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In the Red-Blue Dominating Set problem, we are given a bipartite graph
G = (VB ∪ VR, E) and an integer k, and asked whether G has a subset D ⊆ VB of
at most k ‘blue’ vertices such that each ‘red’ vertex from VR is adjacent to a vertex
in D. We provide the first explicit linear kernel for this problem on planar graphs.
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1 Introduction

The field of parameterized complexity (see [4]) deals with algorithms for decision problems
whose instances consist of a pair (x, k), where k is known as the parameter. A fundamental
concept in this area is that of kernelization. A kernelization algorithm, or kernel, for a param-
eterized problem takes an instance (x, k) of the problem and, in time polynomial in |x| + k,
outputs an equivalent instance (x′, k′) such that |x′|, k′ ≤ g(k) for some function g. The func-
tion g is called the size of the kernel and may be viewed as a measure of the “compressibility”
of a problem using polynomial-time preprocessing rules. A natural problem in this context is
to find polynomial or linear kernels for problems that admit such kernelization algorithms.
A celebrated result in this area is the linear kernel for Dominating Set on planar graphs

by Alber et al. [2], which gave rise to an explosion of (meta-)results on linear kernels on planar
graphs [8] and other sparse graph classes [3, 5, 9]. Although of great theoretical importance,
these meta-theorems have two important drawbacks from a practical point of view. On the one
hand, these results rely on a problem property called Finite Integer Index, which guarantees
the existence of a linear kernel, but it is still not yet clear how and when such a kernel can
be effectively constructed. On the other hand, at the price of generality one cannot hope that
general results of this type may directly provide explicit reduction rules and small constants
for particular graph problems.
In this article we follow this research avenue and focus on the Red-Blue Dominating Set

problem (RBDS for short) on planar graphs. In the Red-Blue Dominating Set problem,
we are given a bipartite graph G = (VB ∪ VR, E) and an integer k, and asked whether G has
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a subset D ⊆ VB of at most k ‘blue’ vertices such that each ‘red’ vertex from VR is adjacent
to a vertex in D. From a (classical) complexity point of view, finding a red-blue dominating
set of minimum size is NP-complete on planar graphs [1]. From a parameterized complexity
perspective, RBDS parameterized by the size of the solution is W [2]-complete on general
graphs and FPT on planar graphs [4].

The fact that RBDS involves a coloring of the vertices of the input graph makes it unclear
how to make the problem fit into the general frameworks of [3, 5, 8, 9]. In this article we
provide the first explicit (and quite simple) polynomial-time data reduction rules for Red-

Blue Dominating Set on planar graphs, which lead to a linear kernel for the problem.

Theorem 1. Red-Blue Dominating Set parameterized by the solution size has a linear
kernel on planar graphs. More precisely, there exists a poly-time algorithm that for each positive
planar instance (G, k) returns an equivalence instance (G′, k) such that |V (G′)| ≤ 48 · k.

This result complements several explicit linear kernels on planar graphs for other domination
problems such as Dominating Set [2], Edge Dominating Set [8], Efficient Dominating

Set [8], Connected Dominating Set [7, 11], or Total Dominating Set [6]. We stress
that our constant is considerable smaller than most of the constants provided by these results.
Since one can easily reduce the Face Cover problem on a planar graph to RBDS (without
changing the parameter)1, the result of Theorem 1 also provides a linear bikernel for Face

Cover (i.e., a polynomial-time algorithm that given an input of Face Cover, outputs an
equivalent instance of RBDS with a graph whose size is linear in k). To the best of our
knowledge, the best existing kernel for Face Cover is quadratic [10]. Our techniques are
much inspired from those of Alber et al. [2] for Dominating Set, although our reduction
rules and analysis are slightly simpler.

2 A linear kernel for planar red-blue dominating set

We first propose several reduction rules and then we analyze the size of the obtained graph.

Reduction rules. We start with an elementary rule that turns out to be helpful in simpli-
fying the instance, and then we present the rules for a single vertex and a pair of vertices. For
simplicity, we will use the shorthand rbds to denote a red-blue dominating set in a graph.

Rule 1. Iteratively remove blue vertices whose neighborhood is included into the neighbor-
hood of another blue vertex. Similarly, remove red vertices whose neighborhood includes the
neighborhood of another red vertex.

Definition 1. Let G = (VB ∪ VR, E) be a graph. The neighborhood of a vertex v ∈ VB ∪ VR

is the set N(v) = {u : {v, u} ∈ E}. The private neighborhood of a blue vertex b is the set
P (b) = {r ∈ N(b) : N(N(r)) ⊆ N(b)}.

Rule 2. Let b ∈ VB be a blue vertex. If |P (b)| > 1, remove P (b) from G and add a new red
vertex r and the edge {b, r}.

Definition 2. Let G = (VB ∪ VR, E) be a graph. The neighborhood of a blue pair of vertices
b, c ∈ VB is the set N(b, c) = N(b)∪N(c). The private neighborhood of a blue pair of vertices
b, c ∈ VB is the set P (b, c) = {r ∈ N(b, c) : N(N(r)) ⊆ N(b, c)}.

1Just consider the radial graph corresponding to the input graph G and its dual G∗, and color the vertices of
G (resp. G∗) as red (resp. blue).



Rule 3. Let b, c be two distinct blue vertices. If |P (b, c)| > 2 and there is no blue vertex d 6= b, c
which dominates P (b, c):

1. if P (b, c) * N(b) and P (b, c) * N(c):

• remove P (b, c) from G,

• add two new red vertices rb, rc and the edges {b, rb}, {c, rc};

2. if P (b, c) ⊆ N(b) and P (b, c) ⊆ N(c):

• remove P (b, c) from G,

• add a new red vertex r and the edges {b, r}, {c, r};

3. if P (b, c) ⊆ N(b) and P (b, c) * N(c):

• remove P (b, c) from G,

• add a new red vertex r and the edge {b, r};

4. if P (b, c) * N(b) and P (b, c) ⊆ N(c):

• symmetrically to Case 3.

Lemma 1. [⋆]2 Let G = (VB ∪ VR, E) be a graph. If G′ is the graph obtained from G by the
application of Rules 1, 2, or 3, then there is a rbds in G of size at most k if and only if there
is one in G′.

Analysis of the kernel size. We will show that a graph reduced under our rules (i.e., a
graph for which none of the rules can be applied anymore) has size linear in |D|, the size of a
solution. To this aim we assume that the graph is plane (that is, given with a fixed embedding)
and we will define a notion of region adapted to our definition of neighborhood. Then we will
show that, given a solution D, there is a maximal region decomposition ℜ such that:

• ℜ has O(|D|) regions,

• ℜ covers all vertices but O(|D|) of them,

• each region of ℜ has size O(1).

The three following propositions treat respectively each of the above claims.

Definition 3. Let G = (VB ∪ VR, E) be a plane graph and let v, w ∈ VB. A region R(v, w)
between v and w is a closed subset of the plane such that:

• the boundary of R(v, w) is formed by two simple paths connecting v and w, each of them
having at most 4 edges;

• all vertices (strictly) inside R(v, w) belong to N(v, w) or N(N(v, w)).

Definition 4. Let G = (VB ∪ VR, E) be a plane graph and let D ⊆ VB. A D-decomposition of
G is a set of regions ℜ between pairs of vertices in D such that:

• any region between v,w does not contain vertices in D \ {v, w};

• any two regions have only the boundary in common.

We note V (ℜ) =
⋃

R∈ℜ
V (R). A D-decomposition is maximal if there is no region R /∈ ℜ

such that ℜ ∪ {R} is a D-decomposition with V (ℜ) ( V (ℜ ∪ {R}).

2The proofs of the results marked with ‘[⋆]’ are omitted in this extended abstract.



Proposition 1. [⋆] Let G be a reduced plane graph and let D be a rbds in G. There is a
maximal D-decomposition of G such that |ℜ| ≤ 3 · |D| − 6.

Proposition 2. [⋆] Let G = (VB ∪ VR, E) be a reduced plane graph and let D be a rbds in G.
If ℜ is a maximal D-decomposition, then |V \ (V (ℜ) ∪D)| ≤ 2 · |D|.

Proposition 3. [⋆] Let G = (VB ∪ VR, E) be a reduced plane graph, let D be a rbds in G, and
let v, w ∈ D. A region R between v and w contains at most 15 vertices distinct from v, w.

We are finally ready to piece everything together and prove Theorem 1.

Proof of Theorem 1. Let G be the plane input graph and let G′ be the reduced graph obtained
from G. According to Lemma 1, G admits a rbds with size at most k if and only if G′ admits
one. It is easy to see that the same time analysis of [2] implies that our reduction rules can be
applied in time O(|V (G)|3). According to Propositions 1, 2, and 3, if G′ admits a rbds with
size at most k, then G′ has size at most k + 15 · (3k − 6) + 2k ≤ 48k. �
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