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In the Red-Blue Dominating Set problem, we are given a bipartite graph G = (V B ∪ V R , E) and an integer k, and asked whether G has a subset D ⊆ V B of at most k 'blue' vertices such that each 'red' vertex from V R is adjacent to a vertex in D. We provide the first explicit linear kernel for this problem on planar graphs.

Introduction

The field of parameterized complexity (see [START_REF] Downey | Parameterized Complexity[END_REF]) deals with algorithms for decision problems whose instances consist of a pair (x, k), where k is known as the parameter. A fundamental concept in this area is that of kernelization. A kernelization algorithm, or kernel, for a parameterized problem takes an instance (x, k) of the problem and, in time polynomial in |x| + k, outputs an equivalent instance (x ′ , k ′ ) such that |x ′ |, k ′ ≤ g(k) for some function g. The function g is called the size of the kernel and may be viewed as a measure of the "compressibility" of a problem using polynomial-time preprocessing rules. A natural problem in this context is to find polynomial or linear kernels for problems that admit such kernelization algorithms.

A celebrated result in this area is the linear kernel for Dominating Set on planar graphs by Alber et al. [START_REF] Alber | Polynomial-Time Data Reduction for Dominating Set[END_REF], which gave rise to an explosion of (meta-)results on linear kernels on planar graphs [START_REF] Guo | Linear problem kernels for NP-hard problems on planar graphs[END_REF] and other sparse graph classes [START_REF] Bodlaender | Meta) Kernelization[END_REF][START_REF] Fomin | Bidimensionality and kernels[END_REF][START_REF] Kim | Linear kernels and single-exponential algorithms via protrusion decompositions[END_REF]. Although of great theoretical importance, these meta-theorems have two important drawbacks from a practical point of view. On the one hand, these results rely on a problem property called Finite Integer Index, which guarantees the existence of a linear kernel, but it is still not yet clear how and when such a kernel can be effectively constructed. On the other hand, at the price of generality one cannot hope that general results of this type may directly provide explicit reduction rules and small constants for particular graph problems.

In this article we follow this research avenue and focus on the Red-Blue Dominating Set problem (RBDS for short) on planar graphs. In the Red-Blue Dominating Set problem, we are given a bipartite graph G = (V B ∪ V R , E) and an integer k, and asked whether G has a subset D ⊆ V B of at most k 'blue' vertices such that each 'red' vertex from V R is adjacent to a vertex in D. From a (classical) complexity point of view, finding a red-blue dominating set of minimum size is NP-complete on planar graphs [START_REF] Alber | Fixed parameter algorithms for planar dominating set and related problems[END_REF]. From a parameterized complexity perspective, RBDS parameterized by the size of the solution is W [2]-complete on general graphs and FPT on planar graphs [START_REF] Downey | Parameterized Complexity[END_REF].

The fact that RBDS involves a coloring of the vertices of the input graph makes it unclear how to make the problem fit into the general frameworks of [START_REF] Bodlaender | Meta) Kernelization[END_REF][START_REF] Fomin | Bidimensionality and kernels[END_REF][START_REF] Guo | Linear problem kernels for NP-hard problems on planar graphs[END_REF][START_REF] Kim | Linear kernels and single-exponential algorithms via protrusion decompositions[END_REF]. In this article we provide the first explicit (and quite simple) polynomial-time data reduction rules for Red-Blue Dominating Set on planar graphs, which lead to a linear kernel for the problem.

Theorem 1. Red-Blue Dominating Set parameterized by the solution size has a linear kernel on planar graphs. More precisely, there exists a poly-time algorithm that for each positive planar instance (G, k) returns an equivalence instance

(G ′ , k) such that |V (G ′ )| ≤ 48 • k.
This result complements several explicit linear kernels on planar graphs for other domination problems such as Dominating Set [START_REF] Alber | Polynomial-Time Data Reduction for Dominating Set[END_REF], Edge Dominating Set [START_REF] Guo | Linear problem kernels for NP-hard problems on planar graphs[END_REF], Efficient Dominating Set [START_REF] Guo | Linear problem kernels for NP-hard problems on planar graphs[END_REF], Connected Dominating Set [START_REF] Gu | Connectivity is not a limit for kernelization: Planar connected dominating set[END_REF][START_REF] Lokshtanov | A linear kernel for planar connected dominating set[END_REF], or Total Dominating Set [START_REF] Garnero | A linear kernel for planar total dominating set[END_REF]. We stress that our constant is considerable smaller than most of the constants provided by these results. Since one can easily reduce the Face Cover problem on a planar graph to RBDS (without changing the parameter)1 , the result of Theorem 1 also provides a linear bikernel for Face Cover (i.e., a polynomial-time algorithm that given an input of Face Cover, outputs an equivalent instance of RBDS with a graph whose size is linear in k). To the best of our knowledge, the best existing kernel for Face Cover is quadratic [START_REF] Kloks | New Algorithms for k-Face Cover, k-Feedback Vertex Set, and k Disjoint Cycles on Plane and Planar Graphs[END_REF]. Our techniques are much inspired from those of Alber et al. [START_REF] Alber | Polynomial-Time Data Reduction for Dominating Set[END_REF] for Dominating Set, although our reduction rules and analysis are slightly simpler.

A linear kernel for planar red-blue dominating set

We first propose several reduction rules and then we analyze the size of the obtained graph.

Reduction rules. We start with an elementary rule that turns out to be helpful in simplifying the instance, and then we present the rules for a single vertex and a pair of vertices. For simplicity, we will use the shorthand rbds to denote a red-blue dominating set in a graph. Rule 1. Iteratively remove blue vertices whose neighborhood is included into the neighborhood of another blue vertex. Similarly, remove red vertices whose neighborhood includes the neighborhood of another red vertex. 

Definition 1. Let G = (V B ∪ V R , E) be a graph. The neighborhood of a vertex v ∈ V B ∪ V R is the set N (v) = {u : {v, u} ∈ E}.

Proposition 1. [⋆] Let G be a reduced plane graph and let D be a rbds in

G. There is a maximal D-decomposition of G such that |ℜ| ≤ 3 • |D| -6. Proposition 2. [⋆] Let G = (V B ∪ V R , E) be a reduced plane graph and let D be a rbds in G. If ℜ is a maximal D-decomposition, then |V \ (V (ℜ) ∪ D)| ≤ 2 • |D|. Proposition 3. [⋆] Let G = (V B ∪ V R , E
) be a reduced plane graph, let D be a rbds in G, and let v, w ∈ D. A region R between v and w contains at most 15 vertices distinct from v, w.

We are finally ready to piece everything together and prove Theorem 1.

Proof of Theorem 1. Let G be the plane input graph and let G ′ be the reduced graph obtained from G. According to Lemma 1, G admits a rbds with size at most k if and only if G ′ admits one. It is easy to see that the same time analysis of [START_REF] Alber | Polynomial-Time Data Reduction for Dominating Set[END_REF] implies that our reduction rules can be applied in time O(|V (G)| 3 ). According to Propositions 1, 2, and 3, if G ′ admits a rbds with size at most k, then G ′ has size at most k + 15 • (3k -6) + 2k ≤ 48k.

Rule 2 .

 2 The private neighborhood of a blue vertex b is the setP (b) = {r ∈ N (b) : N (N (r)) ⊆ N (b)}. Let b ∈ V B be a blue vertex. If |P (b)| > 1, remove P (b) from G andadd a new red vertex r and the edge {b, r}. Definition 2. Let G = (V B ∪ V R , E) be a graph. The neighborhood of a blue pair of vertices b, c ∈ V B is the set N (b, c) = N (b) ∪ N (c). The private neighborhood of a blue pair of vertices b, c ∈ V B is the set P (b, c) = {r ∈ N (b, c) : N (N (r)) ⊆ N (b, c)}.

Just consider the radial graph corresponding to the input graph G and its dual G * , and color the vertices of G (resp. G * ) as red (resp. blue).

The proofs of the results marked with '[⋆]' are omitted in this extended abstract.
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1. if P (b, c) N (b) and P (b, c) N (c):

• remove P (b, c) from G,

• add two new red vertices r b , r c and the edges {b, r b }, {c, r c };

2. if P (b, c) ⊆ N (b) and P (b, c) ⊆ N (c):

• add a new red vertex r and the edges {b, r}, {c, r};

3. if P (b, c) ⊆ N (b) and P (b, c) N (c):

• add a new red vertex r and the edge {b, r}; • symmetrically to Case 3. Analysis of the kernel size.

We will show that a graph reduced under our rules (i.e., a graph for which none of the rules can be applied anymore) has size linear in |D|, the size of a solution. To this aim we assume that the graph is plane (that is, given with a fixed embedding) and we will define a notion of region adapted to our definition of neighborhood. Then we will show that, given a solution D, there is a maximal region decomposition ℜ such that:

• ℜ covers all vertices but O(|D|) of them,

• each region of ℜ has size O(1).

The three following propositions treat respectively each of the above claims.

between v and w is a closed subset of the plane such that:

• the boundary of R(v, w) is formed by two simple paths connecting v and w, each of them having at most 4 edges;

• all vertices (strictly) inside R(v, w) belong to N (v, w) or N (N (v, w)). • any region between v,w does not contain vertices in D \ {v, w};

• any two regions have only the boundary in common.

We note V (ℜ) = R∈ℜ V (R). A D-decomposition is maximal if there is no region R / ∈ ℜ such that ℜ ∪ {R} is a D-decomposition with V (ℜ) V (ℜ ∪ {R}).