X’ only means that p(X) is not co-linear to the
basis vector ⊤ . This does not imply that ‘p is false on X’.
logical connectives

The logical connectives are the linear maps not : S → S, and : S ⊗ S → S,
or : S⊗S → S and ifthen : S⊗S → S determined by their values on the basis
vectors z ∈ {⊤ ⊗⊤,⊤⊗⊥,⊥⊗⊤,⊥⊗⊥} thus

and(z) =

{

⊤ if z = ⊤⊗⊤

⊥ else
or(z) =

{

⊥ if z = ⊥⊗⊥

⊤ else

ifthen(z) =

{

⊥ if z = ⊤⊗⊥

⊤ else
not(⊤) = ⊥ not(⊥) = ⊤ .

The logical connectives induce a Boolean algebra structure on the set of pred-
icates on VA with the largest element true. Let dA : VA → VA ⊗ VA be the
unique linear map satisfying dA(ai) = ai ⊗ ai for i = 1, . . . , n and

〈p, q〉 = (p⊗ q) ◦ dA : VA → S ⊗ S . (3)
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Then the linear maps

not ◦ p : VA → S, and ◦ 〈p, q〉, or ◦ 〈p, q〉, ifthen ◦ 〈p, q〉 : VA → S

are predicates on VA.
logical consequence relation

A predicate q is said to be a logical consequence of a predicate p if

ifthen ◦ 〈p, q〉 = true .

The logic introduced above extends first order predicate logic. Indeed, as-
sume that a vector X =

∑n
i=1 αiai 6= 0 satisfies αi ≥ 0, for i = 1, . . . , n, and let

X = {ai1 , . . . aim} be the subset of basis vectors aik for which αik 6= 0 . Then
the following holds

fundamental property

p is true on X ⇔ ∀x(x ∈ X ⇒ p(x) = ⊤)
p is false on X ⇔ ∀x(x ∈ X ⇒ p(x) = ⊥)
p is mixed on X ⇔ ∃x∃y(x, y ∈ X & p(x) = ⊤ & p(y) = ⊥) .

(4)

Words are interpreted by vectors with non-negative coordinates in the func-
tional vector models. Hence, the Fundamental Property applies to all of them.

Example 1.

Consider a game involving chips that come in different shapes and colours. Each
shape has a combination of any number of the colours red, yellow and blue. The
machine that distributes the chips can recognise colours, but not shapes. Players
who want a certain shape therefore must describe the shape, say triangle, square,
circle, in terms of colour combinations.

A player who believes in functional models represents thirty chips A =
{a1, . . . , a30} extracted from the machine by a functional model F . His ob-
servation is summed up thus

F(n) = N = VA

F(triangle)(1) = a1 + · · ·+ a10 F(square)(1) = a11 + · · ·+ a20
F(circle)(1) = a21 + · · ·+ a30

F(new)(ai) = ai if i = 5, 7− 15, 20, 25, 30 F(new)(ai) = 0 else
F(blue)(ai) = ⊤ if i = 16− 20 F(blue)(ai) = ⊥ else
F(red)(ai) = ⊤ if i = 1− 9, 11− 20 F(red)(ai) = ⊥ else
F(yellow)(ai) = ⊤ if i = 7− 15, 21 F(yellow)(ai) = ⊥ else .

Because of his preference for new chips, he computes the noun phrases new
triangles, new squares etc.

F(new ◦ square) = F(new) ◦ F(square) = F(new)(a11 + · · ·+ a20)
= a11 + · · ·+ a15 + a20

F(new ◦ triangle) = F(new) ◦ F(triangle) = F(new)(a1 + · · ·+ a10)
= a5 + a7 + · · ·+ a10

F(new ◦ circle) = F(new) ◦ F(circle) = F(new)(a21 + · · ·+ a30)
= a25 + a30
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Concentrating on triangles, he finds that the meaning of the sentence ‘No trian-
gles are blue’ computes to not ◦ blue ◦ triangle in the lexical category, by (1).
Hence, the interpretation of the sentence in the functional vector space model
F is

F(not) ◦ F(blue) ◦ F(triangle) = F(not)(10 · ⊥) = 10 · ⊤ =

(

10
0

)

.

The resulting vector is colinear to ⊤, hence the sentence No triangles are blue
is true in the model. The Fundamental Property implies that F(blue)(x) = ⊥
for every basis vector x ∈ F(triangle). The predicates F(red) and F(yellow)
are mixed on F(triangle)

F(red ◦ triangle) = F(red)(a1 + · · ·+ a9) + F(red)(a10) = 9 · ⊤+ 1 · ⊥
F(yellow ◦ triangle) = 4 · ⊤+ 6 · ⊥ .

Example 2.

This looks rather confusing, so the player decides to describe the concepts tri-
angle, square, circle by their colours and compute the probability that a chip
with colour combination cj has shape p. Therefore he needs the number kpj of
chips of shape p appearing with a given colour combination cj and the number
mj of chips having colour combination cj . Using r if the red colour is present
and ¬r if the red colour is absent and similarly for the other colours, he first
arranges the chips according to their colour combinations

combination chips number
c1 = r ¬y b C1 = {a16, . . . , a20} m1 = 5
c2 = r y¬b C2 = {a7, a8, a9} ∪ {a11, . . . , a15} m2 = 8
c3 = r ¬y¬b C3 = {a1, . . . , a6} m3 = 6
c4 = ¬r y ¬b C4 = {a10, a21} m4 = 2
c5 = ¬r ¬y¬b C5 = {a22, . . . , a30} m5 = 9 .

shape combination
ks1 = 5 squares c1 = r¬y b

ks2 = 5 squares c2 = r y¬b
kc4 = 1 circles c4 = ¬r y¬b
kc5 = 9 circles c5 = ¬r¬y¬b

shape combination
kt3 = 6 triangles c3 = r¬y¬b
kt2 = 3 triangles c2 = r y¬b
kt4 = 1 triangles c4 = ¬r y¬b .

Representing each shape p by the vector p =
∑

j kpj/mj · cj he obtains the
following overview of his findings

F(square) 7→ square = 5/5 · c1 + 5/8 · c2
F(triangle) 7→ triangle = 3/8 · c2 + 6/6 · c3 + 1/2 · c4
F(circle) 7→ circle = 1/2 · c4 + 9/9 · c5 .

It suffices to ask for a red chip that is not yellow to obtain a triangle.
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4 Conceptual vector semantics

Compositional natural language semantics requires reasoning with ‘properties’.
For the reset of the paper, ‘property’ stands for the meaning of a noun, an
adjective, a verb, a noun phrase or a sentence. Function words contribute
essentially to the meanings of grammatical strings, but they are absent in a
semantic vector model that only represent concept words. Any compositional
method ignoring noise words returns the same result for No apples are juicy and
All apples are juicy. Such a retrieval method only tells us what the sentences
are about but not what they mean.

Compositional vector semantics does not require a functor, at least not all
the way. One can use a lexical functor which maps the concept words to vectors
or endomorphisms of some space VC and each time the functor asks for the value
of a noise word use some other method, for example an operator defined on VC .
The method must capture the logical content, so we need a notion of truth
and of logical consequence in VC . Otherwise, we could choose any operation on
the vector space, like vector sum, and say that the sum of the vectors in the
string is the ‘meaning’ of the whole string. The algebraic connectives and the
associated consequence relation given below generalise the corresponding logical
connectives for sets and predicates and the quantum connectives on projectors.
They also allow reasoning with probability.

The following definitions refer to an orthogonal basis A = {a1, . . . , an} of
R

n. A vector is Boolean if its coordinates with respect to A are equal to 0 or
1. Let BA denote the set of Boolean vectors and pfqAA the matrix that an
endomorphism f of Rn defines with respect to A. The endomorphisms of Rn

that are diagonalisable with respect to A and the projectors among them form
the sets

DA = {f : Rn −→ R
n : pfqAA is a diagonal matrix}

PA = {f ∈ DA : f ◦ f = f} .

There is an obvious one-to-one correspondence between vectors of Rn and DA

via the correspondence

X =
n
∑

i=1

αiai ⇆ DX =







α1 0
. . .

0 αn






.

Clearly, the map I that assigns to f ∈ DA the vector X for which pfqAA = DX

is a bijection from PA onto BA.

algebraic connectives

The algebraic connectives are defined for scalars and for arbitrary endomor-
phisms thus

negation ¬α = 1− α ¬D = 1−D
conjunction α∧β = αβ D∧E = DE
disjunction α ∨ β = α+ β − αβ D ∨ E = D + E −DE
implication α → β = 1− α+ αβ D → E = 1−D +DE .
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The algebraic connectives are lifted to vectors by

¬X = ¬(
∑n

i=1 αiai) =
∑n

i=1(¬αi)ai
X▽Y = (

∑n
i=1 αiai)▽(

∑n
i=1 βiai) =

∑n
i=1(αi▽βi)ai ,

where ▽ stands for any of the binary algebraic connectives. It follows that

¬DX = D¬X and DX▽DY = DX▽Y (5)

The two equalities above say that the one-to-one correspondence I is an isomor-
phism of algebraic connectives. Note that the algebraic conjunction coincides
on vectors with the pointwise product ⊙ introduced by (Kartsaklis et al. 2013)
and composition is related to the algebraic conjunction thus

DX ◦DY = DX ∧DY = DX∧Y DX ◦ 〈Y | = 〈X ∧ Y | , (6)

where 〈Z| denotes the matrix of the linear map v : I → VA that assigns the
vector Z ∈ VA to the unique basis vector of I. Reformulating the last equalities
with the help of I, we get for any f, g ∈ DA, v : I → VA

I(f ◦ g) = I(f) ∧ I(g) = I(f)⊙ I(g) I(f ◦ v) = I(f) ∧ v = I(f)⊙ v .

The vectors considered in semantic vector models have positive components.
In general, they are replaced by vectors with components in the real interval
[0, 1]. Think of the latter vectors as concept vectors. Concept vectors are closed
under the algebraic connectives, because the interval [0, 1] is closed under the
algebraic connectives. With a lexicon that assigns a meaning expression to every
noise word as well, the meaning of a grammatical string can be computed in the
lexical category, resulting in a composition of distinguished morphisms w1 ◦ · · · ◦
wn. If the lexical functor F of Section 2 maps the distinguished morphisms wi
to self-adjoint endomorphisms then I(F(w1) ◦ · · · ◦ F(c2)) = I(F(c1)) ⊙ · · · ⊙
I(F(c2)).

The algebraic connectives do not define a lattice structure, for example the
algebraic conjunction is not idempotent unless the involved scalars are 0 or 1.
They have however several properties with a logical flavour, among them the
laws of a weak conditional logic in the sense of (Rijsbergen 2004).

Any real numbers α, β ∈ [0, 1] and diagonal matrices D,E ∈ DA with entries
in [0, 1] satisfy

α → β = 1 if and only if α = 0 or β = 1 (7)

α → β = 1 if and only if αβ = α
If α → β = 1 then α ≤ β

D → E = 1 if and only if E ◦D = D
If D → E = 1 then D ≤ E .

algebraic consequence relation

The endomorphism defined by E is an algebraic consequence of that defined by
D if and only if

D → E = 1 .
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The last statement in (7) means that the algebraic consequence relation implies
the probabilistic consequence relation, because by definition E is a probabilistic
consequence of D if and only if D ≤ E .

(Rijsbergen 2004) uses projectors to represent properties and the geometrical
connectives of quantum logic. They are introduced as geometrical operators via
the range of the involved linear maps based on the fact that for every subspace
there is a unique projector which maps the whole space onto the subspace.
geometrical connectives

Let p, q : Rn −→ R
n be projectors. Then

the geometrical negation ¬p is the unique projector that has range

(¬p)(Rn) = p(Rn)⊥

the geometrical conjunction p ∧ q is the unique projector that has range

(p ∧ q)(Rn) = p(Rn) ∩ q(Rn)

the geometrical disjunction p ∨ q is the unique projector that has range

(p ∨ q)(Rn) = p(Rn) + q(Rn)

the geometrical implication p ⇒ q is the unique projector that has range

(p ⇒ q)(Rn) = {x ∈ R
n : (q ◦ p)(x) = p(x)} .

quantum consequence relation

Projector q is said to be a geometrical consequence of projector p if and only if

p ⇒ q = 1 .

The definition makes the detour via the subspaces, because there is no ob-
vious algebraic operator defining the projector. For example, p ◦ q maps R

n

onto the intersection of the image of p and the image of q, but p ◦ q is not a
projector unless p and q commute. If p and q do not commute, they are not
both diagonalisable in any single basis. Are we not loosing representatives of
properties in probability when replacing the projectors by DA? The answers is
that to the contrary, we are gaining representatives at least as long as we accept
the geometric consequence relation.

Proposition 1. If projector q is a geometrical consequence of projector p then
there is an orthogonal basis of Rn consisting of eigenvectors of both p and q .

The geometrical consequence relation and the algebraic consequence relation
coincide on projectors. If one of p or q is a geometrical consequence of the
other then the geometrical connectives coincide with the algebraic connectives
for p and q.

Proof. (Outline) Clearly, the second statement follows from the first. To see the
first statement, assume that q is a geometrical consequence of p and let A be an
orthonormal basis of Rn formed by eigenvectors of p . The eigenvectors in A left
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invariant by p are also left invariant by q. Let A1 denote this set and V be the
subspace generated by A1. Then q maps the orthogonal complement of V onto
itself whereas p maps it to 0. Hence any set C of orthonormal eigenvectors of q
belonging to V are also eigenvectors of p. Thus A1∪C is a basis of orthonormal
eigenvectors for both p and q.

The proposition above also implies that the algebraic connectives can be
captured by geometrical properties, at least on Boolean vectors. In particular,
two distinct basis vectors contradict each other. This raises the question how
to choose the basis vectors so that they represent contradictory properties.

5 Distributional interpretations

Everyday language switches commonly from asserting facts about sone real or
imagined world and updating the concepts intervening in the statements about
the facts. I model this switch using the canonical distribution based on the
counting property of predicates. The modelling interprets the coefficient of a
concept, say apple, for a basis vector, say juicy, as the conditional probability
of the event apple given the event juicy. I give sufficient conditions for concept
logic to be reflected and predicate logic to be preserved.

Predicates q1, . . . , qk on VA are said to be mutually contradictory if from
j 6= l and a ∈ A follows that qj(a) = ⊥ or ql(a) = ⊥. They are pertinent if for
any a ∈ A there is a predicate qj for which qj(a) = ⊤.

Choose some orthogonal basis A = {a1, . . . , an} of Rn and C = {c1, . . . , ck}
of Rk. Think of the basis vectors a1, . . . , an as ‘individuals’ and the basis vectors
c1, . . . , ck as ‘basic events on A’ or as ‘basic properties’ of the individuals. That
is to say, identify {c1, . . . , ck} with a partition {C1, . . . , Ck} of pairwise disjoint
subsets covering A or, equivalently, with a family of mutually contradictory
pertinent predicates q1, . . . , qk on VA. The predicates q1, . . . , qk are related to
the sets C1, . . . , Ck by the equalities

Cj = {a ∈ A : qj(a) = ⊤}, j = 1, . . . , k .

Let mj = |Cj | so that
∑

j mj = n = |A| . Assuming that every individual in A
has probability 1/n, the real number

µj = mj/n

can be understood as the probability that an arbitrary individual a ∈ A has
property qj , for j = 1, . . . , k. The density operator defined by the diagonal
matrix

Dµ =







µ1 0
. . .

0 µk







summarises the first order model consisting of A and the predicates qj , for
j = 1, . . . , k . Composing the density operator Dµ with the projector pj onto
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the line spanned by basis vector cj we obtain the vector µjcj . The component
µj is the probability that an arbitrary individual of the model has property qj ,
with other words that the model is in ‘state’ qj .

Recall that for any predicate p on VA, the integer npCj
denotes the number

of elements in Cj for which p has value ⊤. Define

JC(p) =

k
∑

j=1

αpjcj , where αpj =

{

npCj
/mj if mj 6= 0

0 else
, for j = 1, . . . , k .

The number αpj is the conditional probability that an individual has property
p provided it has property qj . It follows from the linearity of p that npA =
∑

j npCj
. Therefore, the probability that an arbitrary element of A has property

p is equal to

npA/n =
∑

j

npCj
/n =

∑

j

(npCj
/mj)(mj/n) = trace(Dµ ◦DJ (p)) =

∑

j

αpjµj .

The interpretation JC is an isomorphism if C consists of the singleton sets
{a1} , . . . , {an}, because the sufficient conditions of Lemma 1 and Theorem 1
are satisfied. In general, however, it is not even one-to-one. Indeed, JC(p) only
tells us for how many individuals p is true in each set Cj and not for which
individuals. Moreover, JC does not commute with the connectives in general.
The following sufficient conditions are of practical relevance.

Lemma 1. Let p, q : VA → S be any predicates on A and assume that the sets
Cj are not empty, for j = 1, . . . , k. Then the following holds

JC(not ◦ p) = ¬JC(p)

If in addition for every j at least one of p or q is constant on Cj then

JC(and ◦ 〈p, q〉) = JC(p) ∧ JC(q)
JC(or ◦ 〈p, q〉) = JC(p) ∨ JC(q)

JC(ifthen ◦ 〈p, q〉) = JC(p) → JC(q) .

Negation is preserved exactly when Dµ is positive definite. This condition
alone is not sufficient for JC to preserve the binary connectives. The supple-
mentary condition needed, however, corresponds to the way we explain new
concepts in terms of more basic concepts.

Theorem 1. Suppose that the sets C1, . . . , Ck partition A and are not empty.
Then JC reflects the consequence relation, i.e. for any predicates p and q on A

JC(p) → JC(q) = 1 implies ifthen ◦ 〈p, q〉 = true (8)

Moreover, if one of JC(q) and JC(p) is an algebraic/geometrical consequence
of the other then J preserves the logical connectives. The algebraic/geometrical
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connectives preserve the probabilistic interpretation of concept vectors.

¬JC(p) = JC(not ◦ p)
¬JC(q) = JC(not ◦ q)

JC(p) ∧ JC(q) = JC(and ◦ 〈p, q〉)
JC(p) ∨ JC(q) = JC(or ◦ 〈p, q〉)
JC(p) → JC(q) = JC(ifthen ◦ 〈p, q〉)
JC(q) → JC(p) = JC(ifthen ◦ 〈q, p〉) .

(9)

Proof. Assume that JC(p) → JC(q) = 1 . Then 1 − αpj + αpiαqj = 1 and
therefore αpj = 0 or αqj = 1, for j = 1, . . . , k . With other words, p maps every
element of Cj to ⊥ or q maps every element of Cj to ⊤. As every element of A
belongs to some Cj , we have

ifthen ◦ 〈p, q〉(x) = ⊤, for all x ∈ A .

The equality ifthen ◦ 〈p, q〉 = true follows. This completes the proof of (8).
The equalities (9) hold, because the assumptions of the preceding lemma are

satisfied.

If the covering partition {{a1} , . . . , {an}} consists of the singleton sets formed
by the basis vectors a1, . . . , an of VA the interpretation JA is an isomorphism
of the Boolean algebra of predicates defined on VA onto the Boolean algebra of
Boolean vectors BA of VA. This is the degenerate case where the ‘individuals’,
i.e. the basis vectors of VA are identified with the ‘basic concepts’, again the
basis vectors of VA. The functional model interprets noun phrases by vectors
in BA adjectives in attributive position by projectors in PA and verbs and ad-
jectives in predicative position by predicates. Boolean vectors in BA identify
with projectors in PA by (5) and with predicates by JA. Therefore JC can be
extended to all non-noise verbs such that Theorem 1 remains valid.

6 Practice and Conclusion

The method given in Example 2 generalises to an arbitrary number of words.
Indeed, let P = {w1, . . . , wd} be a set of concept words in the lexicon. Invent
a two-dimensional space Si = V{wi,¬wi} with basis vectors wi and ¬wi, for i =
1, . . . , d and define the concept space generated by P as

C(P ) = S1 ⊗ . . .⊗ Sd .

The basis vectors of C(P ) are of the form

cj = cj(1)⊗ . . .⊗ cj(d)

where cj(i) ∈ {wi,¬wi} , for j = 1, . . . , k.
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Without loss of generality, we may assume that the functional model inter-
prets the words w1, . . . , wd as predicates p1, . . . , pd on a space VA. The basis
vectors correspond to the following partition C1, . . . , C2d of subsets of A

a ∈ Cj if and only if pi(a) =

{

⊤ if cj(i) = wi

⊥ if ¬wi
, for i = 1, . . . , d .

If we work within the subspace C of C(P ) generated by the basis vectors
cj for which Cj 6= ∅, the interpretation JC reflects concept logic. It preserves
predicate logic under the conditions of Theorem 1. The concept words wi ‘live’
in C(P ) under the form

−→wi =
∑

{j : cj(i)=wi}

cj ,

and the algebraic operators induce on the set of Boolean vectors of C(P ) the
structure of a Boolean algebra which is isomorphic to the free Boolean algebra
generated by the set {w1, . . . , wd}, (Preller 2012).

Example 3.

A player who has not seen any chips, but has access to text mentioning the
colours of the various shapes still can use the the conceptual representation.

triangle = α1c1 + · · ·+ α8c8, 0 ≤ αi ≤ 1

The truth of the statement No triangle is blue implies that αi = 0 for all colour
combinations ci involving b (blue) without the negation symbol. Hence

triangle = α2c2 + α3c3 + α4c4 + α5c5 .

Note that the vector triangle is orthogonal to every basis vector that lists the
colour blue as present, namely c1, c6, c7 and c8 . Therefore triangle is orthogonal
to the subspace generated by the four basis vectors with ‘blue’ present.
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