T. Várady, R. Martin, and J. Cox, Reverse engineering of geometric models???an introduction, Computer-Aided Design, vol.29, issue.4, pp.255-68, 1997.
DOI : 10.1016/S0010-4485(96)00054-1

M. Eck and H. Hoppe, Automatic reconstruction of B-spline surfaces of arbitrary topological type, Proceedings of the 23rd annual conference on Computer graphics and interactive techniques , SIGGRAPH '96, pp.325-359, 1996.
DOI : 10.1145/237170.237271

J. Vergeest, I. Horváth, and S. Spanjaard, Parameterization of freeform features, Proceedings International Conference on Shape Modeling and Applications, pp.20-29, 2001.
DOI : 10.1109/SMA.2001.923371

T. Langerak, Local parameterization of freeform shapes using freeform feature recognition, Computer-Aided Design, vol.42, issue.8, pp.682-92, 2010.
DOI : 10.1016/j.cad.2010.02.004

I. Stroud, Boundary representation modelling techniques, 2006.

P. Benkö, R. Martin, and T. Várady, Algorithms for reverse engineering boundary representation models, Computer-Aided Design, vol.33, issue.11, pp.839-51, 2001.
DOI : 10.1016/S0010-4485(01)00100-2

J. Huang and C. Menq, Automatic CAD Model Reconstruction from Multiple Point Clouds for Reverse Engineering, Journal of Computing and Information Science in Engineering, vol.2, issue.3, pp.160-70, 2002.
DOI : 10.1115/1.1529210

K. Chang and C. Chen, 3D Shape Engineering and Design Parameterization, Computer-Aided Design and Applications, vol.8, issue.5, pp.681-92, 2011.
DOI : 10.1145/376957.376980.

P. Benkö, G. Kós, T. Várady, L. Andor, and R. Ralph, Constrained fitting in reverse engineering, Computer Aided Geometric Design, vol.19, issue.3, pp.173-205, 2002.
DOI : 10.1016/S0167-8396(01)00085-1

R. Bénière, G. Subsol, G. Gesquière, L. Breton, F. Puech et al., Recovering primitives in 3D CAD meshes, SPIE electronic imaging 2011, 3D imaging, interaction and measurement, pp.0-1, 2011.

J. Böhm and C. Brenner, Curvature based range image classification for object recognition, PROC SPIE INT SOC OPT ENG, vol.4197, pp.211-231, 2000.

I. Lavva, E. Hameiri, and I. Shimshoni, Robust Methods for Geometric Primitive Recovery and Estimation From Range Images, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol.38, issue.3, pp.826-871, 2007.
DOI : 10.1109/TSMCB.2008.918567

V. Sunil and S. Pande, Automatic recognition of features from freeform surface CAD models, Computer-Aided Design, vol.40, issue.4, pp.502-519, 2008.
DOI : 10.1016/j.cad.2008.01.006

G. Lukács, R. Martin, and D. Marshall, Faithful least-squares fitting of spheres, cylinders, cones and tori for reliable segmentation, Computer vision? ECCV'98, pp.671-86, 1998.
DOI : 10.1007/BFb0055697

C. Shakarji, Least-squares fitting algorithms of the NIST algorithm testing system, Journal of Research of the National Institute of Standards and Technology, vol.103, issue.6, pp.633-673, 1998.
DOI : 10.6028/jres.103.043

R. Schnabel, R. Wahl, and R. Klein, Efficient RANSAC for Point-Cloud Shape Detection, Computer Graphics Forum, vol.57, issue.2, pp.214-240, 2007.
DOI : 10.1016/S0010-4485(96)00054-1

T. Chaperon and F. Goulette, Extracting cylinders in full 3D data using a random sampling method and the Gaussian image, Proceedings of the vision modeling and visualization conference 2001, pp.1-35, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01259641

Y. Li, X. Wu, Y. Chrysathou, A. Sharf, D. Cohen-or et al., Globfit: consistently fitting primitives by discovering global relations, ACM Transactions on Graphics (TOG), vol.3052, issue.4, pp.1-5212, 2011.

C. Chappuis, A. Rassineux, P. Breitkopf, and P. Villon, Improving surface meshing from discrete data by feature recognition, Engineering with Computers, vol.103, issue.3, pp.202-211, 2004.
DOI : 10.1007/s00366-004-0288-0

N. Patrikalakis, T. Maekawa, and H. Mukundan, Surface-to-surface intersections, IEEE Computer Graphics and Applications, vol.13, issue.1, pp.89-95, 1993.
DOI : 10.1109/38.180122

A. Requicha and H. Voelcker, Boolean operations in solid modeling: Boundary evaluation and merging algorithms, Proceedings of the IEEE, vol.73, issue.1, pp.30-44, 1985.
DOI : 10.1109/PROC.1985.13108

J. Miller, Incremental boundary evaluation using inference of edge classifications, IEEE Computer Graphics and Applications, vol.13, issue.1, pp.71-79, 1993.
DOI : 10.1109/38.180120

E. Magid, O. Soldea, and E. Rivlin, A comparison of Gaussian and mean curvature estimation methods on triangular meshes of range image data, Computer Vision and Image Understanding, vol.107, issue.3, pp.139-59, 2007.
DOI : 10.1016/j.cviu.2006.09.007

T. Gatzke and C. Grimm, ESTIMATING CURVATURE ON TRIANGULAR MESHES, International Journal of Shape Modeling, vol.12, issue.01, pp.1-28, 2006.
DOI : 10.1142/S0218654306000810

C. Dong and G. Wang, Curvatures estimation on triangular mesh, Journal of Zhejiang University SCIENCE, vol.6, issue.Suppl. I, pp.128-164, 2005.
DOI : 10.1631/jzus.2005.AS0128

X. Chen and F. Schmitt, Intrinsic surface properties from surface triangulation, In: ECCV, vol.588, pp.739-782, 1992.
DOI : 10.1007/3-540-55426-2_83

V. Pratt, Direct least-squares fitting of algebraic surfaces, ACM SIGGRAPH Computer Graphics, vol.21, issue.4, pp.145-52, 1987.
DOI : 10.1145/37402.37420

S. Krut, O. Company, M. Benoit, H. Ota, and F. Pierrot, I4: A new parallel mechanism for Scara motions, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422), pp.1875-80, 2003.
DOI : 10.1109/ROBOT.2003.1241868

URL : https://hal.archives-ouvertes.fr/lirmm-00269505

W. Joumaa, R. Harik, and W. Derigent, Identification of Ruled Surfaces in a Model Reconstruction Step, Computer-Aided Design and Applications, vol.138, issue.6, pp.461-70, 2009.
DOI : 10.3722/cadaps.2009.461-470

URL : https://hal.archives-ouvertes.fr/hal-00383356