
The Knowledge Engineering Review, Vol. 28:3, 249–271. & Cambridge University Press, 2013

doi:10.1017/S0269888913000234

Visual reasoning with graph-based mechanisms:
the good, the better and the best

MICHEL CHE IN , MAR I E - L AURE MUGN I ER and

MADALINA CROITORU

LIRMM, 161 rue ADA, F34392 Montpellier, Cedex 5, France;

e-mail: chein@lirmm.fr, mugnier@lirmm.fr, croitoru@lirmm.fr

Abstract

This paper presents a graph-based knowledge representation and reasoning language. This language

benefits from an important syntactic operation, which is called a graph homomorphism. This operation

is sound and complete with respect to logical deduction. Hence, it is possible to do logical reasoning

without using the language of logic but only graphical, thus visual, notions. This paper presents the

main knowledge constructs of this language, elementary graph-based reasoning mechanisms, as well

as the graph homomorphism, which encompasses all these elementary transformations in one global

step. We put our work in context by presenting a concrete semantic annotation application example.

1 Introduction

Knowledge representation and reasoning. Knowledge representation and reasoning (KR) has long

been recognized as a central issue in artificial intelligence (AI). Very generally speaking, the

problem is how to encode human knowledge and reasoning by symbols that can be processed by a

computer to obtain intelligent behavior. In general, AI is concerned with qualitative, rather

than quantitative, problem solving. As a basic building block of AI applications, a knowledge

representation formalism should reflect this idea by supporting reasoning instead of calculation.

This is done by organizing the knowledge into an easily processable form, classifying information

by its properties, preprocessing the information, etc. The subfield of AI precisely called KR

especially studies computational models, languages and systems able to represent knowledge in an

explicit way and to do inferences, or reasoning, on this knowledge.

Even if there have been heated debates about KR in the past, in particular with respect to the

role of logic in KR, there is nowadays an agreement on some important properties of a KR

language, namely: to be logically founded, to allow for a structured representation of knowledge,

to have good computational properties, and to allow users to have a maximal understanding and

control over each step of the knowledge base cycle.

The first point concerns the fact that the language is translatable into a logic: the expressions

should be translatable into sentences of a given logic, and inferences in that language should

correspond to deduction in this logic. In other words, the inference mechanisms should be logically

sound (i.e. every piece of knowledge inferred is deducible in the target logical fragment) and

complete (any piece of knowledge that cannot be inferred cannot be deduced either in the target

logical fragment). This allows to give a precise semantics to expressions and inferences, and to

compare different languages from an expressiveness viewpoint.

Knowledge structuring means that semantically related pieces of knowledge should be grouped

together, and that different kinds of knowledge (such as facts, rules, constraints, goals, etc.) should

be represented by different knowledge constructs. This can be motivated by model adequacy



(i.e. its conformity to the modeling of the application domain) and by computational efficiency con-

cerns. A large part of KR research can be seen as the search of good tradeoffs between the expressivity

of a representation formalism and the computational complexity of the associated reasoning.

Knowledge-based systems. Knowledge-based systems (KBS) are systems, built upon models, able to

represent knowledge in an explicit way and do reasoning with. These systems include a knowledge

base (KB), composed of different kinds of knowledge, and a reasoning engine. The reasoning engine

processes knowledge in the KB to answer a question or to reach a certain goal (for instance to check

the consistency of the KB or to build a sequence of actions in order to achieve a goal). The

cornerstone of the KB is the ontology. From an epistemological viewpoint, an ontology answers the

question ‘what kinds of things exist in the application domain?’ We consider here computational

ontologies, which provide a symbolic representation of classes of objects, called concepts, as well as

the possible relationships between objects, called relations or roles. All other pieces of knowledge in

the KB are expressed by structures built with the ontology terms (concepts and relations).

Classically, in the building of a KBS, the first phase consists of knowledge elicitation: obtaining

a system specification expressed in a language understandable by human beings, so that it can be

checked by domain experts. This mediating representation does not need to be precise, consistent,

or complete. Its role is to allow the experts to freely explicit knowledge and to communicate with

others. The second phase consists of translating (the largest possible part of) this informal

representation into a formal representation, expressed in a formal language provided with rea-

soning mechanisms, so that it can be checked whether this representation is consistent and

complete with respect to the task to be solved. A major difficulty of this way of doing is ensuring

the faithfulness of the formal representation with respect to the mediating representation.

Checking faithfulness needs a validation and a revision cycle, which is usually long: while the

expert understands the mediating representation, this representation cannot be checked, and he/

she does not understand the formal representation provided with the reasoning tools. One of the

solutions proposed in Shaw and Gaines (1995), Bos et al. (1997) is to create mediating repre-

sentations that are formal: expressing the representation in a language that is both understandable

by human beings and formal and in this way ensuring expert simulation at an early modeling

stage. This is precisely the qualities claimed by our graph-based language detailed in Section 2.

However, for a KBS to be really used in practice, an essential point is that the user understands and

controls the whole process whose main steps are not only building a KB and running the KBS

(as previously discussed) but also obtaining results. By user, we either mean an end-user, who may be a

knowledge engineer, who builds the KB, or an expert of the application domain, who uses the

implemented representation to check its conformity with her own representation of the domain, or a

user for whom the system has been built and who wants to solve real problems. It should be easy for

this user not only to enter different pieces of knowledge and to understand their meaning but also to

understand the results of the system and how the system computed these results. The last point,

namely the ability of understanding why the system gives a certain answer, is especially important since

the user computing expertise may vary. Furthermore, for any domain and level of expertise, explaining

to the user each step that makes up the logical inference, generally remains a difficult process.

A graph-based language. In this paper, by ‘graph’ we understand the classical mathematical notion

in graph theory, that is, a structure that consists of a set of nodes (also called vertices) and a set of

edges that establish relationships (connections) between nodes. Please note that, regrettably,

‘graph’ in elementary mathematics also refers to a function graph, that is, a plot.

In the proposed graph-based approach, where all pieces of knowledge are represented by

labeled graphs, the same language is used at all levels and for all KBS functionalities. The benefits

of using graphs for representing knowledge at all levels of the KBS stem from the following:

> First, graphs are simple mathematical objects (they only use elementary naive set theory notions

such as elements, sets and relations), which have graphical representations (a set of points and

lines connecting some pairs of points) and thus can be visualized.

250 M . CHE I N ET A L .



> Second, there is a rich collection of efficient algorithms for processing graphs, thus graphs can

be used as effective computational objects (they are widely used, for instance, in Operational

Research).
> Third, graphs can be equipped with a logical semantics: the graph-based mechanisms they are

provided with are sound and complete with respect to deduction in the assigned logic.

Furthermore, graph-based mechanisms can be explained to the user because they can be easily

visualized on the graphs themselves, either as a sequence of very simple operations or as a ‘global’

operation. This point will be further detailed in Section 3.

Semantic Networks. In general, KR languages rely on a purely textual representation with strict

syntactic and semantic rules. Domain concepts, their properties, relations and restrictions, are all

represented by words and sentences of the representation language. Textual communication is

often supplemented with visual properties (such as character types, styles, structure, or layout),

but a knowledge representation language can be regarded as visual only if it is based on a pictorial

expression. The human short-term memory is limited, but visual organizations enable brain

sensory information storage and ability to break down complex structures into more easily

manageable chunks. Due to their visual qualities, semantic networks, which were originally

developed as cognitive models, have been used for knowledge representation since the early days

of AI, especially in natural language processing.

The term semantic network encompasses an entire family of graph-based visual representations.

Since Nude (Richens, 1956) and the semantic network T (Masterman, 1962), which concern natural

language processing, many semantic networks systems have been introduced (cf. Lehman, 1992) for

a collection of papers concerning various families of network-based structures). They all share the

basic idea of representing domain knowledge using a graph, but there are differences concerning

notation, as well as rules or inferences supported by the language. In semantic networks, the

diagrammatical reasoning is mainly based on path construction in the network. We can distinguish

two major families of languages born in the 1980s. Let us start with the KL-ONE family. In addition

to the large number of systems implementing KL-ONE variants (Woods & Schmolze, 1992),

KL-ONE is considered as the ancestor of Description Logics (DLs) (Baader et al., 2003), which are

nowadays the most prominent KR languages dedicated to reasoning on ontologies. However, DLs

have lost their graphical origins. Second, Conceptual Graphs. They were introduced by Sowa

(cf. Sowa, 1976, 1984) as a diagrammatic system of logic with the purpose ‘to express meaning in a

form that is logically precise, humanly readable, and computationally tractable’ (cf. Sowa, 1984).

Throughout the remainder of this paper we use the term ‘Conceptual Graphs’ to denote the family

of formalisms rooted in Sowa’s work and then enriched and further developed with a graph-based

approach (cf. Chein & Mugnier 2009).

Paper organization. The sequel of this paper is structured as follows. Section 2 presents the main

syntactic constructs of the language. Section 3 presents the elementary graph-based reasoning

mechanisms and explains how labeled graph homomorphism encompasses all elementary operations

in one global operation. Please note that, in this paper, we do not enter into precise definitions and

notations but rather rely on visual intuition (see Chein & Mugnier, 2009 for more details and

technical developments). An application scenario is presented in Section 4. We conclude the paper

with Section 5 that presents related work in the domain and lays down future work directions. All

figures depict graphs drawn using the conceptual graph editor Cogui1. Please note that Cogui is also

fully integrated with the conceptual graph engine Cogitant2 to perform reasoning on the above

mentioned graphs.

1
http://www.lirmm.fr/cogui/

2
http://cogitant.sourceforge.net/

Visual reasoning with graph-based mechanisms 251



2 Using graphs for representation: the good

In our approach, all kinds of knowledge are encoded as graphs and thus can be visualized in a

natural way:

> The vocabulary, which can be seen as a basic ontology, is composed of hierarchies of concepts

and relations. These hierarchies can be visualized by their Hasse diagram, the usual way of

drawing a partial order (see Figures 1 and 2).
> All other kinds of knowledge are based on the representation of entities and their relationships.

This representation is encoded by a labeled graph, with two kinds of nodes, respectively,

corresponding to entities and relations. Edges link entity nodes to relation nodes. These nodes

are labeled by elements in the vocabulary (see Figure 3).

These graphs have a semantics in first-order logic (FOL), that is, a KB can be translated into a

set of FOL formulas. Reasoning tasks operate directly on the knowledge defined by the user

and not on their translation into logical formulas. Stated in an other way, the logical semantics is

only used to formally ground the graph model, that is, representation and reasoning mechanisms.

Figure 3 A situation described by a basic graph (H)

Figure 2 Basic ontology relations for the childhood domain

Figure 1 Basic ontology concepts for the childhood domain

252 M . CHE I N ET A L .



This makes it possible to explain reasoning to the end-user because it can be visualized in a natural

way on the pieces of knowledge he/she is familiar with. Would a logical prover be used on the

logical translation of these pieces of knowledge to compute reasoning, reasoning would become a

black box for the user and could not be explained.

2.1 Conceptual vocabulary

The vocabulary is composed of two partially ordered sets: a set of concepts and a set of relations of

any arity (the arity is the number of arguments of the relation). The partial order represents a

specialization relation: t0r t is read as ‘t0 is a specialization of t’. If t and t0 are concepts, t0r t

means that ‘every instance of the concept t0 is also an instance of the concept t’. If t and t0 are

relations, then these relations have the same arity, say k, and t0r t means that ‘if t0 holds between

k entities, then t also holds between these k entities’). Figures 1 and 2 show parts of these

hierarchies visualized by their Hasse diagram (t0r t if there is a path from t0 up to t). For instance,

the concept TeddyBear is a specialization of the concept Object, because of the path (TeddyBear,

Toy, Object); the relation siblingOf is a specialization of the relation link2 (which stands for any

binary relation) because of the path (siblingOf, relativeOf, link2). Note that a hierarchy is not

necessarily a tree: for instance, there are two paths from Woman to Person, namely (Woman,

Female, Person) and (Woman, Adult, Person).

Names of specific individuals can also be included in the vocabulary. The vocabulary can be

further enriched by signatures for relations indicating the maximal concept that can be assigned

to each of the relation arguments (e.g. the first argument of the relation motherOf is of maximal

type Woman and its second argument is of maximal type Person). It can also contain statements of

disjointness between concepts (e.g. the two types Object and Person are disjoint).

2.2 Basic graphs

A basic conceptual graph (BG) is a bipartite graph: one class of nodes, called concept nodes,

represents entities and the other, called relation nodes, represents relationships between these

entities or properties of them. For example, the BG in Figure 3 graphically represents the

following situation: ‘The boy John is a sibling of the girl Eva. John is giving a sweet to Eva, who is

holding a red teddy bear belonging to John’.

A concept node is labeled by a couple t :m where t is a concept (and more generally, a list of

concepts) called the type of the node, and m is called the marker of this node: this marker is either the

generic marker, denoted by *, if the node refers to an unspecified entity, otherwise this marker is a

specific individual name. For example, in Figure 3 the node [Sweet:*] refers to ‘a’ sweet, while the

node [Boy:John] refers to ‘the’ boy John. A relation node is labeled by a relation r called its type,

and, if k is the arity of r, this node is incidental to k totally ordered edges. For example, in Figure 3

the relation node of ternary type give has three incidental edges and the order on these edges allows to

distinguish between the agent of the gift act [Boy:John], its recipient [Girl:Eva] and its object

[Sweet:*]. Classically, concept nodes are drawn as rectangles and relation nodes as ovals and the

order on edges incidental to a k-ary relation node are numbered from 1 to k.

BGs are used to represent assertions called facts. They are also building blocks for more

complex kinds of knowledge, as outlined in the next section.

2.3 More complex graphs

In the following we present two examples of BG extensions: nested graphs, which allow to

structure facts by level of detail; and inference rules, which enrich the basic ontology with general

knowledge about a domain.

Nested graphs. In a nested graph, a concept node may itself contain a (nested) graph, whose role is

to further describe the entity represented by the node. This allows to distinguish between internal

Visual reasoning with graph-based mechanisms 253



and external information about an object, to represent zooming into an object or to contextualize

the description of an object. For instance, let us consider the nested graph in Figure 4. At the

outermost level, this graph says that ‘Eva is giving a picture that she did to John’ (note, however,

that time is not represented here) and the graph nested in the node referring to the picture further

describes this picture: ‘this picture shows a boy holding a teddy bear’. The dotted line is a

coreference link: it links two nodes that refer to the same entity (in this example the boy called

John). The information that the picture has been done by Eva can be seen as an external infor-

mation about the picture, while the detail of what is in the picture can be seen as an internal

information, that can be obtained by zooming into the picture. It can also be said that the piece of

information nested in a node is relevant within the context represented by this node (here, John is

holding a teddy bear in the context of the picture, but it may not be true in the outermost context).

Rules. A rule expresses implicit knowledge of the form ‘if hypothesis then conclusion’, where

hypothesis and conclusion are both basic graphs. This knowledge can be made explicit by applying

the rule to a specific fact: intuitively, when the hypothesis graph is found in a fact, then the

conclusion graph can be added to this fact (see Section 3.4 for more details). There is a one to

one correspondence between some concept nodes in the hypothesis with concept nodes in the

conclusion. Two nodes in correspondence refer to the same entity. These nodes are said to be

connection nodes. For instance, Figures 5 and 6 present two rules, with the hypothesis on the left

hand side and the conclusion on the right, separated by a vertical line. In Figure 5, rule R1 says

that ‘if a person is a sibling of a person, then the inverse relation holds between these persons’.

More formally: ‘for all persons x and y, if x is a sibling of y then y is a sibling of x’ (all concept

nodes are connection nodes). In Figure 6, rule R2 says that ‘for all persons x and y, if x is a sibling

Figure 4 A nested graph

Figure 5 A rule (R1)

254 M . CHE I N ET A L .



of y, then they have a common parent, that is, there is a person who is a parent of x and of y’

(the node representing this person is not a connection node, since it is not in correspondence with a

node in the hypothesis). Let us add that rules can also be defined as pairs of nested graphs instead

of basic graphs.

All these graphical objects, that is, the vocabulary as well as basic graphs, nested graphs and

rules, are provided with a semantics in FOL. This semantics specifies the meaning of knowledge

constructs and allows to show the correctness of the associated graph mechanisms with respect to

logical deduction (see Section 3.3).

3 Using graphs for reasoning: the better

Different kinds of reasoning concerning BGs can be graphically defined, for example, applying

inference rules or contextual reasoning. These reasonings are based on a subsumption relation between

conceptual graphs. This section is devoted to the presentation of this fundamental reasoning notion

in the simplest case, that is, BGs.

Let G and H be two BGs over the same vocabulary. Intuitively, G subsumes H if the fact—or

the information—represented by H entails the fact represented by G, or in other words, if all

information contained in G is also contained in H.

A query-answering mechanism using BGs and subsumption can be defined as follows. Let us

consider a KB B composed of a set of BGs, representing some assertions about a modeled world,

for example, the fact in Figure 3. Elements in B answering a query Q are intuitively defined as the

elements that entail Q, or equivalently, elements that are specializations of Q, or also, elements

that are subsumed by Q. Let us consider for instance the query in Figure 7. This query is easily

visualized as a graph, but is more complex to express textually: it asks for a situation where a boy

and a girl, who is one of the boy’s relatives, are each in relation with a red toy. We will see

hereafter why and how the fact in Figure 3 answers this query.

Relationships with logics is mentioned at the end of this section and we will see that the

subsumption relation exactly corresponds to deduction in a fragment of FOL. The subsumption

relation can be defined either by a sequence of elementary operations or by the classical homo-

morphism notion applied to BGs. Both are very easily visualizable and they are defined below by

means of drawings.

3.1 Generalization and specialization operations

There are five elementary generalization operations and five inverse operations, called elementary

specialization operations. The terms generalization and specialization are used here with the

following intuitive meaning: let I be a piece of information; whenever a piece of information is

added to I, the obtained information is a specialization of I (it contains more specific knowledge)

and, conversely, deleting a piece of information from I yields a final piece of information that is

more general than I (it contains less precise knowledge).

Figure 6 Another rule (R2)

Visual reasoning with graph-based mechanisms 255



3.1.1 Elementary generalization operations for BGs

Any generalization operation is a ‘unary’ operation, that is, it transforms a BG into another BG.

It can be pictured by a drawing representing the transition from the input BG to the output BG.

Generalization has to be taken in a broad sense, that is, the BG obtained may contain a strictly

more general information than the initial BG or the same information.

The elementary generalization operations can be graphically defined as follows:

> Substract (Figure 8). The substract operation consists of deleting some connected components of

a BG. The BG obtained is clearly more general than (or equivalent to) the original BG, since a

piece of information is deleted.
> Detach (Figure 9). The Detach operation consists of splitting a concept node c into two concept

nodes c1 and c2, the edges incident to c being shared between c1 and c2. For instance, let us

consider the detachment of the generic concept node c in Figure 9. In the initial BG it is said that

‘there is a boy who possesses something and is giving something to a person’, and in the

resulting BG it is said that ‘there is a boy who possesses something and there is a boy giving

something to a person’. In the resulting BG, the two boys may be different, while in the initial

BG it is necessarily the same boy. Therefore, the final situation is more general than the initial

situation.
> Increase (Figure 10). The Increase operation consists of increasing the label of a concept or relation

node. In the case of a concept node, it means that one can increase its type, for example, replacing

‘the girl Eva’ by ‘the person Eva’ and/or replace an individual marker by the generic marker, for

example, transforming ‘the person Eva’ into ‘a person’. Formally, the generic marker is considered

as greater than all individual markers, which are pairwise non-comparable. Thus, increasing a

concept node label consists of increasing its type and/or its marker. Clearly, ‘a person’ is more

Figure 7 A query described by a basic graph (G)

Figure 8 Substract

256 M . CHE I N ET A L .



general (in an intuitive sense) than ‘the girl Eva’. In the same way, replacing a relation type by a

greater type is also clearly a generalization operation, for example, ‘John is a relative of Eva’ is

more general than ‘John is a sibling of Eva’.

Let us remark that checking if a type t is greater than another type t0 is the most frequent operation

in hierarchies. It is a basic operation (t is .t0 if and only if there is a path from t0 to t) for which

efficient algorithms have been developed (cf. Chein & Mugnier, 2009). In Figure 11, the bold paths

contain all types greater than the type Boy.
> Relation duplicate (Figure 12). The Relation duplicate operation consists of duplicating a relation

node, that is, adding a new relation node r0 having the same type and the same list of arguments

as a relation node r. r and r0 are said to be twin relation nodes.
> Copy (Figure 13). The Copy operation consists of duplicating a whole BG, that is, adding to it

an isomorphic and disjoint copy of it.

Figure 9 Detach

Figure 10 Increase

Figure 11 Types greater than or equal to the type Boy

Visual reasoning with graph-based mechanisms 257



Figure 12 Duplicate

Figure 13 Copy

258 M . CHE I N ET A L .



In the last two operations, the structure of the obtained BG contains the structure of the initial BG

(one adds something), thus, at first glance, one can think that they are specialization operations.

Nevertheless, as these operations duplicate already existing information, the BG obtained is seman-

tically equivalent to the initial one, thus they are also generalization operations (in a broad sense).

We can now precisely define what ‘G is a generalization of H’ means: G is a generalization of H

if there is a sequence of elementary generalization operations leading from H to G, that is, there is

a sequence of BGs H0 ¼ ðHÞ; H1; . . . ; Hn ¼ ðGÞ, such that for all i5 1,y, n, Hi is obtained

from Hi2 1 by an elementary generalization operation.

Figures 14–18 present some of the graphs occurring in a generalization sequence from H, the

BG in Figure 3 to G, the BG in Figure 7. H1 is obtained from H by splitting both nodes

[Girl:Eva] and [Boy:John] (two Detach operations). H2 is obtained from H1 by deleting the

Figure 14 Generalization from H to G—step I (H1)

Figure 16 Generalization from H to G—step III (H3)

Figure 15 Generalization from H to G—step II (H2)

Visual reasoning with graph-based mechanisms 259



connected component containing the give relation node (Substract operation). H3 is obtained from

H2 by duplicating the relation node color (Relation duplicate operation).H4 is obtained fromH3 by

a Detach operation on the node [TeddyBear:*]. G is obtained from H4 by a sequence of seven

Increase operations: the relation siblindOf is replaced by relativeOf, the relations possess and hold

are replaced by link2; the individual concept nodes [Boy:John] and [Girl:Eva] are made

generic, and the teddy bears become toys.

3.1.2 Elementary specialization operations

We have seen in the previous section that the elementary generalization operations are indeed gen-

eralization operations in an intuitive manner, they are easy to draw and to understand, and they allow

for a precise definition of the subsumption relation between BGs. Nevertheless, let us consider again

the query-answering problem previously stated using generalization. Let Q be a BG query and B a set

of BG facts. Answering Q consists of looking for subgraphs of BGs in B that are subsumed by Q, that

is, such that Q generalizes them. It seems more intuitive and it is more efficient to start from the query

Q and to look for specializations of Q in B. This can be done by defining elementary specialization

operations, which are the inverse of the elementary generalization operations defined previously.

> Disjoint sum (Figure 19). Given two disjoint BGs, their Disjoint sum is the BG obtained by

juxtaposing two copies of these BGs. This operation is the inverse of the Substract operation.
> Join (Figure 20). Given a BG, joining two concept nodes with the same label in this BG consists

of merging them. This operation is the inverse of the Detach operation.
> Restrict (Figure 21). Restrict consists of decreasing the label of a concept or relation node.

This operation is the inverse of the Increase operation.
> Relation simplify(Figure 22). This operation consists of deleting a twin relation node.

This operation is the inverse of the Relation duplicate operation.
> Copy. This operation has already been defined as a generalization operation.

Figure 17 Generalization from H to G—step IV (H4)

Figure 18 Generalization from H to G—step V (G)

260 M . CHE I N ET A L .



H is a specialization of G if H can be obtained from G by a sequence of elementary speciali-

zation operations. In reading Figures 14–18 backwards, one obtains a specialization sequence

from G to H. This sequence begins with a set of Restrict operations (leading from G to H4). Then,

H3 is obtained from H4 by a Join operation. H2 is obtained from H3 by Relation Simplify. H1 is

obtained from H2 by a Disjoint sum operation, and H is obtained from H1 by two Join operations.

The following property is straightforward to check:

G is a generalization of H if and only if H is a specialization of G.

3.2 Homomorphism

We have seen specialization operations, which are more convenient than generalization operations

when considering the query-answering problem. Now, the problem is how to find a sequence of

specialization operations from a BG to another BG.

Figure 19 Disjoint sum

Figure 20 Join

Figure 21 Restrict

Visual reasoning with graph-based mechanisms 261



In this section, we introduce the homomorphism notion between BGs. A homomorphism from

G to H is a mapping from the node set of G to the node set of H, which preserves the adjacency

between nodes of G and can decrease the node labels. If there is a homomorphism (say p) from

G to H, we say that G maps to H (by p).

Let us consider again the query G in Figure 7 and the factH in Figure 3. There is a homomorphism

from G toH, which is pictured by the dashed lines in Figure 23. The concept node a5 [Boy:*] in G is

mapped to [Boy:John] in H, the concept node b5 [Girl:*] in G is mapped to [Girl:Eva] in H,

both concept nodes c5 [Toy:*] and d5 [Toy:*] in G are mapped to the same node [TeddyBear:*]

in H, the concept node e5 [Color:Red] in G is mapped to [Color:Red] in H, the relation node

(relativeOf) is mapped to the relation node (siblingOf), the relation node (link2) from a to c is mapped

to the relation node (possess) and the other relation node (link2) from b to d is mapped to the relation

node (hold); finally, both relation nodes (color) are mapped to the same node (color).

A BG homomorphism can be more precisely defined as follows. A homomorphism p from G to

H is a mapping from the concept node set of G to the concept node set of H and from the relation

node set of G to the relation node set of H, which preserves edges and may decrease concept and

relation labels, that is:

> for any edge labeled i between nodes c and r in G, there is an edge labeled i between nodes p(c)

and p(r) in H; in other words, if a relation r has neighbors c1y ck (in this order) then its image

p(r) has neighbors pðc1Þ . . . pðckÞ (in this order).
> for any (concept or relation) node x in G, the label of its image p (r) in H is less than or equal to

the label of x.

Figure 22 Simplify

262 M . CHE I N ET A L .



Let us consider again the homomorphism in Figure 23. Figure 24 highlights the subgraph of

H induced by the nodes that are images of nodes in G. This subgraph is called the ‘image graph’ of

G by this homomorphism.

The following theorem holds. Given two BGs G and H, the three following propositions are

equivalent:

1. G is a generalization of H

2. H is a specialization of G

3. There is a homomorphism from G to H

Even though it is easy to visualize a homomorphism and to check if a mapping between two BGs

is a homomorphism (cf. Figure 23), this global graph matching can be replaced, if needed, for more

detailed explanation purposes, by a sequence of elementary operations (cf. Figures 14–18). Assume

for instance that the answer to the query G is visualized as in Figure 24 and the user wants to

understand why the image graph of G is indeed a specialization of G. The homomorphism can be

decomposed into a sequence of elementary specialization operations, starting from G, as follows:

> First, a sequence of Restrict showing how the label of each node of G is specialized (cf. the

transformation from G to H4);
> Second, a sequence of Join showing which concept nodes are merged into the same node (these

are the nodes in G with the same image by the homomorphism, cf. the transformation from

H4 to H3);
> Third, a sequence of Relation simplify removing relation nodes that have become redundant

(cf. the transformation from H3 to H2).

Figure 23 A homomorphism from G to H

Figure 24 Image of G by the homomorphism in Figure 23

Visual reasoning with graph-based mechanisms 263



After these three steps, the image graph of G is obtained, which is sufficient to show that the fact

contains a specialization of G. To build the fact graph itself from the image graph of G, one would

need a disjoint sum (cf. the transformation from H2 to H1) and some joins (cf. the transformation

from H1 to H).

3.3 Logical correctness

Until now, we have introduced the reasoning operations (generalization, specialization and sub-

sumption) using simple graphical operations. It remains to relate these notions to usual reasoning

notions, that is, essentially, to relate BG subsumption to logical deduction. This can be done using

the logical semantics of the knowledge constructs. This semantics is defined by a mapping from

graphical objects to logical formulas. It is classically denoted by F in conceptual graphs (Sowa,

1984). The fundamental theorem states that given two BGs G andH built on a vocabulary V, there

is a homomorphism from G to H if and only if F(G) is a semantic consequence of F(H) and FðVÞ

(this is a soundness and completeness theorem of BG homomorphism w.r.t. FOL entailment, cf.

Chein and Mugnier (1992)). Let us point out that BGs are in fact equivalent to the positive,

conjunctive and existential fragment of FOL.

Once again, logic is used to give a semantics to BGs, but not to reason with them. As detailed

before, one motivation for preferring graph-based reasoning is its visual aspects permitting to

understand (logically based) reasoning without doing logic. Another motivation is that BGs have

good computational properties. Efficient graph-based deduction algorithms have been built,

which are not the translations of logical procedures (see f.i. Chein & Mugnier, 2009).

3.4 Overview of reasoning on more complex pieces of knowledge

Previous generalization and specialization elementary operations, as well as the corresponding

homomorphism notion, can be extended to nested graphs, while preserving soundness and com-

pleteness with respect to deduction in the associated fragment of FOL.

Let us now consider the graph rules presented in Section 2. A rule R can be applied to a BG H,

if there is a homomorphism from its hypothesis to H. Applying R to H according to such a

homomorphism p consists of ‘attaching’ to H the conclusion of R by merging each connection

node in the conclusion with the image by p of the corresponding connection node in the

hypothesis. See for instance the graph H in Figure 3 and the rules R1 and R2 in Figures 5 and 6.

There is a homomorphism from the hypothesis of R1 to H, thus R1 can be applied to H, which

yields the graph K (Figure 25). Similarly, R2 can be applied to H, or to K. Let us apply R2 to K: we

obtain L (Figure 25). R2 can be applied another time with a new homomorphism to L: however,

this application would be redundant, since the part to be added is already present in L.

Figure 25 Applying rules

264 M . CHE I N ET A L .



When a KB contains a set of facts and a set of rules, the query mechanism has to take implicit

knowledge coded in rules into account. The KB answers a query Q if a BG F 0 can be derived from

the facts using the rules, such that Q maps to F 0. Let us consider again the fact H in Figure 3 and

the rules R1 and R2 in Figures 5 and 6 and let Q be the query in Figure 26 asking if there is

someone who is parent of a boy and a girl: there is no homomorphism from Q to H; however, the

KB containing H and the rules R1 and R2 answers Q: indeed Q maps to L (Figure 25), which is

derived from H by applying the rules. This reasoning can be explained by visualizing a homo-

morphism from Q to L, as well as a sequence of rule applications allowing to add the knowledge

involved in this homomorphism (for instance, the application of R1 is not needed in our example).

Finally, let us point out that this rule application mechanism is sound and complete, that is,

given a KB K and a BG Q, Q maps to a graph derived from K if and only if FðKÞ � FðQÞ, where

FðKÞ is the set of formulas assigned to the vocabulary, the set of facts and the set of rules

composing K.

4 Using graphs for applications: the best

In this section, we present a concrete AI application using the above described language for image

annotation. The choice of the application is motivated twofold. First, this application clearly

demonstrate the visual appeal of Conceptual Graphs from a representation depiction faithfulness

viewpoint. Second, the visual reasoning capabilities allow for all levels of expertise when building,

querying the KB and understanding why certain results will be returned.

Within the image annotation process, we will distinguish between resources (in this case

electronic image files) and metadata. A metadata is a computational object always associated with

a resource. Each resource is identified by an identifier, which is used in the metadata base for

referencing the resource.

Metadata can be roughly categorized into two classes: objective metadata and subjective meta-

data. Examples of objective metadata include: resource address, authors name and the document

size. Subjective metadata aims at representing information generally depending on the author of the

metadata. Examples of subjective metadata include: the representation of the content of a resource

(indexation of the resource), the representation of a comment, note, or remark, etc. In this case, an

annotation is simply a piece of knowledge associated with a resource. In the following, we

will present a Conceptual Graph approach for building and querying a KB aimed at annotating

family photos. The KB used to illustrate notions throughout this section has been edited with the

tool Cogui.

Such annotation is built from an ontology fundamentally composed of a hierarchy of concepts

(or terms) and a hierarchy of relations between concepts. The ontology can also contain represen-

tations of other knowledge. Relation signatures indicate the types of relation arguments. Rules

represent knowledge of the form ‘if a piece of information is present (within an annotation) then

further information can be added (to this annotation)’. Thus, rules can be used to automatically

Figure 26 Another query example

Visual reasoning with graph-based mechanisms 265



Figure 27 Example of photo that needs to be semantically annotated

Figure 28 Example of a semantic annotation

266 M . CHE I N ET A L .



complete an annotation by implicit and general knowledge. Another kind of knowledge with the

same syntactic form as rules but a different semantics are constraints. Constraints represent knowl-

edge of the form ‘if a piece of information is present (within an annotation) then other information

cannot be present (in the annotation)’. Signatures and constraints are used to avoid the construction

of absurd annotations. All these kinds of knowledge are represented by labeled graphs.

For clarity purposes, the example given in this paper is very simple. This framework have been

successfully employed for annotation in the large-scale context of the LOGOS Framework 6

European Project (cf. for instance, Lalande et al., 2009), as well as in other French projects

(Genest & Chein 2005; Moreau et al., 2007).

Let us consider the photograph in Figure 27. A semantic annotation of this image is depicted in

Figure 28 where a fact represents a girl, the relative of a child, playing with the same red train that

the child is playing with. As explained above, all of the concepts and the relations used in the facts

need to be described and organized in the vocabulary. Figure 29 shows the concept and relation

hierarchies purposely built for annotating family images.

Figure 29 Concept/relation hierarchy for photo annotation

Visual reasoning with graph-based mechanisms 267



Figure 30 Prototypical graph insert for photo annotation

Figure 31 Query graph for photo annotation

268 M . CHE I N ET A L .



Please note that the constructs introduced before (such as rules and nested graphs) are also used

for annotation. Since certain chunks of knowledge appear often, other kinds of constructs have

been introduced specifically for speeding up the annotation process, such as prototype graphs. For

example, for a child we could always like to have annotated the fact that it is playing with a certain

object. Notice this is not a rule, for example, it may apply in certain situation and not in others.

Figure 30 represents how to insert the prototypical graph for a given concept.

As shown before, the user can then look for certain photos that contain a child and its relative, a

girl, both acting with a toy. Such query is visually represented in Figure 31. Based on homomorphism

(as previously explained) the query can be ‘mapped’ into the fact represented in Figure 28 and this

will return the photo attached to it.

Note that we have only presented here the kernel of an information retrieval system, in which

the search process is based on graph homomorphism. In order to take the intrinsic vagueness of

information retrieval into account, that is, to search documents imprecisely and incompletely

represented in order to answer a vague query, the exact search realized by graph homomorphism is

not sufficient. Additional techniques based on graph transformations for doing approximate

search and for ranking the answers to a query have been developed (cf. for instance Genest &

Chein, 2005).

5 Related work and conclusion

In this section, we place our language in the landscape of graphical knowledge representation

languages in order to enhance its original features. We will only detail each language in the light of

its respective distinction with Conceptual Graphs. This choice is motivated by our aim of

demonstrating the originality of our proposal in the context of graph-based languages for both

knowledge representation and reasoning as opposed of doing a general synthesis of existing

languages for KR.

An important criterium distinguishing Conceptual Graphs from other graph-based languages

for knowledge modeling is the reasoning aspect. Indeed, numerous graphical languages have been

proposed for data and knowledge modeling. Prominently among them, UML (Unified Modeling

Language) unifies several previous languages and allows to model a system or a program by

diagrams. However, this language does not have a denotational semantics and is not provided with

inference mechanisms.

Furthermore, let us focus solely on graphical languages fundamentally dedicated to repre-

senting knowledge in the form of relationships between concepts and/or concept instances. The

name ‘map’ is often used to describe mediating, thus informal, representations. A concept map is a

diagram representing relationships between concepts, or more vaguely, ideas, images, words, etc.

the aim being to organize informal knowledge (Novak & Canas, 2006). A cognitive map is a

graphical representation of an influence network between notions. A topic map is a diagram

representing associations between topics, and is more specifically dedicated to the description of

resources for the Semantic Web. If all these languages provide graphical views of knowledge, none

of them possesses a formally based reasoning mechanism.

Closer to our proposal, let us cite RDF (Resource Description Framework)3, which is the basic

Semantic Web language. RDF has a graph-based representation, it is provided with a formal

semantics and an associated entailment notion (Hayes, 2004; Horst, 2004), but it does not come

with an effective reasoning mechanism, even less with a graph-based mechanism that would

operate on the graph representation.

Let us point out that for several of these languages, some form of formally founded visual

reasoning based on graph homomorphism has been proposed: (Aissaoui et al., 2003; Baget, 2005;

Raimbault et al., 2005; Carloni et al., 2006; Chauvin et al., 2008).

3
http://www.w3.org/TR/REC-rdf-syntax/

Visual reasoning with graph-based mechanisms 269



We have already mentioned in Section 1 the semantic network family, and its successors, DLs,

which are logically founded knowledge representation and reasoning languages, which have lost

their diagrammatical aspects. In contrast, the Semantic Network Processing System (SNePS; see

Shapiro, 1979, 2000), specially dedicated to the implementation of cognitive agents, remains graph

based. It is provided with three kinds of inference mechanisms: a sound (but not complete) logic-

based inference, as well as a path-based inference and a frame-based inference. All three kinds of

inferences can be integrated, but there is no formal semantics for this combination.

Conceptual Graphs finally appears to be the only knowledge representation language both

logic based and graph based, with logically sound and complete graph inference mechanisms

(at least for the fragment developed here), thus allowing for visual reasoning. Another important

feature of conceptual graphs is that relations can be of any arity (i.e. they can have any number of

arguments), which allows for a more natural representation in many cases (for instance, when

relations are extracted from data tables, their arity is the number of columns in the table). This

latter feature is shared with topic maps, but none of the other languages mentioned above.

The sound and complete graph-based mechanisms for reasoning presented in this paper have

been fully implemented and are available as part of the Cogui Editor and the CG reasoning engine

Cogitant. While homomorphism proves to be an intuitive mechanism for query answering, more

advanced graph-based tools could be envisaged to make this notion even more intuitive (see,

e.g., the 3D manipulation of the images in Figure 23). This is not the only possible envisaged

manipulation: different layouts, smooth zooming capabilities or colors could also be employed to

increase the presentive qualities of our language.

References

Aissaoui, G., Genest, D. & Loiseau, S. 2003. Cognitive map of conceptual graphs: a graphical model to help

for decision. In ICCS, de Moor, A., Lex, W. & Ganter, B. (eds), Lecture Notes in Computer Science 2746,

337–350 Springer, ISBN 3-540-40576-3.

Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D. & Patel-Schneider, P. F. (eds) 2003. The Description

Logic Handbook. Cambridge University Press.

Baget, J. F. 2005. RDF entailment as a graph homomorphism. In Proceedings of ISWC’05. Galway, Ireland.

Bos, C., Botella, B. & Vanheeghe, P. 1997. Modeling and simulating human behaviors with conceptual graphs.

In Proceedings of ICCS’97, Lecture Notes in Artificial Intelligence 1257, 275–289. Springer.

Carloni, O., Leclère, M. & Mugnier, M.-L. 2006. Introducing graph-based reasoning into a knowledge

management tool: an industrial case study. In Proceedings of IEA/AIE. 590–599. Annecy, France.

Chauvin, L., Genest, D. & Loiseau, S. 2008. Contextual cognitive map. In ICCS, Eklund, P. W. & Haemmerlé,

O. (eds), Lecture Notes in Computer Science 5113, 231–241, Springer. ISBN 978-3-540-70595-6.

Chein, M. & Mugnier, M.-L. 1992. Conceptual graphs: fundamental notions. Revue d’Intelligence Artificielle

60(4), 365–406.

Chein, M. & Mugnier, M. 2009. Graph-based Knowledge Representation: Computational Foundations of

Conceptual Graphs. Springer.

Genest, D. & Chein, M. 2005. A Content-search information retrieval process based on conceptual graphs.

Knowledge and Information Systems (KAIS) 8, 292–309.

Hayes, P. 2004. RDF Semantics. W3C Recommendation. http://www.w3.org/TR/2004/REC-rdf-mt-

20040210/.

Horst, H. 2004. Extending the RDFS entailment lemma. In Proceedings of the 3rd International Semantic Web

Conference ISWC’04, Sheila A. McIlraith, Dimitris Plexousakis & Frank van Harmelen (eds). Lecture

Notes in Computer Science 3298, 77–91. Springer.

Lalande, S., Staykova, K., Chein, M., Gutierrez, A., Saraydarova, V. & Dochev, D. 2009. Using domain

knowledge to speed up the annotation of digital content with conceptual graphs. Cybernetics and

Information Technology 90(3), 22–38.

Lehman, F. 1992. Semantics Networks in Artificial Intelligence. Pergamon Press.

Masterman, M. 1962. Semantic message detection for machine translation, using an interlingua. In Inter-

national Conference on Machine Translation of Languages and Applied Language Analysis, 438–475.

Moreau, N., Leclère, M., Chein, M. & Gutierrez, A. 2007. Formal and graphical annotations for digital

objects. In Proceedings of the International Workshop on Semantically Aware Document Processing

and Indexing (SADPI’07), ACM Digital Library, ACM International Conference Proceeding Series 259,

69–78. ACM.

270 M . CHE I N ET A L .



Novak, J. & Canas, A. 2006. The origins of the concept mapping tool and the continuing evolution of the

tool. Information Visualization Journal 5, 175–184.

Raimbault, T., Genest, D. & Loiseau, S. 2005. A new method to interrogate and check uml class diagrams.

In ICCS, Dau, F., Mugnier, M.-L. & Stumme, G. (eds), Lecture Notes in Computer Science 3596,

353–366. Springer, ISBN 3-540-27783-8.

Richens, R. 1956. Programming for mechanical translation. Mechanical Translation 3.

Shapiro, S. 1979. The sneps semantic network processing system. In The Representation and Use of Knowledge

by Computers, Findler, N.V. (ed.). Academic Press, New York, 179–203.

Shapiro, S. 2000. Sneps: A logic for natural language understanding and commonsense reasoning.

In Natural Language Processing and Knowledge Representation: Language for Knowledge and Knowledge

for Language, Lucja Iwanska & Stuart C. Shapiro (eds), 175–195.

Shaw, M. & Gaines, B. 1995. Knowledge and requirements engineering. In Proceedings of the 9th Banff

Knowledge Accquisition For Knowledge-Based Systems Workshop.

Sowa, J. F. 1976. Conceptual graphs. IBM Journal of Research and Development 20(4), 336–375.

Sowa, J. F. 1984. Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley.

Woods, W. & Schmolze, J. 1992. The kl-one family. Computers Mathematical Applications 23, 133–177.

Visual reasoning with graph-based mechanisms 271


