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Abstract Community detection and evaluation is an important task in graph mining.
In many cases, a community is defined as a subgraph characterized by dense connections
or interactions between its nodes. A variety of measures are proposed to evaluate different
quality aspects of such communities—in most cases ignoring the directed nature of edges.
In this paper, we introduce novel metrics for evaluating the collaborative nature of directed
graphs—a property not captured by the single node metrics or by other established commu-
nity evaluation metrics. In order to accomplish this objective, we capitalize on the concept of
graph degeneracy and define a novel D-core framework, extending the classic graph-theoretic
notion of k-cores for undirected graphs to directed ones. Based on the D-core, which essen-
tially can be seen as a measure of the robustness of a community under degeneracy, we devise
a wealth of novel metrics used to evaluate graph collaboration features of directed graphs.
We applied the D-core approach on large synthetic and real-world graphs such as Wikipedia,
DBLP, and ArXiv and report interesting results at the graph as well at the node level.

Keywords Graph mining · Community evaluation metrics · Degeneracy · Directed cores

1 Introduction

The Web, social network, and citation graphs form a context where the detection and evalu-
ation of communities constitutes an important and challenging task. The research methods
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312 C. Giatsidis et al.

in this area have mainly capitalized on the Hub/Authority concepts (see [39,43]) evaluat-
ing communities based on the centrality of nodes in terms of incoming/outgoing links. We
claim that inherent mechanisms of community creation and evolution are not solely based
on the Hub/Authority concepts. An important constituent of such a mechanism, generally
neglected, is the community cohesion in terms of a dense distribution of in/outlinks within the
community—as opposed to sparse connections across them. We are interested in quantifying
the degree of cohesion of a community subgraph as a measure of collaboration among its
members. Here, we have to stress the distinguishing feature of the graphs under concern in
this paper: the directed nature of the edges – representing endorsement, recommendation,
citation, and, in general, non-symmetric relationship among entities.

In order to study this collaboration aspect, we capitalize on the k-core concept—an estab-
lished, computationally efficient technique for identifying dense graph areas with dense edge
connectivity. A core is broadly defined as a maximum size subgraph of a graph that is coher-
ent and dense in the sense that for every node in this subgraph, there are least k incident edges
that are adjacent to vertices of the same subgraph (formal definitions follow in Sect. 2).

The objective of our study is to deal with and evaluate the “collaborative” behavior of com-
munities (represented as D-cores of a directed graph) rather than dealing with authorities or
hubs. This work follows up the work in [29] on evaluating collaboration in undirected graphs.

The paper contributions are the following:

– We vastly extend the existing theoretical framework on cores (mainly defined in [2,9,10,
15,30]) to the case od directed graphs. Such graphs emerge naturally from social/citation
networks and the Web. D-cores constitute dense directed subgraphs of the original one
involving intensive and mutual collaboration in terms of directed links. Interestingly, all
these notions induce a two-dimensional setting indicating qualitative differences from
the directed case and are later employed and visualized in our experimentation.

– We define new structures and metrics for evaluating the collaborative nature of directed
graphs. Such are the D-core matrix for a graph, its frontier, and a series of novel metrics
to evaluate: (a) the robustness of the directed graph under degeneracy, as a metric of
cohesiveness and hence the collaboration among the members of the graph under study
and (b) the dominant patterns of the graph with respect to the inlink/outlink trade-off
indicating macroscopic graph patterns related to whether the graph is extrovert or “self-
ish”. A salient feature of our work is the low (in fact optimal) complexity for computing
the D-core structures and the related structures and metrics.

– Extensive experimental evaluation: We conducted large-scale experiments in scale-
free/preferential attachment synthetic graphs as well as real-world large-scale directed
graphs: the (English) Wikipedia—2004 edition, the ArXiv, and DBLP citation graphs.
We computed and explored the respective D-cores matrices, frontiers, and metrics, and
we derived interesting results and observations both at the macroscopic (graph) and at
the microscopic (node) level.

We claim that the D-core concept and the relevant structures and metrics that we define in
this paper constitute a framework of tools for efficient and valid evaluation of cohesiveness
and collaboration in directed networks.

We should also stress that the current paper is an extension of the paper appeared in [28]
in the following aspects:

– We articulate the theoretical foundation of the proposed framework in a more
principled manner, adopting valid terminology from related work, more specifically in
[2,9,10,15,30]. We extend the set of metrics and structures proposed in [28] with directed
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D-cores: measuring collaboration of directed graphs 313

analogues of the notions of k-cores, k-core sequence, k-cells, and k-cell sequence. More-
over, we introduce the concept of a Core Decomposition Forest for the case of directed
graphs, extending the similar concept for undirected graphs was introduced in [30] and
used in [29].

– We investigate the behavior of the new concepts and metrics in the case of synthetic
preferential attachment graphs—dominant in real-world cases. The study is extended to
various parameters values in an attempt to fit the features of the real-worlds graphs. In
order to achieve this, we developed a multiparametric graph generator.

– We extend the experimental evaluation with a. an alternative visualization of the differen-
tial behavior of the graphs under concern with regard to the pace of graph size reduction
for both the inlinks and the outlinks aspect b. an exhaustive study and interpretation of the
in-/out-degree distributions in the synthetic preferential attachment datasets and c. study
of another citation dataset, ArXiv HEP-TH (high energy Physics Theory), featuring an
alternative important representative scientific discipline.

2 Related work

A thorough review on community detection in graphs is offered by Fortunato [25].
In that work techniques, methods and datasets are presented for detecting communities in

sociology, biology, and computer science, disciplines where systems are often represented
by graphs. Most existing relevant methods are presented, with a special focus on statistical
physics, including discussion of crucial issues like the significance of clustering and how
methods should be tested and compared against each other.

In the recent literature, various metrics are proposed to evaluate the graph structure
of a social network. Such are “Betweenness” [43], “Centrality” [39], Clustering coef-
ficient (a measure of the likelihood that two associates of a node are associates them-
selves).

A higher clustering coefficient indicates a greater “cliquishness”, that is, cohesion degree
or density. Of special interest here is the eigenvector centrality—a measure of the impor-
tance of a node in a network. It assigns relative scores to all nodes in the network based on
the principle that connections to nodes having a high score contribute more to the score of
the node in question. Other measures include “path length” (i.e. distances between pairs of
nodes in the network), “prestige/authority”, a measure in directed graphs to describe a node’s
centrality, and “radiality”, a notion representing the capacity of an individual to reach out the
whole network.

Other interesting measures include “Structural cohesion”. While cohesion metrics have
been studied a lot in sociology, there does not seem to be a general agreement. Cohesion in
its essence is the ability of any network not to split up when changes are made, and from
this point of view, ideas like the density of interactions in the network [1,24,26] and the
relational distance between nodes [35] are used as basic features for cohesion. The issues
with these ideas are that—as it is also noted in [38]—the cohesion of a group could depend
on only one node; additionally, these ideas are conceived for a non-directed network where
each interaction is in both directions, thus making these metrics not directly applicable in
a directed network. In [38], the cohesion, in a connected group of nodes, is defined by the
number of nodes that, if removed, would disconnect the group. The measurement of this
feature is connected with the number of paths a node has to another one, which would make
the calculation of the cohesion in a large graph computationally difficult.
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314 C. Giatsidis et al.

An popular alternative for evaluating cohesiveness is the k-core structure. A k-core in a
graph G is a maximum subgraph H where each nice in H has at least k neighbors inside
H ; in this case, k is the index of the k-core H . A high-index core in a graph indicates a
“strongly interrelated community” where everybody has some minimum connection with
the rest. As graph theoretic concepts cores are being studied from the 1960s [22,42,36,41].
However, their use, in an experimental level, for evaluating and detecting strongly cohesive
communities in real-word graphs has been used extensively in several topics such as the
study of internet topology [2,15], large-scale network visualization [2,3,8], networks of
protein interaction [5,44], and complex network modeling and organization [10,19]. A more
general notion of k-cores was introduced in [9] where, instead of vertex degrees, more general
functions were considered. In the more recent work of [29], a fractional analogue of the k-core
concept is defined in order to detect and evaluate communities in citation datasets where the
corresponding graphs are bipartite, that is, relate members of distinct entities such as authors
with papers.

Part of our work focuses on applying our evaluation techniques on citations graphs (DBLP,
ArXiv). Recent work on citation graphs can be found in [4] where a study is carried out on the
citation graph of Computer Science Literature and [31]. In [4], an attempt is made to extract
a descriptive summary of the graph through a study of fundamental and well-established
properties (degree distribution, giant component size etc.). In contrast, our work focuses on
novel techniques for evaluating community graphs and expands on a wider scope of study.
In [31], the focus is on community detection and the evolution through time. The community
detection is performed on the authors through the papers they have co-cited, and the evaluation
of the citation graph is based on the detected clusters.

3 Our results

So far, no analogous notion or study has been done in datasets where the relations are ordered,
that is, they are represented by directed graphs. A typical such graph is a citation graph where
nodes are papers and where the existence of a directed edge (p1, p2) reflects the fact that paper
p1 is citing paper p2. In this case, to demand that vertices of a subgraph have many neighbors
is not enough as we have to take into account the tendency of vertices to be hubs (i.e. to have
many out-going edges) or authorities (i.e. to have many in-going edges). Therefore, we need
a more refined notion of a core in order to capture an analogue of a coherency measure in
such graphs.

In this paper, we define, for the first time, an analogue of the k-core structure for directed
graphs called D-core. It appears that directed graphs require a two-dimensional analogue

of k-cores as each vertex v of a directed graph as two type of neighbors: those where v is
pointing to (the out-neighbors) and those that are pointing to v (the in-neighbors). Then,
the (k, l)-core of a directed graph D (in short: digraph) is a maximum subdigraph F os D

where all vertices have at least k out-neighbors in F and at least l in-neighbors in F . This
generates a criterion of cohesiveness where, by taking distinct values of k and l, we may tune
the relation between hubs and authorities in the related D-core.

In [34], an idea similar to the D-cores is used to filter out less significant nodes, by pruning
them out. The main difference to our approach is that it removes only a sufficient portion
of the nodes. The cores are then fed to a generalized HITS algorithm used to expand the
communities within them.

In [16], greedy approximation algorithms are proposed for finding the dense components
of a graph. Both undirected and directed graphs are examined. In the case of directed graphs,
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D-cores: measuring collaboration of directed graphs 315

the vertices are divided in hubs (S) and authorities (T); then based on a value of |S|/|T|, a
greedy algorithm removes the vertex of minimum degree from either S or T until both sets
are empty.

4 D-cores and relevant structures

In this section, we introduce the D-core concept along with the structures that enable finding
the optimal subgraphs (with regard to cohesion) and identifying highly collaborative parts in
directed graphs.

4.1 Preliminaries

Let G = (V, E) be a graph. A subgraph H of G is a graph obtained by G after removing
vertices or edges and we denote this by H ⊆ G. Given a vertex x ∈ V we define its degree

as the number of vertices that are adjacent with x in G and we denote it by degG(x). The
min-degree of a graph G is defined as

δ(G) = min{x | degG(x) | x ∈ V (G)}.

A k-core in a graph G is a subgraph H of G where δ(H) ≥ k. The degeneracy of
a graph G denoted by δ∗(G) is the maximum k for which G contains a non-empty k-
core. Assume that for i = 0, . . . , δ∗, Gi is the i-core of G. Then, we call the sequence
V (G0), V (G1), . . . , V (Gδ∗(G)) core sequence of G and observe that V (Gi ) ⊆ V (Gi+1)

for i ∈ {0, . . . , δ∗(G) − 1}. We also call the sequence V (G1) − V (G1), . . . , V (Gδ∗(G)) −

V (Gδ∗−1) cell sequence of G and we observe that its elements form a partition of V (G).
k-cores are fundamental structures in graph theory and their study dates back to the 1960s

[22,36,42]. The parameter of degeneracy appeared with several names such as width [37],
linkage [27], and the coloring-number [18]. The existence of a k-core in a graph indicates
the existence of a highly interconnected community where every node is linked with at least
k other nodes. The existence of k-cores of large size in sufficiently dense graphs has been
theoretically studied by [40] for random graphs generated by the Erdős-Rényi model [23].
As shown in [40], a k-core whose size is proportionate to the size of G (i.e. a “giant” k-core)
appears in a random graph with n vertices and m edges when m reaches a threshold ck · n,

for some constant ck that depends exclusively on k.
Here, we extend the notion of a k-core to directed graphs so that they can represent

well interconnected communities on networks whose links are of directional nature, i.e. are
represented by directed edges. To our knowledge, this is the first time such an extension is
proposed.

4.2 D-cores

Let D = (V, E) be a digraph that is a set V of vertices and a set E of directed edges between
them. Each edge e ∈ E can be seen as a pair e = (v, u) and we say that v is the tail of e,
while u is the head of e. We denote the set of vertices of a digraph D by V (D). Given a
vertex x ∈ V, its in-degree, we denote it by degin

D(x), is the number of in-links of x, that is,
the edges in D with x as a head. Similarly, the out-degree of x, we denote it by degout

D (x), is
the number of out-links of x, that is, edges in D with x as a tail. The min-in-degree and the
min-out-degree of a digraph D are defined as
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Fig. 1 Two portions of a
digraph. The one in the left does
not contain any non-trivial
(k, l)-core and the one in the
right is a (2,2)-core

δin(D) = min{x | degin
D(x) | x ∈ V (D)} and

δout(D) = min{x | degout
D (x) | x ∈ V (D)},

respectively. Given two positive integers k, l and a digraph D = (V, E), a (k, l)-D-core of D

is a maximal size subdigraph F of D where δout(F) ≥ k and δin(F) ≥ l; if no such digraph
exists, then the (k, l)-D-core of D is the empty digraph. It is easy to see that when such a
subdigraph exists, it is unique.

Given a digraph D, we denote by DCk,l(D) the (k, l)-D-core of D. We also denote by
dck,l(D) the size of DCk,l(D), that is, the number of its vertices. As D will always be the
network under study, we may just use the simpler notations DCk,l and dck,l instead.

The intuition behind (k, l)-D-cores is to find a subdigraph where all nodes have enough
out-links and in-links to the rest of it. Clearly, it is not enough for a node to have big in-degree
and/or out-degree in order to be a member of such a core. What counts, on the top of this,
is that the node forms part of a community where each of its members satisfies the same in-
degree and/or out-degree requirements with respect to all the other community members (see
Fig. 1 for an example). This indicates that nodes in a D-core exhibit a strong collaboration
behavior among them.

The detection of DCk,l is computationally easy and can be done by the following
procedure:

Procedure T rimk,l (D)

Input: A digraph D and positive integers k, l

Output: DCk,l (D)

1. let F ← D.
2. while there is a node x in F such that

degout
F

(x) < k or degin
F

(x) < l,

delete node x from F .
3. return F .

Let L = (v1, . . . , vm) be a layout of the vertices of D. For every i = 1, . . . , n, we denote
by Di the digraph induced by the vertices in {v1, . . . , vi }. We say that L is (k, l)-eliminable

if for every i ∈ {0, . . . , n}, either degout
Di

(vi ) < k or degin
Di

(vi ) < l.
The following Lemma on (k, l)-D-cores generalizes the classic min-max result of [37]

(see also [27,32]).

Lemma 1 Given a digraph D and two positive integers k and l, the (k, l)-D-core is empty

if and only if there exists a (k, l)-eliminable layout of V (D).

Lemma 1 essentially indicates that the elimination procedure of the algorithm T rimk,l(D)

works correctly and (optimally) runs in O(m) steps where m = |E(G)|. The proof is easy
and follows the arguments of [27] for the non-directed case (see also [9]).
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D-cores: measuring collaboration of directed graphs 317

For an optimal implementations of the T rimk,l(D) procedure, see the general algorithm
of [9] that is based on the same ideas for the undirected case. In our implementation of this
procedure, DCk,l(D) is incrementally computed for all pairs of k and l.

4.3 Degeneracy of digraphs

The degeneracy of a directed digraph differs radically from its undirected counterpart. Actu-
ally, it has a two-dimensional nature since different choices of the lower bounds to the number
of incoming/outcoming edges result to different D-cores.

The degeneracy of a digraph D is defined as follows.

δ∗(D) =
1

2
max{δout(H) + δin(H) | H ⊆ D}. (1)

The intuition behind the definition of δ∗(D) is to return the maximum r (for some pair k, l

where k + l ≥ 2r ) such that D contains a non-empty (k, l)-D-core (δ∗ takes semi-integer
values). Also the value of δ∗(D) may correspond to multiple (k, l)-D-cores for different
choices of k and l (those where k + l = 2 · δ∗(D)).

Notice that if we replace each edge of a graph by two opposite direction edges, the
degeneracy of the resulting digraph is equal to the degeneracy of G. Thus δ∗ is indeed a
valid generalization of undirected degeneracy to directed graphs. We stress that δ∗ is the first
density parameter on digraphs that takes into account Hub/Authority trade-offs as it differs
radically (and is not comparable) with previous digraph density measures such as the ones
defined in [16] and [34]. A powerful extension of the classic notion of a k-core was given
in [9] where the k-core is defined as a set of vertices where some general vertex property
function is bounded. While the results in [9] can also provide a natural concept of k-core for
directed graphs, they are not able to capture the “two-dimensional” nature of our (k, l)-core
concept where degree bounds are applied simultaneously on both the in-degrees and the
out-degrees.

Let τ be a real number in the interval [0, π/2] representing an angle. The τ -degeneracy

of a digraph D is defined as follows.

δ∗
τ (D) = max

{

⌈k⌉ + ⌈l⌉

2
| G contains a non-

empty (k, l) − D-core where k = r · cos(τ ) and

l =r · sin(τ ) for some r where r2 = l2 + k2
}

In the above definition, one may see each pair (k, l) as a point of a Cartesian system
of coordinates, corresponding to the D-core DCk,l(D). To compute δ∗

τ (D), we essentially
follow the τ -slope segment starting from (0,0) until DCk,l(D) becomes empty along this line.
The last such non-empty D-core is the one determining the degeneracy of D with respect to
the angle τ . The value of τ reflects the Hub/Authority trade-off in the considered D-cores
and we refer to it as H/A-angle.

Again it is easy to observe that δ∗
π/4 deteriorates to classic degeneracy when we replace

each edge of an undirected graphs by two (opposite) directed edges. Observe that δτ can also
provide an another definition of δ∗, equivalent to the one in (1), as δ∗(D) = max{δ∗

τ (D) |

τ ∈ [0, π/2]}.

D-core matrix. Our objective is to define a series of digraph-based metrics, based on directed
degeneracy, in order to evaluate the dense collaboration of nodes in networks whose links
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have directional nature. The whole network is represented by a digraph D and there is a
unique DCk,l for each k, l ≥ 0. The sizes dck,l , (for k, l ≥ 0) define an (infinite) matrix
AD = (dck,l)k,l∈N that we call D-core matrix of D. The notion of AD(k, l) is the two-
dimensional digraph analogue of the notion of core sequence defined in Sect. 4.1 for the
undirected case. For each k, l ≥ 0, we define

DCLout
k,l = V (DCk,l) − V (DCk+1,l) and

DCLin
k,l = V (DCk,l) − V (DC1,l+1)

Also, we set dclout
k,l = |DCLout

k,l | and dclink,l = |DCLin
k,l |. In other words, the values of DCLout

k,l

and DCLin
k,l represent the “differential” of the matrix AD taken in both horizontal and vertical

direction. For this reason, we define the matrices ∂out AD = (dclout
k,l )k,l∈N and ∂ in AD =

(dclink,l)k,l∈N. To visualize them, one may see the values of AD as being assigned to the
squares of an infinite two-dimensional grid centered to the esquire (0,0) and the values of
∂out AD and ∂ in AD as are assigned to the vertical and horizontal edges of this grid. We
identified the matrix AD and its differentials ∂out AD and ∂ in AD for the digraph formed by
the Wikipedia (2004, English edition). The nodes correspond to Wikipedia pages and each
directed edge e = (x, y) is a link from page x to page y. Cell (k, l) in the matrix AD stores
the size (dck,l)k,l∈N of the respective d-core DCk,l . As agreed before, we see the coordinates
(k, l) as squares of an infinite two-dimensional grid and we assign the values dclout

k,l and dclink,l

to its edges.
The result for the case of AD is depicted in Fig. 11. As there is no Wikipedia entry with

more than 51 out-links or more than 43 in-links, we restrict this matrix to its lower 51 × 43
portion. For each digraph D that we examine, we call this matrix D-core matrix of D, we
visualize its cells as squares of an infinite two-dimensional grid ŴD , and we depict the size
of its (k, l)-cores by coloring the corresponding squares with different colors. According to
Fig. 11, the value of δ∗(DWiki) for the Wikipedia digraph DWiki is obtained in cell (38, 41)
and is equal to 38+41

2 = 39.5. In other worlds, 39.5 is the half of the Manhattan distance
between a cell of the D-core matrix of DWiki and the cell (0,0); in our case, this cell is (38,
41) and this justifies the value of δ∗(DWiki).

For the cases of ∂out AD and ∂ in AD , we adopt the visualization of Fig. 2 that makes
it possible to depict together differential values in both directions: Consider the grid ŴD

depicting AD in Fig. 11. For each square in this grid, we add a new vertex in its center, we
draw an edge connecting it to its 4 corners, and then we remove the square. Notice that the
resulting graph is a new infinite grid, we denote it by ∂ŴD, whose squares are corresponding
either to horizontal or to vertices edges of ŴD . That way we can assign the values of ∂out AD

to “vertical” squares of ∂ŴD and the values of ∂ in AD to “horizontal” squares of ∂ŴD . The
colors of the squares of ∂ŴD correspond to the different sizes of DCLout

k,l and DCLin
k,l . That

way the visualization of Fig. 2 can be seen as a visualization of the discrete differential values
of the matrix AD depicted in Fig. 11.

We call a sequence of squares in ŴD incremental if for each two consecutive squares
(x, y), (x ′, y′), it holds either x ′ = x + 1 and y′ = y or x ′ = x and y′ = y + 1. Each
incremental sequence that starts from (0,0) corresponds to a possible scenario of considering
consecutive D-cores of D by gradually incrementing either the demand on the minimum
out-degree or the demand on the minimum in-degree.

We notice in Fig. 2 that the size of Wikipedia drops fast (at pace that can reach up to 10.000
nodes per step) as the minimum values of in/outlinks increase, especially in the range [1–10].
The drop in graph size is more significant for the outlinks case, showing that the outlinks
graph is less robust to degeneracy. Then, the graph size reduces less aggressively—thus these
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Fig. 2 The differentials ∂out AD and ∂ in AD for the digraphs formed by the Wikipedia, DBLP, and ArXiv
shown from top to bottom in that order. White squares indicate a value of zero

123



320 C. Giatsidis et al.

graphs are robust. It is clear that for the range of values inlinks/outlinks [20,35]/[30,40],
the Wikipedia graph is very robust with regard to the inlink reduction rate. Similar behavior
is observed for the DBLP and ArXiv graph, but the pace of size drop is much smaller in
DBLP and even smaller for ArXiv. Overall, the most robust under degeneracy graph seems
to be ArXiv—indicating a dense citation network. This is also due to the high link density
observed.

4.4 Digraph degeneracy frontiers

The following observation follows directly from the definitions:

Observation 1 For every k, k′, l, l ′ where k ≥ k′ and l ≥ l ′ it holds that DCk,l is a subdi-

graph of DCk′,l ′ and therefore, dck,l ≤ dck′,l ′ .

We call a cell (k, l) frontier cell for a digraph D if dck,l > 0 and dck+1,l+1 = 0—thus the
frontier consists of the cells corresponding to the last non-empty D-cores as k or l increase.
The set of frontier cells of a digraph D is denoted as F(D). Formally:

F(D) = {(k, l) : dck,l > 0 & dck+1,l+1 = 0}

See Fig. 11 where the frontier appears as the squares that have some common point with
0-valued squares (i.e. the white area).

The (k, l)-D-cores corresponding to the frontier cells are the frontier D-cores of D and
all of them together constitute the D-core frontier of D. Intuitively, these D-cores exhibit
the highest collaboration behavior in the network for different Hub/Authority trade-offs (i.e.
H/A-angles).

Let kmax be the maximum k for which (k, 0) ∈ F(D) and lmax be the maximum l for which
(0, l) ∈ F(D). We call (kmax, 0), (0, lmax) extreme cells of F(D). Observe that number of
frontier cells is always equal to kmax + lmax − 1. Thus, the extreme DC0,lmax represents
the D-core with no in-links and a maximum number of out-links. In the Wikipedia graph,
the DC0,50 represents the subdigraph bearing to a maximum the Hub-property (i.e. many
out-links thus a very “extrovert” D-core). On the contrary, the extreme DCkmax,0 represents
the D-core with no out-links and a maximum number of in-links. In case of the Wikipedia
digraph, this graph is DC42,0.

Consider a core sequence L in ŴD that starts from square (k, l) and finishes in square
(k′, l ′). let e1, . . . , er be the sequence of edges that belong to consecutive squares of L. Notice
that each ei corresponds to some square of ∂ŴD that, in turn, corresponds to some vertex set
that is either DCLout

x,y (in case ei is a vertical edge) or DCLin
x,y (in case ei is an horizontal

edge) for some value of x and y. We conclude that each monotone sequence L corresponds
to a sequence of vertex sets that form a partition P of the vertex set V (DCk,l) − V (DCk′,l ′).
That way, the size of V (DCk,l) − V (DCk′,l ′) (or, equivalently, the value dck,l − dck′,l ′ ) is
the number of vertices that are discarded in order to transform DCk,l to DCk′,l ′ , following
the core sequence L. Notice that this number always the same no matter the choice of the
elimination sequence L (while certainly the partition P may vary a lot). Therefore, we can
say that the edge weighting of ŴD defined by ∂out AD and ∂ in AD is adiabatic in the sense
that all paths between two vertices have the same total weight.

We are now in position to define the mono-dimensional analogue of core sequence and
cell sequence in directed graphs. A core sequence of a directed graph D is an incremental
sequence of squares in ŴD that starts from (0,0) and finishes in some square of the D-core
frontier of D.
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We conclude that each core sequence L corresponds to a sequence of vertex sets that form
a partition of the vertex set of D. This sequence is called cell sequence of D and we denote it
by P(L). As there exist an exponential number of core sequences, the same holds also to the
number of different partitions we may consider. This sharply contrasts the mono-dimensional
undirected case where the corresponding cell partition is uniquely defined.

5 Digraph collaboration indices

In this section, we treat the issue of choosing the optimal D-core on the frontier, as the
most representative of the specific graph D-cores, with regard to the collaborative features as
implemented via dense in/outlinks connectivity. To this end, we take into account different
properties of digraph degeneracy, especially with regard to the frontier. Intuitively, we are
interested in the dominant trend in the frontier D-cores, that is, whether they contain more
in-links or out-links.

Following this line, we define a series of metrics quantifying distinct measures of
robustness.
Balanced collaboration index (BCI)

One possibility is to choose a D-core with a balanced rate of in/outlinks. Thus, we define
the balanced collaboration index of D as the unique integer r for which DCr,r is a frontier
(r, r)-D-core. In other words, we find the coordinates of the cell where the diagonal intersects
the D-core frontier of D. Formally, the balanced collaboration index of D, BCI(D) is equal
to δ∗

π/4(D) (i.e. the H/A-angle is of 45◦). The choice of the diagonal focuses on the D-cores
with a balanced Hub/Authority trade-off - thus containing vertices that are connected to
others, on average, with equal lower bounds their in- and outlinks.
Optimal collaboration index (OCI)

In this case, we choose the frontier D-cores DCk,l for which (k + l)/2 is maximized. In
terms of the D-core diagram, the position of such D-core has the maximum (among other
frontier D-cores) Manhattan distance from the origin (0,0) and corresponds. Formally, the
optimal collaboration index, OCI(D), is equal to δ∗(G). Notice that the frontier (k, l)-D-
cores where k+l

2 is maximized can be multiple and may correspond to several H/A-angles.
Inherent collaboration index (ICI)

This index aims to represent the inherent hubs/authority trade-off in the graph and is based
on the average ratio of out-links to in-links of the vertices in the digraph. Based on this, we
define the average H/A-angle of a digraph D as follows.

ρav = tan−1

⎛

⎝

1

|V (DC1,1(D))|
·

∑

v∈V (DC1,1(D))

degin
D(v)

degout
D (v)

⎞

⎠ .

To make the above formula feasible, we excluded vertices with zero in- or outlinks, that is,
we applied the averaging inside the D-core DC1,1(D). The inherent collaboration index,
ICI(D), of the digraph D is equal to be δ∗

ρav
(D) where ρav is defined as above.

Thus, we use the terms: BCI/OCI/ICI—optimal D-core(s), respectively, for the D-cores
corresponding to each particular optimization. See Fig. 11 for a depiction of the above indices
on the Wikipedia D-cores matrix frontier.

Average collaboration index (ACI). This index is the average of the τ -degeneracies over
all possible H/A-angles corresponding to the cells of the D-core frontier of D. Thus, the
average collaboration index, ACI(D), of the digraph D is defined as
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1

|F(G)|

∑

(k,l)∈F(D)

δ∗

tan−1(l
k
)
(D).

In other words, ACI(D) is the half of the average Manhattan distance of the frontier cells of

D. Alternatively, we may define ACI(D) =

∑

(k,l)∈F(D)(k+l)

2·|F(D)|
.

Robustness. Notice that the maximum value of the average collaboration index of a
digraph D with extreme positions (kmax, 0) and (0, lmax) is obtained in the case where

F(D) = {(kmax, 0), (kmax, 1), . . . , (kmax, lmax),

(kmax − 1, lmax), . . . , (0, lmax))}.

In this extreme and, in a sense, ideal case, the digraph D has the maximum possible robustness
under degeneracy with respect to its extreme positions and the Average Collaboration Index
of such a graph is equal to

2kmaxlmax − kmax − lmax +
(

kmax+1
2

)

+
(

lmax+1
2

)

2 · |F(D)|
.

We denote the above quantity by µ(kmax, lmax). That way, we define the robustness of a
digraph D with extreme positions (kmax and lmax) as the ratio:

∑

(k,l)∈F(D)(k + l)

µ(kmax, lmax)

and it always results in a real value in [0, 1] (Table 1).
The above definition implies that the robustness is essentially the surface enclosed between

the F(D) frontier and the (0, 0), . . . , (kmax, 0), (0, 0), . . . (0, lmax) coordinates divided by
µ(kmax, lmax). This represents the endurance of the D-core graph to degeneracy, that is, the
degree of cohesion among the graph nodes—in terms of globally distributed in/out links.

5.1 Set frontiers and indices

Let X be a subset of nodes in a digraph D. In a similar manner as above, we define the
D-core matrix of X, DCX

k,l(D), as the cells (k, l) where X is a subset of DCk,l and dck,l > 0.
Similarly, we define the D-core frontier of X, as the set of the extreme non-empty D-cores
corresponding to the cells (k, l) where dck,l > 0 and dck+1,l+1 = 0. Thus:

FD(X) = {(k, l) : X ⊆ D & dck,l > 0 & dck+1,l+1 = 0}

The D-core matrix of a nodes set X ⊆ V (D) is defined in an analogous way as in Sect. 5.1,
which represents the capacity of the nodes of X to be part, all-together, in subgraphs with
strong mutual linking and thus presenting a noteworthy collaboration behavior.

The five collaboration indices for a set X ⊆ V (D) as well as its robustness are defined
analogously as in previous sections.

The balanced collaboration index of X, BCID(X) is the maximum r for which X ⊆

V (DCr,r ).
The optimal collaboration index of X, OCID(X) is the maximum value of k+l

2 for which
X ⊆ V (DCk,l).
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Table 1 Collaboration indices values for the Wikipedia graph

Wikipedia Continental
Congress

United States
Congress

BCI(k, l)/Size of optimal DC 38 (38,38)/237 9 19
ICI(k, l)/angle/size of optimal DC 36.5/(40,33) 51.34/190 10.8 22,18
OCI(k, l)/〈 (k, l)/angle/

size of optimal DC〉

39.5/〈 (43,36)/47,66/〉
228 〈(41,38)45,42/233〉

19.7 42.8

Robustness.Local x 0.78 0.389

Robustness. Global 0.96 0.1 0.791

ACI 32.46 9.5 20.31

AC H/A-angle (degrees) 41.8 54.57 56.957

AC H/A-angle (rads) 0.73 0.95 0.994

Progressive
Conservative
Party of Canada

Congress of
Vienna

Gregorian
Calendar

BCI(k, l)/Size of optimal DC 8 12 27

ICI(k, l)/angle/size of optimal DC 8.7 13.11 28.24

OCI(k, l)/〈 (k, l)/angle/
size of optimal DC〉

1.50 8.23 42.12

Robustness.Local 0.166 0.153 0.54

Robustness. Global 0.762 0.861 0.85

ACI 16.042 12.474 23.904

AC H/A-angle (degrees) 13.316 34.76 51.458

AC H/A-angle (rads) 0.232 0.606 0.898

The Inherent collaboration index of X, ICID(X) is the maximum (⌈k⌉+⌈l⌉)/2 for which
X ⊆ V (DCk,l) where k = r · cos ρav and l = r · sin ρav, for some r where r2 = k2 + l2

(ρav is the average H/A-angle, defined as in the previous subsection).
The robustness of a set X with extreme positions (kmax and lmax) is defined as the ratio:

∑

(k,l)∈FD (X)(k+l)

µ(kmax,lmax)
where the function µ is defined as in the previous section.

The Average collaboration H/A-angle of a set with extreme positions (kmax and lmax) is
defined as:

σD(X) =

∑

(k,l)∈FD(X)(k + l) · tan−1( l
k
)

	(k,l)∈FD(X)(k + l)

As before, this angle conveys the Hub/Authority trade-off for the D-cores in which X is
a subgraph.

These indices can be applied also to every individual node x ∈ V (D) by setting X = {x}.
In this case, all above notations and concepts can also be used for nodes instead of sets of
nodes. Notice that all indices defined in this subsection are anti-monotone. In particular:

Observation 2 Let X1 and X2 are subsets of the vertex set of some digraph D. If X1 ⊆ X2,

then the balanced/optimal/inherent/diagonal collaboration index of X1 will be at least the

balanced/optimal/inherent/diagonal collaboration index of X2.
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Fig. 3 The CDF corresponding to the diagonal D-cores (i, i) for Wikipedia 2004 (upper), DBLP (bottom).
SCCs are depicted with different colors depending on their sizes

5.2 Core decomposition forests

In this section, we define the concept of a core decomposition forest in order to examine
the structure of a digraph and the connected components of its cores. We need first some
definitions. We say that a digraph D is strongly connected when every pair x and y of vertices
in D has been met by some directed cycle, that is, there is a directed path from x to y and a
directed path from y to x . A strongly connected component (in short: SCC) of a digraph D

is any maximum subdigraph of D that is strongly connected. Finding the strongly connected
components of a digraph, graph can be done in time linear to the sum of its edges and vertices.

Let D = D0, D1, . . . , Dd be a sequence of digraphs such that for each i, j where i ≤ j,

Di is a subgraph of D j (we call such a sequence monotone). The Decomposition Forest of a
monotone digraph sequence D is the digraph DF(D) defined in the following way: For each
i = 0, . . . , d , we denote the strongly connected components of Di by D1

i , . . . , D
mi

i and each

such strongly connected component is a vertex of DF(G). An edge (G
j
i , G

j ′

i ′
) is added in

DF(G) if j ′ = j + 1 and G
j
i contains G

j ′

i ′
as a subdigraph.

The above definition implies directly that DF(D) is a union of trees, each rooted to some
of the strongly connected components of D0. Given now a directed graph D and one say L

of its cell sequences,
It is easy to verify that the directed graph defined above is a rooted forest. In fact, each

of its components is a rooted tree where all its edges are directed away from the root and
each root is a connected component of D0. Given that, by its definition, each core sequence
L of D is monotone, we define the Core Decomposition Forest (CDF) of D with respect

to L as the decomposition forest corresponding to L. The undirected analogue of the core
decomposition forest appeared for the first time in [30] under the name hierarchical degree

core tree and was used in order to visualize the connected components of several real-word
graphs including the graph extracted by the common author relation of the papers of the
DBLP citation graph. The same notion was also used in [29] for studying citation graphs
from DBLP and ARXIV with the difference that in [29] now the common paper relation
of the authors is being studied. In our case, this notion is extended in digraphs, and in our
experimental study, we visualize the core decomposition forests for both Wikipedia 2004 and
DBLP, where the sequence L corresponds to the cells in the diagonal of each D-core matrix
(see Fig. 3).
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6 Experimental evaluation

In this section, we present the experiments we performed applying the above algorithms and
definitions on real-world datasets.

6.1 Directed graph degeneracy for scale-free graphs

Real-world web graphs have been found to display scale-free characteristics [6,7,33] evident
by the power law degree distribution. Here, we are also exploring author citation graphs,
which share the same properties (as it can been seen in their degree distributions). Scale-free
graphs are frequently modeled by the combination of growth with preferential attachment.
There have been many variations in this modeling for both directed and undirected cases, but
the main idea is that the graph grows one vertex at the time and edges are added (between
vertices that may be new or old). The key idea in the preferential attachment scheme is that the
probability of taking an edge is proportional to the respective degrees of its endpoints. This
intuitively matches with the mechanism of the evolution of both web graphs and citations
graphs of authors (i.e. a “popular” page is more likely to get in-links and a “famous” author
is more likely to get a citation from a new page/paper following the “rich get richer” of the
preferential attachment process).

As the scale-free model seems to approximate the graphs we examine, we have chosen it
for evaluation with our D-core computation procedure to see whether the results are similar
for both various parameters and parameters that produce graphs with approximately similar
degree distributions with the real-world graphs.

6.1.1 Preliminaries for preferential attachments

Barabasi and Albert in [6] were the first to introduce a scale-free model for undirected graphs.
In that model, the graph is generated with a small number of initial vertices m0 and grows
by adding each time a new vertex with m(≤ m0) edges from the new vertex to the old ones.
Preferential attachment is introduced in the selection of the old nodes; the probability a vertex
i depends on the degree of that vertex, so that 
(ki ) = ki/

∑

j k j where ki the degree of the
vertex. The Barabasi–Albert model was examined in more detail by Bollobás et al. in [12]
and in [13] where a detailed model called Linearized Chord Diagram (LCD) was designed.
This applies to directed and undirected graphs as well; a parameter m is used and if m = 1
then at each step t a new vertex vt is added to a given graph G

(t−1)
1 with a single edge between

vt and vi where i is chosen randomly with

P(i = s) =

{ deg
G

(t−1)
1

(vs )

2t−1 1 ≤ s ≤ t − 1,
1

2t−1 s = t

For m > 1, m edges are added from vt to vi one at a time, each time counting the previous
edges in the total degree of each vi .

In [21] and [20], a variation in the Barabasi–Albert model is introduced, where a constant
parameter α represents the “initial attractiveness” of a node. Here, the old vertices are chosen
based on a probability proportional to their degree plus the “initial attractiveness”. Thus, the
selection probability, defined in detail in [14], is:

P(i = s) =

⎧

⎨

⎩

deg
G

(t−1)
1

(vs )+α

2t−1 1 ≤ s ≤ t − 1,
α

(α+1)t−1 s = t
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The constant parameter here is important as it introduces a mixture of uniform and preferential
attachment behavior (where if α = 1 we have only preferential attachment). This model is
also important as it resembles the directed one we utilized for our experiments. Another
model that also introduced a mixture of uniform and preferential attachment was in the
work of Cooper and Frieze [17]. Here instead, the uniformity was defined explicitly by
defining additional parameters that would determine the probability of selecting a uniform or
preferential attachment model. Furthermore, they define two different steps : a) one of growth
and b) one that chooses to connect two old vertices together with a new edge. This model is
also important as it gives the opportunity to control the density of a graph by controlling the
probability between the two steps.

As these models seemed to be better suited for models of undirected graphs, we finally
chose the model introduced by Bollobás, Borgs, Chayes, and Riordan in [11]. This model,
as seen below in the description, has a initial preference parameter for both the in- and out-
degrees, while also following the general idea between different steps as in the Cooper-Frieze
model. Following we offer a description of that model:

We consider a graph that grows by adding single edges at discrete time steps. At each
such step, a vertex may or may not also be added. For simplicity, we allow multiple
edges and loops. More precisely, let α, β, γ, δin, and δout be non-negative real numbers,
with α + β + γ = 1. Let G0 be any fixed initial graph, for example a single vertex
without edges, and let t0 be the number of edges of G0. (Depending on the parameters,
we may have to assume t0 ≥ 1 for the first few steps of our process to make sense.)
We set G(t0) = G0, so that at time t the graph G(t) has exactly t edges, and a random
number n(t) of vertices. In what follows, to choose a vertex v of G(t) according to
dout + δout, means to choose v so that Pr(v = vi ) is proportional to dout(vi ) + δout,

that is, so that Pr(v = vi ) = (dout(vi ) + δout)/(t + δoutn(t)). To choose v according
to din + δin, means to choose v so that Pr(v = vi ) = (din(vi ) + δin)/(t + δinn(t)),

where all degrees are measured in G(t).
For t ≥ t0 we form G(t + 1) from G(t) according to the following rules:

(A) With probability α, add a new vertex v together with an edge from v to an existing
vertex w, where w is chosen according to din + δin.

(B) With probability β, add an edge from an existing vertex v to an existing vertex
w, where v and w are chosen independently, v according to dout + δout and w

according to din + δin.
(C) With probability γ, add a new vertex w and an edge from an existing vertex v to

w, where v is chosen according to dout + δout.

The probabilities α, β, and γ clearly should add up to one. To avoid trivialities, we will
also assume that α + γ > 0. When considering the web graph, we take δout = 0; the
motivation is that vertices added under step (C) correspond to web pages which purely
provide content—such pages never change, are born without out-links and remain
without out-links. Vertices added under step (A) correspond to usual pages, to which
links may be later added. While mathematically it seems natural to take δin = 0 in
addition to δout = 0, this gives a model in which every page not in G0 has either
no in-links or no out-links, which is rather unrealistic and uninteresting! A non-zero
value of δin corresponds to insisting that a page is not considered part of the web until
something points to it, typically one of the big search engines. It is natural to consider
these edges from search engines separately from the rest of the graph, as they are of
a rather different nature; for the same reason, it is natural not to insist that δin is an
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integer. We include the parameter δout to make the model symmetric with respect to
reversing the directions of edges (swapping α with γ and δin with δout), and because
we expect the model to be applicable in contexts other than that of the web graph.

Our choice for this model was based both on the sophistication it displayed and the ability
to produce graphs with behavior, in the degree distribution, very similar to our real datasets
(see bellow).

6.1.2 Generating preferential attachment graphs

We created a set of graphs adopting the preferential attachment model according to [11]
(see the previous section) for various parameters. In this section, we present findings on this
model for a set of 4 different parameters:

1. α = 0.018, β = 0.102, γ = 0.88, δin = 1, δout = 2
2. α = 0.018, β = 0.102, γ = 0.88, δin = 5, δout = 1
3. α = 0.102, β = 0.238, γ = 0.66, δin = 1, δout = 3
4. α = 0.001, β = 0.009, γ = 0.99, δin = 1, δout = 1

The size of the graph is 16,500 nodes so that it will approximate the number of nodes that
have in/out-degree of at least 1. The reader can see the distributions of resulting graphs in
Fig. 5 in the same order from left to right and top to bottom. It is clear that all these graphs
are scale-free. We ran the defined algorithms and metrics and, in what follows, we report on
their expressive power and features.

6.1.3 D-core matrices for the synthetic data

Following the same sequence of parameters as before, here we describe the findings on the
datasets we created. Firstly, we explain the meaning of the parameters starting with the γ ,
the parameter that controls the density of the network. Parameters α and β control the out-
and in-degree behavior, respectively, while δin and δout represent the aforementioned“initial
preference” for the respective in and out degrees.

For the first two datasets, we chose the same values for α, β, and γ so that we compare
how the other two affect the results. The value of γ was chosen, experimentally, to produce
an “average” density. Given the fact that the α parameter is lower than β, we expect to
have a more extrovert behavior but we expect that to change for the second dataset as the
δin parameter is a lot larger than the δout. These expectations are confirmed by the D-core
matrix behavior as seen in Fig. 4. It is clearly visible that the ICI angle changes when the δout

increases and the ICI line (in green) moves closer to the diagonal (in dark gray).
The next two datasets demonstrate how the γ parameter affects the “extend” of the

D-cores. Since it is closely correlated to the density of a graph, we expect that the degeneracy
would be affected accordingly. This would mean that, for a low value of γ, we would get
graphs that would produce only low-degeneracy D-cores and for a high value the opposite.
This is also confirmed by the results. As the reader can see in the two D-core matrices in
the bottom part of Fig. 4, we get a graph that degrades really fast for a γ value of 0.66. On
the other hand, when we chose a value of 0.99, we can easily see that the resulting graph is
much more robust. This is evident by the high numbers for in- and out-degrees that the graph
survives in the D-core matrix.
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Fig. 4 D-core matrices for 4 different parameter sets on the adopted model. a Top left α = 0.018, β =

0.102, γ = 0.88, δin = 1, δout = 2. b Top right α = 0.018, β = 0.102, γ = 0.88, δin = 5, δout = 1.
c Bottom left α = 0.102, β = 0.238, γ = 0.66, δin = 1, δout = 3. d Bottom right α = 0.001, β =

0.009, γ = 0.99, δin = 1, δout = 1
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Fig. 5 Distributions for 4 different parameter sets on the adopted model. a Top left α = 0.018, β =

0.102, γ = 0.88, δin = 1, δout = 2. b Top right α = 0.018, β = 0.102, γ = 0.88, δin = 5, δout = 1.
c Bottom left α = 0.102, β = 0.238, γ = 0.66, δin = 1, δout = 3. d Bottom right α = 0.001, β =

0.009, γ = 0.99, δin = 1, δout = 1
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Fig. 6 Comparison of the distributions for the in/out degrees between the chosen parameters (α = 0.011, β =

0.031, γ = 0.958, δin = 2, δout = 5) and the DBLP graph

6.1.4 Comparison to real-world Data

In this section, we chose parameters producing a graph with degree distributions similar to
a real-world dataset and verify this via a comparison to the DBLP data. For this reason,
we chose, experimentally, the following parameters for approximating the DBLP digraph:
α = 0.011, β = 0.031, γ = 0.958, δin = 2, and δout = 5. We can see evidence of the
approximation from comparison of the in-/out-degree distributions in Fig. 6.

In Fig. 7, we can see that the behavior is quite similar to the previous one. The single
interesting difference is how the size of the D-cores drops. On the synthetic graph case, we
see a dramatic drop indicating that the inner structure is less connected.

When we look at the CDF forest comparison in Fig. 8—if we exclude the small SCCs in
the initial cores in the DBLP digraph—the two figures look similar as in both cases, there
is a giant component that survives robust until the end. Again there are some insignificant
differences mostly on the rate at which the size of giant SCC drops.

In conclusion, the synthetic digraph seems to approximate quite well the DBLP graph
with regard to the D-core behavior. This is important as it could be possible to predict the
D-core metrics of a real-world graph of immense scale simply by producing a down-scaled
‘miniature’ of it by its parameters.

6.2 Data sets description

The Wikipedia dataset is a snapshot of the English version of Wikipedia, the digraph consists
of about 1.2M nodes and 3.662M links. The snapshot depicts Wikipedia as it was in the
January 2004 and was extracted from a database dump containing the entire history of the
encyclopedia; available at http://download.wikipedia.org/.

In our experiments, we also used a popular bibliographic dataset derived from the available
snapshot of DBLP, which is freely available in XML format at: http://dblp.uni-trier.de/xml.
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Fig. 7 The D-core matrices of the synthetic digraph (left) and the DBLP digraph (right)

Fig. 8 The CDF corresponding the diagonal D-cores (i, i) for the synthetic/artificial (upper), DBLP (bottom).
SCCs are depicted with different colors depending on their sizes

We obtained a digraph structure from the dataset as follows: authors correspond to the
nodes of the digraph and each directed edge e = (x, y) express the fact that author x cited in
his/her papers a paper of author y. That way, obtain a digraph containing about 825K author
nodes and 351K edges. The vast majority of them have no in-/out-links (about 800K) thus
we remain with the rest 25K authors that are minimally connected.

Additionally, we have run experiments on the Arxiv HEP-TH (high energy physics theory)
citation graph. This is a paper citation graph is originally from the e-print arXiv with 27.700
papers and is freely available at http://snap.stanford.edu/data/cit-HepTh.html.

From the paper citation graph, we extracted the author citation digraph similar to the
DBLP one, containing 8,821 authors and 391K edges/citations.

If Fig. 9, the reader can see the degree distribution of both in- and out-degree for the three
datasets. We see that all of them display a scale-free behavior governed by a power law;
we carried out a parameter fitting to identify approximately that behavior. In more detail,
we see that all three of them display a clear preferential attachment behavior with regard
to the in-degree, probably with no “initial attractiveness” (see the described models above).
Instead, in the out-degree, we see that even though there is a general scale-free behavior,
there is also evidence of the “initial attractiveness” parameter being larger than the absolute
minimum. This is evident by the somewhat uniform behavior for the “smaller” degrees (not
including the degree of 1). Intuitively, papers with more than zero citations to other papers
will cite a few papers, meaning more than one. On the other end, a paper cannot have too
many citations, that is, outlinks. The previous applies naturally to authors as well. This in
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Fig. 9 Distributions of the in- and out-degree for the real-world datasets as noted above in log–log scale with
power-law fitting. The exponent of the power law is also displayed

a way resembles the δout parameter of our adopted model. Thus, the δout (for the model we
adopt) has to be larger than 1 for the citations networks. As we can see later, the parameters
that fitted the closest to the DBLP dataset adapt to this intuition.

6.3 Algorithms complexity

The proposed D-core algorithm is of low complexity; thus, D-core computations are feasible
even in large-scale digraphs. As shown in procedure T rimk,l(D) in Sect. 4.2, the computation
of each D-core is linear to the number of its edges and thus optimal. Moreover as the digraphs
we examine are sparse, the identification of the D-cores is very fast.

The D-core matrix computation starts from the original digraph and reduces it until the
degeneracy leads to an empty one. This procedure involves about (40×50) ∼2000 repeated
executions, in the case of the Wikipedia digraph, of the basic T rimk,l(D) procedure. Depend-
ing on the implementation, each execution can be done on commodity desktops in the scale of
minutes even in million scale-sized graphs, as it is also noted in [9] for the case of non-directed
graphs.

6.4 Experimental methodology

The experimental method for processing the previously mentioned digraphs involved the
following phases:

1. D-core matrix computation: this involves computing the D-core DCk,l subgraph, where
(k, l) ∈ {0, . . . , kmax} × {0, . . . , lmax} where (kmax , 0), (0, lmax ) are the extreme cells
of F(D). According to Observation 2, a D-core DCi, j is a subgraph of every D-core
DCi ′, j ′ where i ′ ≤ i and j ′ ≤ j . Based on this property, we can efficiently compute, for
example, the D-core DC0,2 having computed and stored in memory the D-core DC0,1.
Therefore, in order to compute the entire D-core diagram, we started by computing only
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the D-cores in row 0 and column 0 and used those two sets of D-cores to “fill in” the rest
of the matrix (note that the D-cores DC0,1 and DC1,0 are not correlated so we need to
compute both but we only need one of them to fill the rest of the matrix). Each D-core
occupies moderate storage space, such that the whole D-cores matrix occupies less than
4GB of disk space, so storing them for subsequent use was an obvious choice.

2. Collaboration indices computation: We compute the values that optimize the criteria set
along with the sizes of the corresponding D-cores. Namely, we compute the corresponding
BCI/ICI/OCI/ACI, indices and the Robustness.

3. Strongly Connected Components (SCCs) and Core Decomposition Forests (CDF’s): Let
D be the digraph corresponding to Wikipedia 2004 or DBLP. For each D-core DCi,i –
that is, on the D-core matrix diagonal—we computed the strong connected components.
We also considered the core elimination sequence L = DC0,0, . . . , DCr,r where r is
the BCI of D and we computed the corresponding Core Decomposition Forests for both
graphs.
SCCs indicate groups of strong cohesiveness in the D-core. See Fig. 3 for a detailed view
on the SCCs size evolution and subdigraph relationships as i, running along the D-core
matrix diagonal, increases for both datasets considered.

4. Frontiers for sets of entries: We also computed the frontiers for single terms/authors for
theWikipedia and DBLP digraphs, respectively. This is also extended, as defined above,
to sets of terms/authors. These indicate the robustness (represented by the values of the
indices) for the D-cores containing them.

6.5 Experimental results on Wikipedia

The D-core matrix and indices values. We processed the Wikipedia digraph and computed
for each (k, l) cell of the D-core matrix the sizes of the resulting D-cores (see Fig. 11) as
well as the sizes of the SCC’s in each of the D-core(i, i), i.e. on the diagonal of the matrix
as mentioned before.

We computed all the above-defined indices for the global Wikipedia digraph as well as
for selected representative terms and sets of terms (see Fig. 10). For Wikipedia 2004, the
balanced collaboration index(BCI) value is 38, while the respective D-core DC38,38 contains
237 nodes. For the same digraph, the inherent collaboration index ICI is 36 and is obtained
for the D-cores DC39,33 that contains 206 nodes. For the OCI index, we obtain two OCI-
optimal frontier cells corresponding to the DC38,41 and DC36,43 D-cores containing 228 and
233 nodes, respectively. The robustness of the global Wikipedia digraph is remarkably high
at 0.963, while the maximum value is 1, indicating a very robust digraph.

D-cores frontiers for terms and sets of terms. Then, we investigate the cohesion and
in/outlinks trade-off of D-cores containing specific term pages. These metrics are perceived
as indication of the collaborativeness and authority/hubness of the digraphs containing these
term pages. Further, we present representative terms-pages D-core matrices evaluating them.

As defined in Sect. 5.1, the D-core diagram of a vertice containing term X corresponds to
the D-cores of the D-core diagram of D whose vertices sets contain X . In Fig. 10, we see the
D-cores matrix frontiers for the digraphs containing the terms: Congress of Vienna, Conti-
nental Congress, Gregorial Calendar, Progressive Conservative party of Canada, and
United States Congress. In each subfigure, we see the frontier of the respective digraphs
degeneracy, each presenting different features and trends. The frontier for the term Con-
tinental Congress for example is presenting a low BCI index with regard to the global
digraph (the BCI index is 38), as the page is participating in D-cores with low degeneracy.
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Fig. 10 Selected term pages and sets of term-pages frontiers from Wikipedia

Its respective ICI index is (19.7) much lower than the global ICI value 36. This is a rather
“selfish” page as it participates in D-cores dominated by in-links.

Contrary to the previous, the Gregorian Calendar page participates in much more robust
D-cores as its BCI index reaches a high 26, while its OCI is a very high – occurring at
cell (42,12)—indicating a very “selfish behavior” dominated by inlinks and thus having an
authority digraph behavior. On the other hand, the Congress of Vienna page is presenting
a rather extrovert behavior as its OCI index occurring at cell (8,23), an indication of outlinks
domination in the optimal subgraphs. The robustness of the digraph is rather low with a BCI
index at 11, a low value as compared to the global BCI 38.

In Fig. 10 (right), we present the joint D-core matrix and frontier of two term pages
(Progressive Conservative Party of Canada and United States Congress). The
“together” frontier represents the frontier of the D-core digraphs containing both terms. The
joint D-core frontier can exhibit much worse robustness under degeneracy (i.e. removing
in/outlinks) than the individual ones. This can be the case when the D-core frontiers of term
pages with contradictory trends are put together; as it is in our example, where the joint frontier
is at DC8,22. Thus, we obtain a much weaker digraph than the ones of the individual terms.

Thematic focus of Wikipedia SCCs

We computed the SCCs of the Wikipedia D-cores DCi,i on the balanced diagonal direction
(BCI direction). The intuition is that the SCCs are considered as digraph areas with high
cohesion. In Fig. 3, the reader can see the cardinality of the SCCs in each Wikipedia D-core
DCi,i , the size of the SCCs and their hierarchical containment relation as i increases along
the BCI axis. As we notice, starting in D-core DC1,1, there are several SCCs moderately
sized (<100 nodes)—excluding one significantly larger-sized SCC (>100K nodes in D-core
DC1,1. Many of the SCCs survive until the D-core DC32,32, after this only the initial giant
component survives until the extreme BCI D-core DC38,38.

Further, we investigate the thematic focus of the SCCs as we study the D-cores along the
BCI optimal axis, see Table 2. We observe a giant component that dominates and almost
all the pages contain the terms “time”. We pruned the digraph, removing those pages and
we noticed a similar behavior, this time with the term Grammy awards dominating the
single giant SCC remaining. It is interesting to stress that in D-core DC1,1 there are 1,034
SCCs (apart from the giant one). The size of the top-5 SCCs ranges between 5 and 24 nodes,
while for each one, there is a remarkably narrow focus in their thematic area. For instance, see
Table 2, the top sized SCC is about Wisconsin. The rest of the SCCs are thematically focused
in: Cynodonts species, Iowa, Eurovision, History of the British penny, Submarines,
Wyoming. In D-core DC2,2, we have only 23 SCCs (apart from the giant one). The size of the
top-5 SCCs ranges between 3 and 30 nodes, while the thematic focus of the top sized SCCs
is to a large degree identical to the top SCCs in D-core DC1,1. A similar trend continues as
i increases along the diagonal DCi,i .
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Table 2 The thematic focus of the Wikipedia SCCs for increasing degeneracy along the BCI axis

(k, k) # SCCs Top-k SCCs size Thematic focus

1 1024 24 Wisconsin

10 Cynodonts Species

10 Iowa

10 Eurovision

5 History of the British penny

5 Submarines

10 Wyoming

2 23 30 Music albums

10 Eurovision

6 Cynodonts Species

6 Metal Deficiencies

5 History of the British penny

3 Helladic

3 13 23 Extinct species

10 Eurovision Young Dancers

6 Metal Deficiencies

6 Books

5 Cynodonts Species

5 History of the British penny
4 12 26 poker jargon

10 Eurovision

6 Metal Deficiencies

5 History of the British penny

5 films by decade

4 Fayette

5 8 26 poker jargon

17 Sibley-Monroe checklist

10 Eurovision

7 North Carolina

. . . . . .

38 1 Dates

6.6 Experimental results on DBLP

We processed the DBLP digraph and found for each cell (k, l) of the D-core matrix the size
of the resulting D-cores (see Fig. 11 bottom) as well as the number of strongly connected
components (SCC’s) in each of the D-cores DCi,i —that is, on the diagonal (see Fig. 3
bottom). We computed all the above-defined indices for the global DBLP digraph as well as
for selected representative authors and sets of authors.

For the case of the DBLP digraph, the value of BCI is 42 (see Table 3 a summary of all
indices values) while the respective D-core DC42,42 contains 188 nodes (see the lower part
of Fig. 11). For the same digraph, the inherent collaboration index ICI is 39 and is obtained
for the D-core DC30,48 that contains 220 nodes. For the OCI index, we get a value 42, which
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Fig. 11 The D-core matrices of the Wikipedia 2004 digraph (left) and the DBLP digraph (right)

occurs in six D-cores located at the positions: (38, 46),(39, 45),(40, 44),(41, 43),(42, 42),(43,
41) on the D-core matrix frontier. The robustness of the global DBLP digraph is remarkably
high at 0.966, indicating a very robust to degeneracy digraph. It is evident that the DPLP
digraph has significant extrovert features (i.e. more out than in citations, an expected result).

We also computed the SCCs of the DBLP D-cores DCi,i on the balanced diagonal direction
(BCI direction). In Fig. 3, bottom, one can see the cardinality of the SCCs in each DBLP
D-core DCi,i , the size of the SCCs, and their containment relation as i increases. As we
notice, starting in D-core DC1,1, there are few SCCs poor sized (<10 nodes)—excluding
one significantly larger-sized SCC (>1,000 nodes in DC1,1—that survive until DC4,4. After
this only the initial giant component continues until the extreme BCI D-core DC42,42. This
SCC apparently contains the nodes/authors with a large number of mutual citations.

The giant SCC contains 188 authors (Table 4) presenting both top publication activity,
thus many outgoing citations, as well as high rate of incoming citations. This group of authors
indeed contains well known and reputable scientists’ names and looks pretty reasonable. Of
course, we have to stress the partial coverage of the DBLP dataset as its citation bulk is before
2004. Also, in the first years of its function, the emphasis is on database-related papers.

We further studied the D-cores corresponding to specific authors and computed the respec-
tive D-core matrices and frontiers. We selected two characteristic cases of seminal authors.
In Fig. 12 (left), we see the D-core matrix and frontier for “E.F Codd”, founder of the rela-
tional database area. His BCI extreme is DC42,23 indicating an intensive inlinks (incoming
citations) trend. This is natural as he was authoring in the early years of computer science
with few previous works to cite. On the contrary his works enjoy a very high number of
citations, thus a high number of inlinks in the citations digraph.

On the other hand, a more modern seminal author G. Weikum presents a very robust to
degeneracy D-core structure for both in/outlinks tendency. This is explained by the facts. i.
his works are highly cited during many years and ii. he is intensively authoring and thus citing
other authors. In Fig. 12, (right) we present the joint D-core matrix and frontier for the two
aforementioned authors. The “together frontier” represents the frontier of the D-cores that
contain both E.F. Codd and G. Weikum author (nodes), thus representing the D-cores (i.e.
citation subgraphs) in which the two aforementioned cite in common and they are commonly
cited (Table 5).
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Table 3 Collaboration indices values for the DBLP digraph

DBLP E.F. Codd G. Weikum

BCI(k,l)/ Size of
optimal DC

42/188 22/913 41/221

ICI/(k,l)/angle/
size of optimal DC

39/(30,48)/32.01/220 19/(15,23) 38/(29,47)

OCI/〈(k,l)/angle/
size of optimal DC 〉

42/〈(43,41). . .(38, 46)/
43.63,. . .,50.44/165,188,217,
187,185,188 〉

31.5/(42,21) 41.5/(38,45)

Robustness,Local – 0.457 0.966

Robustness, Global 0.966 0.952 0.928

ACI 35.17 23.083 33.66

AC H/A-angle (deg) 43.90 55.66 41.91
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Fig. 12 Representative authors D-core frontier from the DBLP digraph

6.7 Experimental results on ARXIV

Following the same procedure, with the other two datasets, we produced the D-core
matrix and the CDF for the ArxiV citation graph. The reader can see the results in Fig. 13.
It is interesting to stress that this graph has a much denser core resulting in much larger
metric values as it can be easily seen in the respective D-core matrix. Additionally, we see
that the CDF is dominated by one SCC in its largest part. Furthermore, we noticed that the
initial giant component survives until the extreme BCI D-core DC83,83. Thus, this graph is
much more robust to degeneracy than all the others we tested, indicating thus a very dense
collaboration among the members of the theoretical Physics community. The authors of this
core can be seen in Table 6. It is evident that all the senior names in this scientific area appear
here justifying their close collaboration to the community in terms of in/out citations. We
stress here that we used the abbreviated version for most of the author names as these were
more frequent in the dataset.

As for the other characteristics, the inherent collaboration index ICI is characterized by
an angle of 25 degrees at the DC50,107 D-core with size of 306. For the OCI index, we obtain
three cells DC78,95, DC79,94 and DC80,93 with respective sizes of 237, 241, and 244 nodes,
respectively.

The robustness of the ArXiv graph is high as well at 0.9704, indicating, much like the
DBLP one, very high robustness to degeneracy digraph. Again we observe overall some
very extrovert features meaning that the graph is featured mostly by outgoing citations. In
this case, we could say that the ArXiv digraph displays higher extroversion than the DBLP.
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Fig. 13 Left the CDF corresponding to the diagonal D-cores (i, i) for ArXiv. SCCs are depicted with different

colors depending on their sizes. Right the D-core matrix of the same data

On the other hand, this could be attributed to the fact that the DBLP dataset is not very well
maintained thus lots of citations missing.

7 Conclusions

Cohesion and collaboration in graphs are cornerstone features for their evaluation, especially
with the advent of large-scale applications such as the Web, social networks, citations graphs.
The traditional way to look at graphs is through the authority/hub notion based on per node

in/outlinks patterns. Other group evaluation measures do not take into account the directed
nature of the aforementioned graphs. On the contrary, in this paper, we stress the importance of
cohesion and collaboration among groups of nodes in the case of directed graphs (digraphs).
The intuition is that subgraphs with many in/outlinks among their nodes convey a high degree
of collaboration (adapted to the local application semantics). Thus, we defined D-core, a novel
extension of the k-core concept to cover the directed graph case, as means of representing
their collaborative features based on their robustness under degeneracy.

Capitalizing on the D-core structure, we define interesting and novel evaluation metrics
and structures. Specifically, the D-core matrix for a graph, its frontier, and a wealth of metrics
to evaluate (a) the robustness of the directed graph under degeneracy and (b) the dominant
patterns of the graph with regard to inlinks/outlinks trade-offs.
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Table 4 Authors in the D-core DC42,42 of the DBLP digraph

José A. Blakeley Hector Garcia-Molina Abraham Silberschatz Umeshwar Dayal

Eric N. Hanson Jennifer Widom Klaus R. Dittrich Nathan Goodman

Won Kim Alfons Kemper Guido Moerkotte Clement T. Yu

M. Tamer Ö?zsu Amit P. Sheth Ming-Chien Shan Richard T. Snodgrass

David Maier Michael J. Carey David J. DeWitt Joel E. Richardson

Eugene J. Shekita Waqar Hasan Marie-Anne Neimat Darrell Woelk

Roger King Stanley B. Zdonik Lawrence A. Rowe Michael Stonebraker

Serge Abiteboul Richard Hull Victor Vianu Jeffrey D. Ullman

Michael Kifer Philip A. Bernstein Vassos Hadzilacos Elisa Bertino

Stefano Ceri Georges Gardarin Patrick Valduriez Ramez Elmasri

Richard R. Muntz David B. Lomet Betty Salzberg Shamkant B. Navathe

Arie Segev Gio Wiederhold Witold Litwin Theo Härder

François Bancilhon Raghu Ramakrishnan Michael J. Franklin Yannis E. Ioannidis

Henry F. Korth S. Sudarshan Patrick E. O’Neil Dennis Shasha

Shamim A. Naqvi Shalom Tsur Christos H. Papadimitriou Georg Lausen

Gerhard Weikum Kotagiri Ramamohanarao Maurizio Lenzerini Domenico Saccà?

Giuseppe Pelagatti Paris C. Kanellakis Jeffrey Scott Vitter Letizia Tanca

Sophie Cluet Timos K. Sellis Alberto O. Mendelzon Dennis McLeod

Calton Pu C. Mohan Malcolm P. Atkinson Doron Rotem

Michel E. Adiba Kyuseok Shim Goetz Graefe Jiawei Han

Edward Sciore Rakesh Agrawal Carlo Zaniolo V. S. Subrahmanian

Claude Delobel Christophe Lécluse Michel Scholl Peter C. Lockemann

Peter M. Schwarz Laura M. Haas Arnon Rosenthal Erich J. Neuhold

Hans-Jörg Schek Dirk Van Gucht Hamid Pirahesh Marc H. Scholl

Peter M. G. Apers Allen Van Gelder Tomasz Imielinski Yehoshua Sagiv

Narain H. Gehani H. V. Jagadish Eric Simon Peter Buneman

Dan Suciu Christos Faloutsos Donald D. Chamberlin Setrag Khoshafian

Toby J. Teorey Randy H. Katz Miron Livny Philip S. Yu

Stanley Y. W. Su Henk M. Blanken Peter Pistor Matthias Jarke

Moshe Y. Vardi Daniel Barbará Uwe Deppisch H.-Bernhard Paul

Don S. Batory Marco A. Casanova Jürgen Koch Joachim W. Schmidt

Guy M. Lohman Bruce G. Lindsay Paul F. Wilms Z. Meral Özsoyoglu

Gultekin Özsoyoglu Kyu-Young Whang Shahram Ghandeharizadeh Tova Milo

Alon Y. Levy Georg Gottlob Johann Christoph Freytag Klaus Küspert

Louiqa Raschid John Mylopoulos Alexander Borgida Anand Rajaraman

Joseph M. Hellerstein Masaru Kitsuregawa Sumit Ganguly Rudolf Bayer

Raymond T. Ng Daniela Florescu Per-Åke Larson Hongjun Lu

Ravi Krishnamurthy Arthur M. Keller Catriel Beeri Inderpal Singh Mumick

Oded Shmueli George P. Copeland Peter Dadam Susan B. Davidson

Donald Kossmann Christophe de Maindreville Yannis Papakonstantinou Kenneth C. Sevcik

Gabriel M. Kuper Peter J. Haas Jeffrey F. Naughton Nick Roussopoulos

Bernhard Seeger Georg Walch R. Erbe Balakrishna R. Iyer

Ashish Gupta Praveen Seshadri Walter Chang Surajit Chaudhuri

Divesh Srivastava Kenneth A. Ross Arun N. Swami Donovan A. Schneider

S. Seshadri Edward L. Wimmers Kenneth Salem Scott L. Vandenberg

Dallan Quass Michael V. Mannino John McPherson Shaul Dar

Sheldon J. Finkelstein Leonard D. Shapiro Anant Jhingran George Lapis
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Table 5 Authors in the D-core DC83,83 of the of the ArXiv digraph

A. Klemm S. Theisen P.S. Aspinwall B.R. Greene
B.R. Greene D.R. Morrison A. Giveon M. Porrati

M. Porrati E. Rabinovici N. Seiberg E. Witten

E. Witten M. J. Duff Andrew Strominger Shyamoli Chaudhuri

Shyamoli Chaudhuri Shamit Kachru Cumrun Vafa S. Ferrara

S. Ferrara J. A. Harvey J. Polchinski A. Ceresole

A. Ceresole R. D’Auria Katrin Becker Melanie Becker

Melanie Becker James T. Liu J. Rahmfeld W. Lerche

W. Lerche P. Mayr M. Bershadsky Jan Louis

Jan Louis Sheldon Katz M. Ronen Plesser Michael R. Douglas

Michael R. Douglas Gregory Moore Micha Berkooz Robert G. Leigh

Robert G. Leigh John H. Schwarz J. Distler K. Intriligator

K. Intriligator B. Craps A. Van Proeyen Julie D. Blum

Julie D. Blum Kentaro Hori Hirosi Ooguri Ashoke Sen

Ashoke Sen Ruben Minasian Moshe Rozali Mirjam Cvetic

Mirjam Cvetic Burt A. Ovrut K.S. Stelle Daniel Waldram

Daniel Waldram H. Lu C.N. Pope Klaus Behrndt

Klaus Behrndt A. Zaffaroni N.P. Warner A. Kehagias

A. Kehagias K. Sfetsos Steven S. Gubser D.Z. Freedman

D.Z. Freedman A. Brandhuber A. Karch Per Kraus

Per Kraus J. de Boer E. Verlinde H. Verlinde

H. Verlinde A. Sagnotti N. Dorey Matthias Blau
Matthias Blau T. Banks W. Fischler L. Susskind

L. Susskind A. Fayyazuddin Juan M. Maldacena B. Pioline

B. Pioline Edi Halyo G.W. Gibbons I.R. Klebanov

I.R. Klebanov Mans Henningson Kostas Skenderis Cesar Gomez

Cesar Gomez L. Girardello Vijay Balasubramanian G. Papadopoulos

G. Papadopoulos P.K. Townsend A.A. Tseytlin Jerome P. Gauntlett

Jerome P. Gauntlett E. Kiritsis T.R. Taylor Gary T. Horowitz

Gary T. Horowitz Robert C. Myers Donam Youm E. Sezgin

E. Sezgin Chris M. Hull Anamaria Font Yaron Oz

Yaron Oz Zheng Yin Ilka Brunner Albion Lawrence

Albion Lawrence John McGreevy Joaquim Gomis N. Nekrasov

N. Nekrasov T. Tada D. Minic M.B. Green

We articulate the theoretical foundation of the proposed framework in a more principled
manner, adopting valid terminology from related work. We extend the set of metrics and
structures proposed in [28] with directed analogues of the notions of k-cores, k-core sequence,
k-cells, and k-cell sequence. Moreover, we introduce the concept of a Core Decomposition

Forest for the case of directed graphs, extending the similar concept for undirected graphs
was introduced in [30] and used in [29]. We investigate the behavior of the new concepts
and metrics in the case of synthetic preferential attachment graphs—dominant in real-world
cases. The study is extended to various parameters values in an attempt to fit the features
of the real-worlds graphs. In order to achieve this, we developed a multiparametric graph
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Table 6 Authors in the D-core DC83,83 of the of the ArXiv digraph (continued)

M.B. Green M. Gutperle Petr Horava Clifford V. Johnson
Clifford V. Johnson Gabriel Lopes Cardoso Dieter Lust O. Bergman

O. Bergman G. Lifschytz Atish Dabholkar Barton Zwiebach

Barton Zwiebach Nathan Berkovits R.R. Metsaev S. Yankielowicz

S. Yankielowicz Philip C. Argyres Amihay Hanany M. Bianchi

M. Bianchi Duiliu-Emanuel Diaconescu Ofer Aharony Hong Liu

Hong Liu P.S. Howe P.C. West Nakwoo Kim

P.C. West Richard Corrado Horatiu Nastase Amanda W. Peet

Amanda W. Peet M.R. Gaberdiel Piljin Yi Rajesh Gopakumar

Rajesh Gopakumar C. Bachas Akikazu Hashimoto Marco Billo

Marco Billo I. Pesando Keshav Dasgupta Sunil Mukhi

Sunil Mukhi Joseph A. Minahan D. Kutasov Juan Maldacena

Juan Maldacena Jeremy Michelson C. Kounnas R. Dijkgraaf

R. Dijkgraaf Nissan Itzhaki Jacob Sonnenschein S. Gukov

S. Gukov David Berenstein Pei-Ming Ho Angel M. Uranga

Angel M. Uranga Sangmin Lee J.G. Russo E. Bergshoeff

E. Bergshoeff M. de Roo Soo-Jong Rey Jung-Tay Yee

Jung-Tay Yee Finn Larsen Sandip P. Trivedi I. Antoniadis

I. Antoniadis E. Gava K. S. Narain R. Kallosh

R. Kallosh J. Kumar H.J. Boonstra Kyungho Oh

Kyungho Oh Radu Tatar Mina Aganagic Jaemo Park

Jaemo Park David A. Lowe Andrei Linde Eric G. Gimon

Eric G. Gimon L. E. Ibanez Zurab Kakushadze F. Quevedo

F. Quevedo Ramzi R. Khuri J. X. Lu S. Sethi

S. Sethi Sanjaye Ramgoolam Sumit R. Das Miao Li

Miao LI Chris Hull Washington Taylor Curtis G. Callan

Curtis G. Callan Samir D. Mathur E. Martinec Daniel Kabat

Daniel Kabat BS Acharya JM Figueroa-O’Farrill Bernard de Wit

Bernard de Wit Chong-Sun Chu T. Ortin Michael Dine

Michael Dine Eva Silverstein Laura Andrianopoli Leonardo Rastelli

Leonardo Rastelli Ulf H. Danielsson Ori J. Ganor Anastasia Volovich

Anastasia Volovich H. Partouche Barak Kol Shmuel Elitzur

Shmuel Elitzur A. Rajaraman J.L.F. Barbon Gabriele Ferretti

Gabriele Ferretti Adel Bilal S. P. de Alwis Steven B. Giddings

Steven B. Giddings

generator. Moreover, we offer an alternative visualization of the differential behavior of the
graphs under concern with regard to the pace of graph size reduction for both the inlinks
and the outlinks aspect and conduct an exhaustive study and interpretation of the in-/out-
degree distributions in the synthetic preferential attachment datasets. Finally, we conduct
an extensive experimental evaluation for scale-free/preferential attachment synthetic graphs
as well as real-world large-scale directed graphs: the (English) Wikipedia—2004 edition,
the ArXiv, and DBLP citation graphs. We computed and explored the respective D-cores
matrices, frontiers, and metrics, and we derived interesting results and observations both
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at the macroscopic (graph) and at the microscopic (node) level. We claim that the D-core
concept and the relevant structures and metrics that we define in this paper constitute a
framework of tools for efficient and valid evaluation of cohesiveness and collaboration in
directed networks.

Future research will be focused on the following: (1) dealing with the temporal evolution
of D-cores to capture collaboration evolution and (2) using D-cores as a preprocessing step
in directed graph clustering. As D-cores are structures of high cohesion, we seek to research
if it can be a beneficial pre-processing step for graph clustering, resulting in lower overall
complexity with good quality results.
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