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Abstract. Reconstructing a signal from its observations via a sensor
device is usually called \deconvolution". Such reconstruc tion requires
perfect knowledge of the impulse response of the sensor involved in the
signal measurement. The lower this knowledge, the more biased the re-
construction. In this paper, we present a novel method for re construct-
ing a signal measured by a sensor whose impulse response is imprecisely
known. This technique is based on modeling the relationship between
the measurement and the signal via a concave capacity and extending
the convolution concept to a concave set of impulse responses. The re-
constructed signal is interval-valued, thus reecting the poor knowledge
of the sensor impulse response.

Keywords: inverse problem, deconvolution, non-additive con�dence m ea-
sure, Choquet integral, Schultz iterative procedure

1 Introduction

Deconvolution consists of reconstructing a signal from its noisy measurements. It
has numerous applications in many scienti�c and engineering disciplines: recover-
ing earth structures in seismology [6], reversing optical distortion inmicroscopy,
deblurring satellite images [11], tomography [7, 19], etc. Generally, deconvolution
involves �nding a solution to a convolution equation of the form:

m(t) = ( h 
 s)( t) + b(t); (1)

wheres(t) is the signal, m(t) its measurement,h(t) the sensor impulse response
and b(t) the measurement error due to transmission, thermal noise, sampling,
quanti�cation, etc. Note that b(t) is often referred to as a random variable having
a known distribution (usually Gaussian). Roughly speaking, the inversion of
equation (1) is an attempt to �nd a linear deconvolution operator 
 � 1 of an
inverseh� 1 of the impulse response:

ŝ(t) = ( h 
 � 1 m)(t) = ( h� 1 
 m)( t): (2)

The proposed deconvolution operator usually does not exist as a bounded linear
operator. Therefore, the solution to (1) is not unique, may not exist and its



computation can lead to very unstable solutions. Moreover, the deconvolution
process tends to interpret noiseb(t) in a coherent manner, leading to artifacts
added to the reconstructed signal:

ŝ(t) = ( h 
 � 1 h 
 s)( t) � (h 
 � 1 b)( t); (3)

where (h 
 � 1 b)( t) represents these additive artifacts. Even ifb(t) is nice white
noise, the artifacts are not. This study will be restricted to positive impulse re-
sponses. It should be further extended to impulse responses having both positive
and negative values.

Instead of trying and �nd a continuous solution to Equation (1), de convolu-
tion is usually performed in the discrete domain (even if the convolution relation
is de�ned in the continuous domain). Discrete deconvolution consists of solving
a matrix equation of the form:

M = AS + B; (4)

where M is the vector of sampled measures,S is the vector of the sampled
signal, B is a noise vector andA is a matrix depending on the impulse response
of the acquisition system. Deconvolution thus consists of solving the matrix
equation (4) by minimizing a risk function [13]. A very common risk function is
the Euclidian distance: JA (S; M ) = jjM � ASjj2. Minimizing this risk function
leads to computing the following solution:

Ŝ = A+ M; (5)

where A+ is the pseudo inverse matrix ofA.
When the measurements are noisy, then performing the deconvolution by us-

ing Equation (5) induces reconstruction artifacts. A solution to minimize these
artifacts generally involves modifying the reconstruction criterion by adding a
regularizing term in order to limit the reconstructed signal dynamics. Because of
the complexity of the regularization or of the high dimension ofA, most recon-
struction algorithms are iterative, i.e. starting from a wrong solution, converge
to a solution that minimizes the proposed criterion. Most approaches proposed
in the relevant literature focus on noise in the measurement and assume that
the blur operator (h or A) is known [16]. However, since knowledge onA gen-
erally comes from an identi�cation process, this hypothesis is usuallyviolated.
Moreover, Equation (4) is usually an approximation of the true relation. A lack
of knowledge on the blur operator is generally considered as being a measure-
ment error [17], leading to biased reconstructed signals with a systematic error
that is not quanti�ed. A conventional method for dealing with this pr oblem is
to consider matrix A as being interval-valued [12]. This approach leads to guar-
anteed but not very speci�c inversion of the interval extension of Equation (4).
Guaranteed means that, if the interval-valued matrix contains the real matrix,
then the signal is included in the interval-valued reconstructed signal. However,
this method is very computationally expensive and the guarantee relies on the
ability to predict an appropriate bound of the reconstruction error. In a pre-
vious paper [18], we proposed an alternative method that uses a capacity � to



model imprecise knowledge of the impulse response of a sensor. Thismodeling
entails a generalized convolution operator based on the Choquet integral leading
to modeling the measurement process by a non-linear equation of the form:

[M ; M ] = �: A � (S); (6)

where M (rsp. M ) is the lower bound (rsp. upper bound) of any measurement
vector that should have been obtained by using one of the impulse responses
modeled by capacity � and a real coe�cient � . Modeling the imprecise knowl-
edge with a concave capacity has two main advantages. First, it leads to a very
speci�c estimate of the convex envelope of all output signals that should have
been obtained by convoluting the input signal with all impulse responses repre-
sented by this modeling. Second, it leads to an algorithmic implantationwhose
computational complexity is as low as that of a traditional linear convolution
operation.

This paper aims at proposing an inversion scheme of Equation (6). More
precisely, givenM the actual measurement vector, we aim at �nding a speci�c
convex set [S; S] in agreement with M via Equation (6), that is �nd [ S; S] such
that:

8S 2 [S; S]; M 2 �: A � (S): (7)

This article is organized as follows: section 2 presents the framework and
notations. This section is divided into six subsections to explain how a lack
of knowledge on the impulse response can be modeled by a capacity. Section 3
presents the interval-valued deconvolution as an extension of theSchultz iterative
procedure. Section 4 presents some illustrative experiments. Section 5 is devoted
to our concluding remarks.

2 Framework and notations

2.1 Filtering seen as an expectation operator

Let S = ( si ) i 2f 1;:::;N g 2 R be a real discrete signal composed ofN samples.
f 1; : : : ; N g will be denoted 
 . Filtering S consists of convoluting the set of all
sampled values with a particular discrete function called the impulse response
of the �lter h = ( hi ) i 2 Z . In this paper, we only consider positive impulse re-
sponses. The digital �lter output is a sequence ofN sampled values denoted
M = ( mk )k2f 1;:::;N g. The computation of mk , the kth output of the �lter, is
given by:

mk =
NX

i =1

si hk � i : (8)

Let � =
P

i 2 Z hi , � i = h i
� , and � = ( � i ) i 2 Z . � can be considered as a discrete

probability distribution de�ning a probability measure P. Let � k = ( � k
i ) i 2 Z be



the probability distribution de�ned by translating � : � k
i = � k � i , hence Equation

(8) can be re-written as follows:

mk = �
NX

i =1

si � k
i = � EPk (S); (9)

wherePk is the probability measure de�ned by the translated probability distr i-
bution � k and EPk is the expectation operator induced byPk on sampled values
of 
 . Thus, �ltering a signal with a linear �lter whose impulse response is posi-
tive can be seen as an expectation operation multiplied by a constantreal value.
This operation can be presented in matrix form:

M = �A P S; (10)

whereM and S respectively denote the measurement and the input signal vector,
and with AP de�ned by:

AP =

2
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2.2 An interval-valued generalization of the expectation o perator

This section proposes an interval-valued generalization of the conventional ex-
pectation operator. It sums up di�erent results presented in [18]. It is based on
replacing the usual probability measure by a more general con�dence measure
called a capacity (see e.g. [1]). The use of a capacity to represent a con�dence
measure entails using a more general expectation operator called the Choquet
integral (see [2]).

This part begins with some necessary de�nitions and properties concerning
the capacities and the Choquet integral.

Let 
 = f 1; : : : ; N g be a �nite subset of N (which can be considered here as
a set of indices corresponding to the signal samples), whileP(
 ) is the set of
all subsets of
 and V is the set all the real functions de�ned on 
 . Note that
X 2 V can also be considered as a vectorX = ( x1; : : : ; xN )T , where (:)T is the
transposition operator.

De�nition 1 A capacity � is a set function � : P(
 ) ! [0; 1] such that � (? ) =
0, � (
 ) = 1 , and 8A � B ) � (A) � � (B ).

Given a capacity � , its conjuguate1 � c is de�ned as: � c(A) = 1 � � (Ac);
for any subset A of 
 , with Ac being the complementary set ofA in 
 . A
capacity � such that 8A; B 2 P (
 ); � (A [ B ) + � (A \ B ) � � (A) + � (B ) is

1 The conventional �� notation will not be used in this paper so as to make the equati ons
below more easily understandable.



said to be concave. If a capacity is concave, its conjugate is convex, i.e. 8A; B 2
P(
 ); � c(A [ B ) + � c(A \ B ) � � c(A) + � c(B )

The core of a capacity2 � , denotedcore(� ), is the set of probability measures
P de�ned on 
 such that 8A 2 
 , � (A) � P(A).

De�nition 2 Let � be a capacity onP(
 ), and X 2 V be a �nite positive real
function, then the Choquet integral ofX with respect to � is de�ned by:

C� (X ) =
NX

n =1

x(n ) (� (A (n ) ) � � (A (n +1) )) ;

where (:) indicates a permutation that sorts thexn in increasing order: x(1) �
: : : � x(N ) , with subsetsA ( i ) being de�ned by:A ( i ) = f (i ); : : : ; (N )g, and A (N +1) =
? .

The standard Choquet integral is de�ned for positive functions. Since our
approach is dedicated to �ltering signals that can take negative values, we will
use the standard extension of the Choquet integral [9].

Let X 2 V be a real function. Let us de�ne the two real functions X + 2 V
and X � 2 V by: X + = max( X; 0) and X � = max( � X; 0), where 0 denotes the
function equal to 0 everywhere and max(X; Y ) denotes the point-wise maximum
of X and Y. By construction, X � and X + are positive real functions andX =
X + � X � .

De�nition 3 Let X 2 V be a real function and� be a capacity onP(
 ), then
the asymmetric Choquet integral ofX with respect to � is de�ned by:

�C� (X ) = C� (X + ) � C� c (X � ):

An important result, proved by [3], will be used hereafter:

Theorem 1 If � is a concave capacity onP(
 ), then for all X 2 V , �C� c (X ) =
inf P 2 core ( � ) EP (X ) and �C� (X ) = sup P 2 core ( � ) EP (X ); where EP is the standard
expectation based on the probability measureP.

Thus, if � is a concave capacity, then8X 2 V and 8P 2 core(� ) we have
�Cvc (X ) � EP (X ) � �Cv (X ). The interval-valued extension of the expectation
operator we propose is based on this property.

De�nition 4 Let � be a concave capacity de�ned onP(
 ) and X 2 V be a real
function on 
 , then the imprecise expectation ofX with respect to � is de�ned
by: E� (X ) = [ �C� c (X ); �C� (X )]

2 In [20] the core is de�ned for a convex capacity. Our de�nitio n coincides with the
de�nition proposed in [3] considering its conjugate (conca ve) capacity.



Based on Theorem 1, this extended expectation operator satis�es the prop-
erty: 8P 2 core(� ), EP (X ) 2 E� (X ). It is an extension since a probability
measure is simply an additive capacity (i.e. a capacity that is concave and con-
vex) and the imprecise valued expectation coincides with the usual precise valued
expectation when the considered capacity is a probability measure:EP = EP .
See [18] for more details.

We will also need to consider an extension of this interval-valued operator
to interval-valued functions. Let IV be the set of all interval-valued functions
on 
 . [X ] 2 IV can be seen as an interval-valued vector de�ned by: [X ] =
�

[x1; x1]; � � � ; [xN ; xN ]
� T

where 8i , [x i ; x i ] is a real interval denoted [x i ].
Such an interval valued vector can also be de�ned by two real vectors X =�

x1; : : : ; xN
� T

and X = ( x1; : : : ; xN )T . We will thus denote an interval-valued
vector [X ] by: [X ] = [ X ; X ].

The standard precise valued expectation operator can be easily extended to
interval-valued functions (see [4]), i.e. with P being a probability measure on

and [X ] = [ X ; X ] 2 IV being an interval valued function, then EP ([X ]) can be
de�ned by: EP ([X ]) = [ EP (X ); EP (X )]. It veri�es: 8Y 2 [X ], EP (Y ) 2 EP ([X ])
and 8W 2 EP ([X ]), 9Y 2 [X ] such that W = EP (Y ).

The asymmetric Choquet integral is an increasing function, thus if � is a
concave capacity:X � X entails �C� c (X ) � �C� (X ). The imprecise valued ex-
pectation we propose can thus be easily extended to an interval-valued func-
tion by considering the union of all precise valued expectations:8[X ] 2 IV ,
E� ([X ]) =

S
P 2 core ( � ) EP ([X ]). Computation of this interval-valued expectation

takes advantage of the fact that the asymmetric Choquet integral is increasing.

De�nition 5 Let � be a concave capacity onP(
 ) and [X ] = [ X ; X ] 2 IV be
an interval valued function on 
 , then the imprecise expectation operator of[X ]
with respect to � can be computed by:E� ([X ]) = [ �C� c (X ); �C� (X )]:

Proof: with � being concave, for all P 2 core(� ); we have 8[X ] 2 IV ,
EP ([X ]) � [ �C� c (X ); �C� (X )] which entails

S
P 2 core ( � ) EP ([X ]) � [ �C� c (X ); �C� (X )].

Now let m 2 [ �C� c (X ); �C� (X )], as 8X 2 V, �C� c (X ) = inf P 2 core ( � ) EP (X )
and �C� (X ) = sup P 2 core ( � ) EP (X ), there are two probability measures P0 and
P1 2 core(� ) such that EP0 (X ) � m � EP1 (X ). Now there are two cases. Either
EP0 (X ) � m � EP0 (X ) and then [ �C� c (X ); �C� (X )] �

S
P 2 core ( � ) EP ([X ]) and

the property is veri�ed. Otherwise EP0 (X ) < m � EP1 (X ) and, due to the
continuity, 9P2 2 core(� ) such that m = EP2 (X ). In this case, 9P 2 core(� )
such that m 2 EP ([X ]) which concludes the proof.

2.3 Interval-valued vector arithmetic

The Minskowski addition is the natural generalization of the conventional ad-
dition of real vectors to real interval-valued vectors. Let + be the conventional
addition between vectors, i.e. 8X; Y 2 V , Z = X + Y means that 8n 2 
 ,



zn = xn + yn . Let [X ] = [ X ; X ] and [Y ] = [ Y ; Y ] be two interval valued vectors,
then their Minkowski addition [ Z] = [ X ] � [Y ] is de�ned by:

[Z] = [ X ] � [Y ] = [ X + Y; X + Y]: (12)

A dual extension of the addition of real vectors can be de�ned under the
name dual Minkowski addition by:

[Z] = [ X ] � [Y ] =
�
min(X + Y ;X + Y ); max(X + Y ;X + Y )

�
; (13)

where the min(A; B ) operator (resp. max(A; B )) is the pointwise minimum (resp.
maximum) of two vectors A and B . This dual addition is de�ned according to the
previous one in the sense that it is the point-wise solution of a set of two equations
involving the Minkowski addition, i.e.: [ X ] = [ Z] � [� Y ] and [Y ] = [ Z] � [� X ].
In fact, when considering the nth coordinates of these two equations, only one
of the obtained equations [xn ] = [ zn ] � [� yn ] and [yn ] = [ zn ] � [� xn ] has a
solution and it is given by [zn ] = [ xn ] � [yn ].

2.4 The Schultz iterative procedure

As explained in the introductory part of the paper, the least squares inversion
of Equation (4) can be obtained by computing A+ the pseudo-inverse of the
matrix A: Ŝ = A+ M . Ŝ is the standard solution of the regularized equation
(AT A)S = AT M . In fact, if matrix AT A is well conditioned and of reasonable
size, thenA+ can be computed byA+ = ( AT A)� 1AT . Recursive procedures like
the Gr�eville algorithm can also be used. Conversely, if (AT A) is ill-conditioned
or if its size is too huge, then the direct estimation of Ŝ by computing A+

has to be replaced by other procedures. One of these methods is the Schultz
iterative procedure (often called the Hotelling iterative procedure, see [10]). This
method has been extensively used for inverting ill-conditioned problems, e.g. for
tomographic reconstruction [8]. Starting from a wrong solution (e.g. S0 = 0),
the Schultz procedure iteratively corrects this value and converges towards the
least squares solution. The computation of the Schultz procedureis given by:

Si +1 = Si + R(M � AS i ); (14)

where Si is the estimation of S at the i th iteration and R is an estimate of
the pseudo-inverse matrixA+ . Such an approximation can be obtained by:R =
�DA T , where D is the diagonal matrix composed of the inverse elements of
the diagonal elements of (AT A) and � is a positive real. The convergence ofSi

towards Ŝ is known to be slow but is guaranteed for� 2 (0; 1] [5].
In this article, we aim at inverting a non-linear interval-valued measurement

equation of the form of Equation (6). Our proposition is to extend the Schultz
iterative procedure to this interval-valued equation. This extension needs a par-
tial re-interpretation of the Schultz iterative procedure including considering set
additive and subtractive operations.



2.5 Matrix A and the impulse response h: a continuous to discrete
relation

Usually, when considering that the sampling frequency is very high compared
to the highest frequency of the input signal, matrix A involved in Equation (4)
can be de�ned by the sampled values of the continuous impulse responseh. Let
T be the sampling period, then matrix A is de�ned by:

A = � h :AP (15)

where � h =
P 1

i = �1 h(iT ), 8i , � i = � � 1
h h(iT ), then AP is the matrix de�ned by

(11) and P is the probability measure associated with (� i ) i 2 Z .
However, this situation is not very realistic. Even analog-to-digital converters

with a high sampling frequency have a non-negligible impulse response,since
the measurement consists of integrating the signal over a short period. Thus the
relation between the continuous and the discrete model is better modeled by a
sampling kernel � [21]. Within this new modeling, the values h(iT ) in equation
(15) have to be replaced by (h
 � iT )(0), with � iT being the kernel� translated in
iT and de�ned by: � iT (t) = � (iT � t) [14] and 
 being the convolution operator.
When the conversion is considered as being transparent, then we consider h 
 �
instead of h in the digital signal processing, which can lead to a consequent bias,
particularly in iterated signal processing or inversion.

Finally, matrix D used in the Schultz procedure (Equation (14)) to de�ne an
approximation of matrix A+ will be simply: D = 1P 1

i = �1 h2 ( iT ) :Id N , which can

be approximated by D = � � 2
h :Id N , with Id N being the N � N identity matrix.

Thus, matrix R is given by R = �� � 2
h AT .

2.6 Imprecise �ltering

As noted in section 2.1, when the impulse response of the �lter is positive,
then the �ltering procedure can be seen as a linear aggregation. Let us consider
Equation (9). Let � be the concave capacity dominatingP, i.e. the probability
measure induced by� , thus the capacity � k , which is the capacity � translated
in k, dominates Pk , which is the probability measure induced by� k . Therefore,
by simply substituting EPk by E� k

in Equation (9), we thus de�ne an imprecise
�ltering process by:

[mk ; mk ] = � E� k
(S): (16)

This operator satis�es the following property: mk = � EPk (S) 2 [mk ; mk ]:
Let us now suppose that the impulse function is known but that the kernel

that ensures the continuous to discrete interplay is unknown. In that case, it is
possible to de�ne a capacity whosecore is the set of all discrete kernels that
would have been obtained by convoluting a sampling kernel with the known
continuous impulse response. How this capacity is built is explained in [18].

Let us de�ne [M ] the interval valued vector by : [M ] = ([ m1; m1]; : : : ; [mN ; mN ]),
then all imprecise �ltering operations de�ning [ M ] can be denoted by:



[M ] = � A � (S): (17)

As the asymmetric Choquet integral is an increasing function, this impre-
cise �ltering operator can be easily extended to interval valued input signals by
simply replacing S (the precise valued vector) by [S] (an interval valued vec-
tor): [ M ] = � A � ([S]); which is a condensed notation for:8k 2 
 , [mk ; mk ] =
� E� k

([S]).
In the same manner, we de�nedcore(� ) as a convex set of probability mea-

sures, we de�ne core(A � ) as the set of all linear operators associated with a
matrix AP (equation (11)) where P, the probability measure induced by � , be-
longs to core(� ). We also de�ne � T as being the capacity that dominates� T , the
probability distribution that induces the probability measure associated with
the matrix AT

P (� T
i = � � i ).

3 Interval valued deconvolution

In this section, we propose to try and invert in a certain sense the linear equa-
tion (17) by extending the Schultz iterative procedure. The non-linear iterative
procedure we obtain is based on an alternative interpretation of Equation (14).
This interpretation means that, at the ( i + 1) th iteration, the best estimate of
� i , which is the additive update of Si to obtain an estimate Si +1 closer to Ŝ
than Si , is given by:

� i = R(M � AS i ) = Si +1 � Si : (18)

In other words, Si +1 is the solution of Equation (18). By construction, A =
� h AP and R = �� � 2

h AT , thus:

� i = �� � 2
h :AT

P :(M � � h AP Si ): (19)

3.1 De�nition

Let M be the actual measured vector. In the same way as the Schultz iterative
procedure builds a sequence of estimatesSi such that AS i +1 is closer toM than
AS i , we aim at building a sequence of interval valued estimates [Si ] such that
� h A � ([Si +1 ]) is closer to M than � h A � ([Si ]). We aim at obtaining a solution
[S] = [ S; S] = lim i !1 [Si ] that corresponds to the convex hull of all the least
squares solutions of�� h AP (S) = M with P 2 core(� ).

The principle of the solution we propose is very simple. Let [Si ] be the es-
timated interval at the i th iteration. We can thus compute the interval [M i ] =

[M i ; M
i
] which is a speci�c as possible convex hull of all the values� h AP (S)

with S 2 [Si ] and P 2 core(� ) by: [M i ] = � h :A � ([Si ]).
Let [� i ] = �� � 2

h A � T (M � � h A � ([Si ])). By construction, [ � i ] = f � =
�� � 2

h :AT
Q :(M � � h AP S); S 2 [Si ]; P; Q 2 core(� )g. A �rst approach to gener-

alize the Schultz procedure would consist of setting [Si +1 ] = [ Si ] � [� i ]. This



solution is not appropriate since the use of the Minkowski addition� would lead
to a sequence of interval-valued solutions whose length increases with the iter-
ations. The obtained solution would be completely non-speci�c, and therefore
uninformative. Based on the interpretation we gave on the Schultzprocedure,
we can say that [Si +1 ] is the set of all solutions of � = S � B either for all
B 2 [Si ] and at least one� 2 [� i ] or for all � 2 [� i ] and at least oneB 2 [Si ].
Considering each coordinate, this interpretation gives:

8s 2 [si +1
k ];

�
8b 2 [si

k ]; 9� 2 [� i
k ]) or

�
8� 2 [� i

k ]; 9b 2 [si
k ]

�
such that � = s � b;

with [ ak ] being the kth coordinate of a vector [A ] 2 IV , that is [si +1
k ] is the

solution either of [� i
k ] = [ si +1

k ] � [� si
k ] or of [si

k ] = [ si +1
k ] � [� � i

k ]. As shown in
Section 2.3, the solution of this set of equations is given by [Si +1 ] = [ Si ] � [� i ].

Practically speaking, the convergence of this method highly depends on the
value of the real factor � . Contrary to the precise-valued case, the convergence
does not seem to be achieved for any value of� in (0; 1].

In iterative inversion procedures, the question often arises as towhen to stop
the iterative process (i.e. how to detect the convergence)? For precise-valued
estimations, one possible criterion is the distance betweenM and AS i . When
the equation has an exact solution, thenjjM � AS i jj can be compared to the
computation precision in order to stop the process. However, when the process
is noisy because the measurements are noisy or because the modelis imprecise
then after a convergence period, the estimated value diverges from the \true"
value.

In the interval-valued case we propose, there is another answer to this ques-
tion. In fact, if the noise comes only from the imprecision of the model (i.e.
the phenomenon we model) then a kind ofadequacyconvergence can be easily

detected by the fact that, for certain iterations i , M 2 [M i ; M
i
].

Since we have [M i ; M
i
] = � h :A � ([Si ]), according our construction, [M i ; M

i
]

is the union of all the values� h AP S with S 2 [Si ] and P 2 core(� ). So a simple
interpretation of the adequacy convergence criterion is: there isat least oneP in
core(� ) and one S in [Si ] such that M = � h AP S. Stopping the reconstruction
when the adequacy convergence is reached means that there is a solution in the
obtained interval-valued reconstructed signal that corresponds to an impulse
response in the considered set of impulse responses.

3.2 Properties

De�nition 6 The interval-valued inversion process is said to be adequacy con-
vergent if there is an indexp such that M 2 [M p; M

p
].

Proposition 1 The adequacy convergence de�ned in De�nition 6 is equivalent
to 9p 2 N such that 0 2 [� p], with 0 being the vector equal to0 everywhere.

Proof:



{ If, for an index p, M 2 [M p], thus 9S 2 [Sp] such that 9P 2 core(� ) such
that M � � h A P (S) = 0. Note now that A � T (0) = 0 implies 0 2 [� p].

{ If, for an index p, 0 2 [� p] then, for each coordinatek, 9P 2 core(� ) and
9S 2 [Sp] such that B = � h AP S and mk � bk = 0 and thus M 2 [M p].

De�nition 7 The interval-valued inversion process is said to be completely ad-
equacy convergent if there is an indexp such that 8i � p, M 2 [M i ; M

i
].

Proposition 2 The complete adequacy convergence is equivalent to9p 2 N such
that 8i � p 0 2 [� i ], with 0 being the vector equal to0 everywhere.

Proof: For this property, the equivalence proved in Proposition 1 is statis�ed
for all indexes i � p.

The non-linear inversion process we propose leads to a sequence ofinter-
vals. Convergence of this sequence to its interval-valued limit is the solution of
Equation 17, and corresponds to what we call the complete convergence of the
process.

De�nition 8 The interval-valued inversion process is said to be completely con-
vergent if there is an indexp such that 8i � p, [Si +1 ] = [ Si ].

Note that if p exists such that [Sp+1 ] = [ Sp] then for all i � p we have
[Si +1 ] = [ Si ]. Complete convergence of the iterative inversion procedure implies
the adequacy convergence and more precisely we have the followingresult.

Proposition 3 The following assertions are equivalent:

{ 9p such that [Sp+1 ] = [ Sp]
{ [� p

k ] the k-th coordinate of [� p] is either 0 or the interval centred on 0 with
a radius twice the radius of[Sp

k ].

Proof: If 9p such that [Sp+1 ] = [ Sp] then [Sp] is solution of the equation
[X ] = [ X ] � [� ].

For each coordinatek, the previous condition entails either [� k ] = [ xk ]� [� xk ]
or [xk ] = [ xk ] � [� k ].

{ If [ � k ] = [ xk ] � [� xk ] = [ xk � xk ; xk � xk ], then [� k ] is an interval centred on
0. Moreover, the radius3 of interval [ � k ] is twice the radius of interval [xk ].

{ If [xk ] = [ xk ] � [� k ] = [ xk � � k ; xk � � k ], then � k = � k = 0.

Reciprocally, if [� p
k ] is either 0 or the interval centred on 0 with a radius

twice the radius of [Sp
k ] then, using the equation [Si +1 ] = [ Si ] � [� i ], the �rst

assertion is satis�ed.

Note that complete convergence entails adequacy complete convergence.

3 with [ x ] = [ x; x] being a real interval, its radius is de�ned by rad([x ]) = 1
2 (x � x)



This implication scheme cannot be reversed. In fact, if for a particular itera-
tion p, 0 2 [� p] (i.e. adequacy convergence) due to the dual Minkowski operator,
the fact that 0 2 [� p+1 ] cannot be guaranteed. In the same way, complete ade-
quacy convergence does not lead to complete convergence, i.e. the fact that there
is an iteration p such that 8i � p 0 2 [� i ] does not imply that the imprecision
of the interval valued reconstructed signal is constant. The conditions that both
signal and capacity have to ful�ll to achieve one of these convergences of the
algorithm (adequacy, complete adequacy, complete) require further study.

4 Experimentation

The two experiments we propose aim at illustrating the di�erent prop erties we
mentioned and highlight a certain number of other properties. This experiment
is based on simulating a signal acquisition via a sensor whose discrete impulse
response has been identi�ed but with no information about the sampling kernel
ensuring the continuous to discrete interplay. The discrete impulseresponse of
the sensor is depicted in Figure 3. The signal whose measurement is simulated
is made of a weighted sum of 10 sine waves whose frequencies were randomly
chosen. The signal we process is of high dimension (100000 samples)to comply
with the hypothesis that the pseudo-inverse cannot be easily computed. The
�gures we present here only plot 10% of the signals.

We model the fact that the sampling kernel is unknown by using a capac-
ity constructed with the procedure de�ned in [18]. In addition, we compute 40
di�erent discrete impulse responses while hypothesizing 40 di�erentsampling
kernels. We reconstruct an imprecise valued estimate of the signalby using our
interval valued iterative procedure and 40 precise valued estimates of the signal
by using the conventional precise valued least squares iterative procedure. 50
iterations of the reconstructing processes were performed.

4.1 Experimentation with no random noise

Within the �rst experiment, the measurement process is supposedto be free of
random variations, i.e. the measurement noise is only due to the factthat the
sampling kernel is unknown. Figure 1 shows the superposition of theinterval-
valued reconstructed signal (blue-upper, red-lower) with the true signal (dotted
black) and the 40 precise least squares reconstructions using the40 di�erent
discrete impulse responses (cyan). In Figure 1.a, all the reconstructed signals
seem identical. 1.b plots a zoomed detail of this superposition. As canbe seen
in this last �gure, all precise valued reconstructed signals are included in the
imprecise valued reconstructed signal. This property is true for any iteration of
the reconstruction process. It is the main motivation for this work, i.e. to be
able to derive an interval-valued reconstruction process that includes all precise-
valued reconstruction processes it models.

This inclusion has not yet been mathematically proven. If this property holds
whatever the signal, it can be considered as a kind of robustness ofthe inversion



process since, if the lack of knowledge on the impulse response of the sensor is
properly modeled by the capacity (i.e. 9P 2 core(� ) such that M = � h AP S),
then the inclusion of the signal in its interval-valued estimate seems to be guar-
anteed. Moreover, within this random-noise free experiment, thetrue signal is
included in the interval-valued estimate of the signal while none of the40 pre-
cise estimates of the signal have converged to the true signal. Inclusion of the
true signal in its imprecise estimate is measured by computing the proportion of
signal samples that are included in its interval valued reconstruction during the
reconstruction process. The value of this proportion for each iteration is plotted
in Figure 4.

The criterion to be minimized is the distance between the measurement vec-
tor M and the modeled measurement of the interval valued reconstructed signal.
As can be seen in Figure (2), this imprecise measurement includes themeasure-
ment vector and all precise measurements of the 40 precise valuedreconstructed
signals.

We also compute the proportion of measurement samples that are included
in the imprecise measurement for each iteration. The value of this proportion
versus the iterations is plotted in Figure 5. Within this experiment, what we
call complete adequacy convergence is obtained after less than 10iterations.
The number of iterations that are necessary to obtain this convergence is not a
constant of the method and varies with the experiments. Note however, that in
a noise-free context, this convergence also corresponds to thetotal inclusion of
the true signal in the interval-valued reconstructed signal (see Figure 4).

Finally, Figure 6 plots variations in the interval valued estimate mean impre-
cision (i.e. the mean of the interval valued estimate length) versus the iterations.
It can be easily seen that this mean imprecision converges (which is true when
the number of iterations tends to in�nity).

4.2 Experimentation with random additive noise

The second experiment is performed by adding centered Gaussian random noise
with a standard deviation of 0.8 to the measurement samples, i.e. thesignal-to-
noise ratio is about 50 dB. When the measurement is noisy, then the reconstruc-
tion cannot be exact. In this case, the Schultz procedure converges towards the
least squares solution. Moreover, as usual, the reconstructed signal diverges from
the true signal, since this procedure is not regularized. In this experiment, the
divergence occurs after 20 iterations, as illustrated in Figure 9. The measurement
samples are also not included in their interval-valued estimates, as illustrated in
Figures 8 and 10.

When variations in the measurements are not accounted for by thecapacity-
based imprecise representation of the discrete impulse response,which is the case
here, the desired inclusion property is no longer ensured. In fact,after a certain
number of iterations, the least squares solutions obtained when considering im-
pulse responses that are dominated by the considered capacity are no longer
completely included in the interval-valued reconstruction. As a matter of fact,






















