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Abstract.  Reconstructing a signal from its observations via a sensor
device is usually called \deconvolution". Such reconstruction requires
perfect knowledge of the impulse response of the sensor invived in the
signal measurement. The lower this knowledge, the more biagd the re-
construction. In this paper, we present a novel method for re construct-
ing a signal measured by a sensor whose impulse response is ipnecisely
known. This technique is based on modeling the relationship between
the measurement and the signal via a concave capacity and exending
the convolution concept to a concave set of impulse responss. The re-
constructed signal is interval-valued, thus re ecting the poor knowledge
of the sensor impulse response.

Keywords: inverse problem, deconvolution, non-additive con dence m ea-
sure, Choquet integral, Schultz iterative procedure

1 Introduction

Deconvolution consists of reconstructing a signal from its noisy masurements. It
has numerous applications in many scienti ¢c and engineering disciplinesecover-
ing earth structures in seismology [6], reversing optical distortion inmicroscopy,
deblurring satellite images [11], tomography [7, 19], etc. Generally, d®nvolution
involves nding a solution to a convolution equation of the form:

m(t)=(h s)(t) + Kt); 1)

where s(t) is the signal, m(t) its measurement,h(t) the sensor impulse response
and b(t) the measurement error due to transmission, thermal noise, sapling,
quanti cation, etc. Note that b(t) is often referred to as a random variable having
a known distribution (usually Gaussian). Roughly speaking, the invesion of
equation (1) is an attempt to nd a linear deconvolution operator 1 of an
inverseh ! of the impulse response:

=C(h tmyt)=(h * m)): )

The proposed deconvolution operator usually does not exist as a limded linear
operator. Therefore, the solution to (1) is not unique, may not exst and its



computation can lead to very unstable solutions. Moreover, the deonvolution
process tends to interpret noiseb(t) in a coherent manner, leading to artifacts
added to the reconstructed signal:

s=(h *h (1) (h bH); ®)

where (h 1 b)(t) represents these additive artifacts. Even ifl(t) is nice white
noise, the artifacts are not. This study will be restricted to positive impulse re-
sponses. It should be further extended to impulse responses hiag both positive
and negative values.

Instead of trying and nd a continuous solution to Equation (1), de convolu-
tion is usually performed in the discrete domain (even if the convolutia relation
is de ned in the continuous domain). Discrete deconvolution consis$ of solving
a matrix equation of the form:

M = AS + B; @)

where M is the vector of sampled measuresS is the vector of the sampled
signal, B is a noise vector andA is a matrix depending on the impulse response
of the acquisition system. Deconvolution thus consists of solving th matrix
equation (4) by minimizing a risk function [13]. A very common risk function is
the Euclidian distance: Jo(S;M) = jjM  ASjj2. Minimizing this risk function
leads to computing the following solution:

S=A"WMm; ()

where A* is the pseudo inverse matrix ofA.

When the measurements are noisy, then performing the deconvadiion by us-
ing Equation (5) induces reconstruction artifacts. A solution to minimize these
artifacts generally involves modifying the reconstruction criterion by adding a
regularizing term in order to limit the reconstructed signal dynamics. Because of
the complexity of the regularization or of the high dimension of A, most recon-
struction algorithms are iterative, i.e. starting from a wrong solution, converge
to a solution that minimizes the proposed criterion. Most approache proposed
in the relevant literature focus on noise in the measurement and assne that
the blur operator (h or A) is known [16]. However, since knowledge oA gen-
erally comes from an identi cation process, this hypothesis is usuallyiolated.
Moreover, Equation (4) is usually an approximation of the true relation. A lack
of knowledge on the blur operator is generally considered as being aeaasure-
ment error [17], leading to biased reconstructed signals with a systeatic error
that is not quanti ed. A conventional method for dealing with this pr oblem is
to consider matrix A as being interval-valued [12]. This approach leads to guar-
anteed but not very speci c inversion of the interval extension of Equation (4).
Guaranteed means that, if the interval-valued matrix contains the real matrix,
then the signal is included in the interval-valued reconstructed sigml. However,
this method is very computationally expensive and the guarantee riges on the
ability to predict an appropriate bound of the reconstruction error. In a pre-
vious paper [18], we proposed an alternative method that uses a capity to



model imprecise knowledge of the impulse response of a sensor. Thimdeling
entails a generalized convolution operator based on the Choquet iegral leading
to modeling the measurement process by a non-linear equation of éhform:

[M;M]= :A (S); (6)

where M_(rsp. M) is the lower bound (rsp. upper bound) of any measurement
vector that should have been obtained by using one of the impulse sponses
modeled by capacity and a real coe cient . Modeling the imprecise knowl-
edge with a concave capacity has two main advantages. First, it leaglto a very
speci ¢ estimate of the convex envelope of all output signals that kould have
been obtained by convoluting the input signal with all impulse respongs repre-
sented by this modeling. Second, it leads to an algorithmic implantationwhose
computational complexity is as low as that of a traditional linear convolution
operation.

This paper aims at proposing an inversion scheme of Equation (6). M@
precisely, givenM the actual measurement vector, we aim at nding a specic
convex set B; S] in agreement with M via Equation (6), that is nd [ S;S] such
that:

8S2[S;SI;M 2 : A (S): (7)

This article is organized as follows: section 2 presents the framewkrand
notations. This section is divided into six subsections to explain how a lak
of knowledge on the impulse response can be modeled by a capaciteecion 3
presents the interval-valued deconvolution as an extension of th&chultz iterative
procedure. Section 4 presents some illustrative experiments. St&n 5 is devoted
to our concluding remarks.

2 Framework and notations

2.1 Filtering seen as an expectation operator

Let S = (Si)i2r 1un g 2 R be a real discrete signal composed dil samples.
f1;:::;Ngwill be denoted . Filtering S consists of convoluting the set of all
sampled values with a particular discrete function called the impulse reponse
of the Iter h = (hj)i2z. In this paper, we only consider positive impulse re-
sponses. The digital Iter output is a sequence ofN sampled values denoted
given by:

X

mg = sihg i (8)
i=1

P
Let = ,,hi, = b and =( i)izz- can be considered as a discrete

probability distribution de ning a probability measure P. Let K =( X)i»z be



the probability distribution de ned by translating K

(8) can be re-written as follows:

= i, hence Equation

mg = si K= Ep,(S); 9

where Py is the probability measure de ned by the translated probability distr i-

bution ¥ and Ep, is the expectation operator induced byPx on sampled values
of . Thus, ltering a signal with a linear Iter whose impulse response is pacsi-

tive can be seen as an expectation operation multiplied by a constanteal value.
This operation can be presented in matrix form:

M= ApS; (10)

whereM and S respectively denote the measurement and the input signal vector
and with Ap de ned by:

2 3 2 3
g 9 g 0 1o N
1 1. 1 .
Ang.."...l.: .Né:g..l. o .“..”2 (11)
SERIEREEREE o
0 N N N 1::: 0
2.2 An interval-valued generalization of the expectation o perator

This section proposes an interval-valued generalization of the corantional ex-
pectation operator. It sums up di erent results presented in [18].1t is based on
replacing the usual probability measure by a more general con dece measure
called a capacity (see e.g. [1]). The use of a capacity to represent @rcdence
measure entails using a more general expectation operator callethé Choquet
integral (see [2]).

This part begins with some necessary de nitions and properties cocerning
the capacities and the Choquet integral.

Let =1f1;:::;Ngbe a nite subset of N (which can be considered here as
a set of indices corresponding to the signal samples), whilB( ) is the set of
all subsets of andV is the set all the real functions de ned on . Note that

transposition operator.

Denition 1 A capacity is a set function :P( )! [0;1]such that (?)=
0, ( )=1,and8A B) (A) (B).

Given a capacity , its conjuguate! ¢ is dened as: °(A) = 1 (A%);
for any subset A of , with A® being the complementary set ofA in . A
capacity such that 8A;B 2 P( ); (A[ B)+ (A\ B) (A)+ (B)is

! The conventional notation will not be used in this paper so as to make the equati ons
below more easily understandable.



said to be concave. If a capacity is concave, its conjugate is corxgi.e. 8A;B 2
P( ) “(A[B)+ “(A\ B) °“(A)+ (B)

The core of a capacity , denotedcore( ), is the set of probability measures
P denedon suchthat8A2 , (A) P(A).

Denition 2 Let be a capacity onP( ), and X 2 V be a nite positive real
function, then the Choquet integral ofX with respect to is de ned by:

X
C (X)= Xmy( (Amy)  (Awy));

n=1

where (:) indicates a permutation that sorts thex, in increasing order: X1

The standard Choquet integral is de ned for positive functions. Snce our
approach is dedicated to ltering signals that can take negative valies, we will
use the standard extension of the Choquet integral [9].

Let X 2 V be a real function. Let us de ne the two real functions X* 2 V
and X 2V by: X* =max(X; 0)and X =max( X; 0), where 0 denotes the
function equal to 0 everywhere and max¥; Y ) denotes the point-wise maximum
of X and Y. By construction, X and X* are positive real functions andX =
Xt X

Denition 3  Let X 2 V be a real function and be a capacity onP( ), then
the asymmetric Choquet integral ofX with respect to is de ned by:

C(X)=C((X") CX )
An important result, proved by [3], will be used hereafter:

Theorem 1 If is a concave capacity onP( ), thenforall X 2 V, C «(X) =
infp2core( ) Ep(X) and C (X) =SUPpycore( ) Ep (X ); WhereEp is the standard
expectation based on the probability measure.

Thus, if is a concave capacity, then8X 2 V and 8P 2 core( ) we have
Cvwe(X) Ep(X) Cy(X). The interval-valued extension of the expectation
operator we propose is based on this property.

De nition 4  Let be a concave capacity de ned orP( ) and X 2 V be a real
function on , then the imprecise expectation ofX with respect to is de ned
by:E (X)=[C «(X);C (X)]

2 In [20] the core is de ned for a convex capacity. Our de nitio n coincides with the
de nition proposed in [3] considering its conjugate (concave) capacity.



Based on Theorem 1, this extended expectation operator satis € the prop-
erty: 8P 2 core( ), Ep(X) 2 E (X). It is an extension since a probability
measure is simply an additive capacity (i.e. a capacity that is concave ad con-
vex) and the imprecise valued expectation coincides with the usual ggcise valued
expectation when the considered capacity is a probability measureE, = Ep.
See [18] for more details.

We will also need to consider an extension of this interval-valued opetor
to interval-valued functions. Let IV be the set of all interval-valued functions
on . [X] 2 IV can be seen as an interval-valued vector de ned by:X] =

[X1; X1l XN XN T where 8i, [xi;Xi] is a real interval denoted ;].
Such an interval valued vector can also be de ned by two real veairs X =
X1;::0 Xy and X = (X ;XW)T. We will thus denote an interval-valued

vector [X] by: [X]=[X;X].

The standard precise valued expectation operator can be easily &nded to
interval-valued functions (see [4]), i.e. with P being a probability measure on
and [X]=[X;X]2 IV being an interval valued function, then Ep ([X]) can be
de ned by: Ep ([X]) =[Ep (X);Ep(X)]. It veries: 8Y 2 [X], Ep(Y) 2 Ep ([X])
and 8W 2 Ep ([X]), 9Y 2 [X] such that W = Ep (Y).

The asymmetric Choquet integral is an increasing function, thus if is a
concave capacity:X X entails C <(X) C (X). The imprecise valued ex-
pectation we propose can thus be easily extended to an interval-Yaed func-
tion by cogsidering the union of all precise valued expectations8[X] 2 IV,
E (IXD) = p2core( ) Er([X]). Computation of this interval-valued expectation
takes advantage of the fact that the asymmetric Choquet integal is increasing.

Denition 5 Let be a concave capacity orP( ) and [X]=[X;X]2 IV be
an interval valued function on , then the imprecise expectation operator ofX]
with respect to can be computed byE ([X])=[C <(X);C (X)]:

Proof: with  being concave, for agP 2 core( ); we have 8[X] 2 IV,
Er ([X]) [C «(X);C (X)]whichentails ~p, .00 ) Er([X]) [C <(X);C (X)I.

Now let m 2 [C «(X);C (X)], as 8X 2 V, C «(X) = inf ppcore( ) Ep (X)
and C (X)) = suUpp;core( ) Er(X), there are two probability measures Po and
P1 2 core( ) such that Ep,(X) m Ep, (X). Now theée are two cases. Either
Ep(X) m  Epy(X) and then [C «(X);C (X)]  pocore( ) Ep(IX]) and
the property is veri ed. Otherwise Ep,(X) < m Ep,(X) and, due to the
continuity, 9P, 2 core( ) such that m = Ep,(X). In this case, 9P 2 core( )
such that m 2 Ep ([X]) which concludes the proof.m

2.3 Interval-valued vector arithmetic

The Minskowski addition is the natural generalization of the convertional ad-
dition of real vectors to real interval-valued vectors. Let + be the conventional
addition between vectors, i.e.8X;Y 2 V,Z = X + Y means that8n 2



Zn = Xn + Yn. Let[X]=[X;X]and [Y]=[Y;Y] be two interval valued vectors,
then their Minkowski addition [ Z] =[X] [Y]is de ned by:

[Z]1=[X] [Y]=[X+Y;X+Y] (12)

A dual extension of the addition of real vectors can be de ned un@r the
name dual Minkowski addition by:

[Z1=[X] [Y]= min(X+Y;X+Y)max(X +Y;X+Y); (13)

where the min(A; B ) operator (resp. max(A; B)) is the pointwise minimum (resp.
maximum) of two vectors A and B. This dual addition is de ned according to the
previous one in the sense that it is the point-wise solution of a set ofio equations
involving the Minkowski addition, i.e.: [X]=[Z] [ Y]and[Y]=[Z] [ X].
In fact, when considering then™ coordinates of these two equations, only one
of the obtained equations k,] =[z,] [ yn]l @and [yn] =[zn] [ Xn] has a
solution and it is given by [zn] =[Xn] [Ynl-

2.4 The Schultz iterative procedure

As explained in the introductory part of the paper, the least squares inversion
of Equation (4) can be obtained by computing A* the pseudo-inverse of the
matrix A: 8 = A*M. § is the standard solution of the regularized equation
(ATA)S = ATM. In fact, if matrix AT A is well conditioned and of reasonable
size, thenA* can be computed byA* = (ATA) 'AT. Recursive procedures like
the Geville algorithm can also be used. Conversely, if AT A) is ill-conditioned
or if its size is too huge, then the direct estimation of § by computing A*
has to be replaced by other procedures. One of these methods iket Schultz
iterative procedure (often called the Hotelling iterative procedure see [10]). This
method has been extensively used for inverting ill-conditioned problms, e.g. for
tomographic reconstruction [8]. Starting from a wrong solution (e.g S° = 0),
the Schultz procedure iteratively corrects this value and convergs towards the
least squares solution. The computation of the Schultz procedurés given by:

S*l =S+ R(M AS'); (14)

where S' is the estimation of S at the i iteration and R is an estimate of
the pseudo-inverse matrixA* . Such an approximation can be obtained by:R =
DA T, where D is the diagonal matrix composed of the inverse elements of
the diagonal elements of ATA) and is a positive real. The convergence 08!
towards $ is known to be slow but is guaranteed for 2 (0;1] [5].

In this article, we aim at inverting a non-linear interval-valued measurement
equation of the form of Equation (6). Our proposition is to extend the Schultz
iterative procedure to this interval-valued equation. This extension needs a par-
tial re-interpretation of the Schultz iterative procedure including considering set
additive and subtractive operations.



2.5 Matrix A and the impulse response h: a continuous to discrete
relation

Usually, when considering that the sampling frequency is very high capared
to the highest frequency of the input signal, matrix A involved in Equation (4)
can be de ned by the sampled values of the continuous impulse respseh. Let
T be the sampling period, then matrix A is de ned by:

A= LAp (15)

where , = P i1: , h(@T), 8i, i= | Yh(iT), then Ap is the matrix de ned by
(11) and P is the probability measure associated with (;)i2z.

However, this situation is not very realistic. Even analog-to-digital converters
with a high sampling frequency have a non-negligible impulse responssjnce
the measurement consists of integrating the signal over a shortgriod. Thus the
relation between the continuous and the discrete model is better rmdeled by a
sampling kernel [21]. Within this new modeling, the valuesh(iT ) in equation
(15) have to be replaced by i T )(0), with T being the kernel translated in
iT anddenedby: T(t)= (iT t)[14]and being the convolution operator.
When the conversion is considered as being transparent, then wensider h
instead of h in the digital signal processing, which can lead to a consequent bias,
particularly in iterated signal processing or inversion.

Finally, matrix D used in the Schultz procedure (Equation (14)) to de ne an

approximation of matrix A* will be simply: D = Bo—r:ldn, which can
i=1

be approximated by D = , %Idy, with Idy being the N N identity matrix.
Thus, matrix R is given byR = | ?AT.

2.6 Imprecise Itering

As noted in section 2.1, when the impulse response of the lIter is posie,
then the ltering procedure can be seen as a linear aggregation. ltais consider
Equation (9). Let be the concave capacity dominatingP, i.e. the probability
measure induced by , thus the capacity , which is the capacity translated
in k, dominates Py, which is the probability measure induced by ¥. Therefore,
by simply substituting Ep, by E . in Equation (9), we thus de ne an imprecise
Itering process by:

[m;m]= E  (S): (16)

This operator satis es the following property: my = Ep, (S) 2 [my; Mg]:

Let us now suppose that the impulse function is known but that the kernel
that ensures the continuous to discrete interplay is unknown. In hat case, it is
possible to de ne a capacity whosecore is the set of all discrete kernels that
would have been obtained by convoluting a sampling kernel with the kown
continuous impulse response. How this capacity is built is explained in [18

then all imprecise ltering operations de ning [ M ] can be denoted by:



M]= A (S): 17)

As the asymmetric Choquet integral is an increasing function, this inpre-
cise ltering operator can be easily extended to interval valued inpu signals by
simply replacing S (the precise valued vector) by B] (an interval valued vec-
tor): [M] = A ([S]); which is a condensed notation for:8k 2, [my;Mi] =

E , (SD.

In the same manner, we de nedcore( ) as a convex set of probability mea-
sures, we de necore(A ) as the set of all linear operators associated with a
matrix Ap (equation (11)) where P, the probability measure induced by , be-
longs to core( ). We also de ne T as being the capacity that dominates T, the
probability distribution that induces the probability measure associated with
the matrix AL ([ = ).

3 Interval valued deconvolution

In this section, we propose to try and invert in a certain sense the liear equa-
tion (17) by extending the Schultz iterative procedure. The non-linear iterative
procedure we obtain is based on an alternative interpretation of Egation (14).
This interpretation means that, at the (i + 1)™ iteration, the best estimate of

' which is the additive update of S' to obtain an estimate S'*! closer to §
than S', is given by:

'=R(M ASH)= s g (18)

In other words, S'*! is the solution of Equation (18). By construction, A =
hAp andR = | 2AT, thus:

"= L ZAL(M pARS'): (19)

3.1 De nition

Let M be the actual measured vector. In the same way as the Schultz itative
procedure builds a sequence of estimate®' such that AS'*! is closer toM than
AS', we aim at building a sequence of interval valued estimatesg ] such that

hA ([S'*1]) is closer toM than LA ([S']). We aim at obtaining a solution
[S] =[S;S] = limii; [S'] that corresponds to the convex hull of all the least
squares solutions of {Ap(S)= M with P 2 core( ).

The principle of the solution we propose is very simple. Let $'] be the es-
timated interval at the i™ jteration. We can thus compute the interval [M ] =
[Mi;ﬁl] which is a specic as possible convex hull of all the values ,Ap (S)
with S2 [S']and P 2 core( ) by: [M]1= 1:A ([S'].

Let[ 1= L?A+(M hA ([S'])). By construction, [ ] = f =

h 2:Ag:(M hApS);S 2 [S'];P;Q 2 core( )g. A rst approach to gener-
alize the Schultz procedure would consist of setting$'**] =[S'] [ ']. This



solution is not appropriate since the use of the Minkowski addition would lead
to a sequence of interval-valued solutions whose length increasestiwthe iter-

ations. The obtained solution would be completely non-specic, and herefore
uninformative. Based on the interpretation we gave on the Schultzprocedure,
we can say that B'*1] is the set of all solutions of = S B either for all

B 2 [S']and atleastone 2[ "lorforall 2[ ']and atleastoneB 2 [S'].
Considering each coordinate, this interpretation gives:

8s2 [s;']; 8b2 [sk];9 2 [ L)) or 8 2[[];9b2[s,] suchthat =s b;

with [ax] being the k™ coordinate of a vector 0] 2 IV, that is [s," ] is the
solution either of [ |]=[s™] [ sklorof [si]=[s’] [ L]- As shown in
Section 2.3, the solution of this set of equations is given by§*11=[S'] [ '].

Practically speaking, the convergence of this method highly depersion the
value of the real factor . Contrary to the precise-valued case, the convergence
does not seem to be achieved for any value of in (0; 1].

In iterative inversion procedures, the question often arises as twhen to stop
the iterative process (i.e. how to detect the convergence)? For necise-valued
estimations, one possible criterion is the distance betweeiM and AS'. When
the equation has an exact solution, thenjjM  AS'jj can be compared to the
computation precision in order to stop the process. However, whethe process
is noisy because the measurements are noisy or because the modeimprecise
then after a convergence period, the estimated value divergesdm the \true"
value.

In the interval-valued case we propose, there is another answenptthis ques-
tion. In fact, if the noise comes only from the imprecision of the mode (i.e.
the phenomenon we model) then a kind ofadequacyconvergence can be easily
detected by the fact that, for certain iterations i, M 2 [M': M ].

Since we have[[/l_i;m'] = n:A ([S']), according our construction, M ;V']
is the union of all the values L Ap S with S 2 [S']and P 2 core( ). So a simple
interpretation of the adequacy convergence criterion is: there ist least oneP in
core( ) and one S in [S'] such that M = ,ApS. Stopping the reconstruction
when the adequacy convergence is reached means that there is@uwion in the
obtained interval-valued reconstructed signal that correspond to an impulse
response in the considered set of impulse responses.

3.2 Properties

De nition 6  The interval-valued inversion process is said to be adequaeon-
vergent if there is an indexp such thatM 2 [MP; M p].

Proposition 1  The adequacy convergence de ned in De nition 6 is equivalen
to 9p 2 N such that0 2 [ P], with O being the vector equal td everywhere.

Proof:



{ If, for an index p, M 2 [MP], thus 9S 2 [SP] such that 9P 2 core( ) such
that M hAp (S) =0. Note now that A +(0) =0 implies02[ P].

{ If, for an index p, 02 [ P] then, for each coordinatek, 9P 2 core( ) and
9S 2 [SP]suchthat B = pApSandmg b =0andthus M 2 [MP].

De nition 7 The interval-valued inversion process is said to be complely ad-
equacy convergent if there is an indey such that8i p, M 2 [M';M].

Proposition 2 The complete adequacy convergence is equivalentdp 2 N such
that 8i pO02][ '], with O being the vector equal td everywhere.

Proof: For this property, the equivalence proved in Proposition 1 is statis ed
for all indexesi p.®

The non-linear inversion process we propose leads to a sequenceimer-
vals. Convergence of this sequence to its interval-valued limit is the dution of
Equation 17, and corresponds to what we call the complete convgence of the
process.

De nition 8  The interval-valued inversion process is said to be complely con-
vergent if there is an indexp such that8i p, [S"*1]=[S'].

~Note that if p exists such that [SP*1] = [SP] then for all i p we have
[S'*1]=[S']. Complete convergence of the iterative inversion procedure implies
the adequacy convergence and more precisely we have the followingsult.

Proposition 3  The following assertions are equivalent:

{ 9p such that[SP*1]=[SP]
{ [ ?1thek-th coordinate of [ P] is either O or the interval centred on O with
a radius twice the radius of[S]].

Proof: If 9p such that [SP*1] = [SP] then [SP] is solution of the equation
XT=[X] [ I

For each coordinatek, the previous condition entails either [ ] = [xk] [ X«]
or [Xe] =[xk] [l

{FL=Ix«] [ xk]=[Xc X«;Xk Xg], then [ ] is an interval centred on
0. Moreover, the radius® of interval [ ] is twice the radius of interval [xk].
{ HIxd=[x] [«]=[x kX« _J then = _, =0.

Reciprocally, if [ ] is either O or the interval centred on O with a radius
twice the radius of [S] then, using the equation §'**]=[S'] [ '], the rst
assertion is satised.m

Note that complete convergence entails adequacy complete comgence.

3 with [x] = [x; X] being a real interval, its radius is de ned by rad([x]) = (X X)



This implication scheme cannot be reversed. In fact, if for a particlar itera-
tion p,02 [ P](i.e. adequacy convergence) due to the dual Minkowski operato
the fact that 0 2 [ P*1] cannot be guaranteed. In the same way, complete ade-
quacy convergence does not lead to complete convergence, i.eetfact that there
is an iteration p such that 8i p 02 [ '] does not imply that the imprecision
of the interval valued reconstructed signal is constant. The coditions that both
signal and capacity have to ful ll to achieve one of these convergeces of the
algorithm (adequacy, complete adequacy, complete) require futter study.

4 Experimentation

The two experiments we propose aim at illustrating the di erent prop erties we
mentioned and highlight a certain number of other properties. This eperiment
is based on simulating a signal acquisition via a sensor whose discrete puise
response has been identi ed but with no information about the samging kernel
ensuring the continuous to discrete interplay. The discrete impulseresponse of
the sensor is depicted in Figure 3. The signal whose measurement ismsilated
is made of a weighted sum of 10 sine waves whose frequencies werad@nly
chosen. The signal we process is of high dimension (100000 samplestomply
with the hypothesis that the pseudo-inverse cannot be easily comyted. The
gures we present here only plot 10% of the signals.

We model the fact that the sampling kernel is unknown by using a capc-
ity constructed with the procedure de ned in [18]. In addition, we compute 40
di erent discrete impulse responses while hypothesizing 40 di erentsampling
kernels. We reconstruct an imprecise valued estimate of the signddy using our
interval valued iterative procedure and 40 precise valued estimate of the signal
by using the conventional precise valued least squares iterative picedure. 50
iterations of the reconstructing processes were performed.

4.1 Experimentation with no random noise

Within the rst experiment, the measurement process is supposedo be free of
random variations, i.e. the measurement noise is only due to the facthat the
sampling kernel is unknown. Figure 1 shows the superposition of thénterval-
valued reconstructed signal (blue-upper, red-lower) with the true signal (dotted
black) and the 40 precise least squares reconstructions using th&0 di erent
discrete impulse responses (cyan). In Figure 1.a, all the reconsicted signals
seem identical. 1.b plots a zoomed detail of this superposition. As cabe seen
in this last gure, all precise valued reconstructed signals are inclued in the
imprecise valued reconstructed signal. This property is true for ag iteration of
the reconstruction process. It is the main motivation for this work, i.e. to be
able to derive an interval-valued reconstruction process that inclaes all precise-
valued reconstruction processes it models.

This inclusion has not yet been mathematically proven. If this propetty holds
whatever the signal, it can be considered as a kind of robustness tife inversion



process since, if the lack of knowledge on the impulse response oktsensor is
properly modeled by the capacity (i.e.9P 2 core( ) such that M = LApS),
then the inclusion of the signal in its interval-valued estimate seemsa be guar-
anteed. Moreover, within this random-noise free experiment, thetrue signal is
included in the interval-valued estimate of the signal while none of the40 pre-
cise estimates of the signal have converged to the true signal. lhesion of the
true signal in its imprecise estimate is measured by computing the prportion of
signal samples that are included in its interval valued reconstruction during the
reconstruction process. The value of this proportion for each iteation is plotted
in Figure 4.

The criterion to be minimized is the distance between the measuremervec-
tor M and the modeled measurement of the interval valued reconstrued signal.
As can be seen in Figure (2), this imprecise measurement includes threeasure-
ment vector and all precise measurements of the 40 precise valuedconstructed
signals.

We also compute the proportion of measurement samples that are oluded
in the imprecise measurement for each iteration. The value of this psportion
versus the iterations is plotted in Figure 5. Within this experiment, what we
call complete adequacy convergence is obtained after less than iterations.
The number of iterations that are necessary to obtain this convegence is not a
constant of the method and varies with the experiments. Note howver, that in
a noise-free context, this convergence also corresponds to thetal inclusion of
the true signal in the interval-valued reconstructed signal (see kure 4).

Finally, Figure 6 plots variations in the interval valued estimate mean impre-
cision (i.e. the mean of the interval valued estimate length) versushe iterations.
It can be easily seen that this mean imprecision converges (which is tie when
the number of iterations tends to in nity).

4.2 Experimentation with random additive noise

The second experiment is performed by adding centered Gaussiaamdom noise
with a standard deviation of 0.8 to the measurement samples, i.e. theignal-to-
noise ratio is about 50 dB. When the measurement is noisy, then theaconstruc-
tion cannot be exact. In this case, the Schultz procedure convges towards the
least squares solution. Moreover, as usual, the reconstructedgnal diverges from
the true signal, since this procedure is not regularized. In this expement, the
divergence occurs after 20 iterations, as illustrated in Figure 9. Tle measurement
samples are also not included in their interval-valued estimates, as illusated in
Figures 8 and 10.

When variations in the measurements are not accounted for by theapacity-
based imprecise representation of the discrete impulse responsehich is the case
here, the desired inclusion property is no longer ensured. In faci&fter a certain
number of iterations, the least squares solutions obtained when c¢wsidering im-
pulse responses that are dominated by the considered capacity @armno longer
completely included in the interval-valued reconstruction. As a matter of fact,

































