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Abstract. Reconstructing a signal from its observations via a sensor
device is usually called “deconvolution”. Such reconstruction requires
perfect knowledge of the impulse response of the sensor involved in the
signal measurement. The lower this knowledge, the more biased the re-
construction. In this paper, we present a novel method for reconstruct-
ing a signal measured by a sensor whose impulse response is imprecisely
known. This technique is based on modeling the relationship between
the measurement and the signal via a concave capacity and extending
the convolution concept to a concave set of impulse responses. The re-
constructed signal is interval-valued, thus reflecting the poor knowledge
of the sensor impulse response.

Keywords: inverse problem, deconvolution, non-additive confidence mea-
sure, Choquet integral, Schultz iterative procedure

1 Introduction

Deconvolution consists of reconstructing a signal from its noisy measurements. It
has numerous applications in many scientific and engineering disciplines: recover-
ing earth structures in seismology [6], reversing optical distortion in microscopy,
deblurring satellite images [11], tomography [7, 19], etc. Generally, deconvolution
involves finding a solution to a convolution equation of the form:

m(t) = (h©s)(t) + b(t), (1)

where s(t) is the signal, m(t) its measurement, h(t) the sensor impulse response
and b(t) the measurement error due to transmission, thermal noise, sampling,
quantification, etc. Note that b(t) is often referred to as a random variable having
a known distribution (usually Gaussian). Roughly speaking, the inversion of
equation (1) is an attempt to find a linear deconvolution operator ® ! of an
inverse h~! of the impulse response:

5(t) = (h@~ m)(t) = (A @ m)(t). (2)

The proposed deconvolution operator usually does not exist as a bounded linear
operator. Therefore, the solution to (1) is not unique, may not exist and its



computation can lead to very unstable solutions. Moreover, the deconvolution
process tends to interpret noise b(t) in a coherent manner, leading to artifacts
added to the reconstructed signal:

st)=(h@ *hes)(t) — (ha Lb)(t), (3)

where (h @71 b)(t) represents these additive artifacts. Even if b(t) is nice white
noise, the artifacts are not. This study will be restricted to positive impulse re-
sponses. It should be further extended to impulse responses having both positive
and negative values.

Instead of trying and find a continuous solution to Equation (1), deconvolu-
tion is usually performed in the discrete domain (even if the convolution relation
is defined in the continuous domain). Discrete deconvolution consists of solving
a matrix equation of the form:

M = AS + B, (4)

where M is the vector of sampled measures, S is the vector of the sampled
signal, B is a noise vector and A is a matrix depending on the impulse response
of the acquisition system. Deconvolution thus consists of solving the matrix
equation (4) by minimizing a risk function [13]. A very common risk function is
the Euclidian distance: Ja(S, M) = ||M — AS||?. Minimizing this risk function
leads to computing the following solution:

S=A*M, (5)

where A" is the pseudo inverse matrix of A.

When the measurements are noisy, then performing the deconvolution by us-
ing Equation (5) induces reconstruction artifacts. A solution to minimize these
artifacts generally involves modifying the reconstruction criterion by adding a
regularizing term in order to limit the reconstructed signal dynamics. Because of
the complexity of the regularization or of the high dimension of A, most recon-
struction algorithms are iterative, i.e. starting from a wrong solution, converge
to a solution that minimizes the proposed criterion. Most approaches proposed
in the relevant literature focus on noise in the measurement and assume that
the blur operator (h or A) is known [16]. However, since knowledge on A gen-
erally comes from an identification process, this hypothesis is usually violated.
Moreover, Equation (4) is usually an approximation of the true relation. A lack
of knowledge on the blur operator is generally considered as being a measure-
ment error [17], leading to biased reconstructed signals with a systematic error
that is not quantified. A conventional method for dealing with this problem is
to consider matrix A as being interval-valued [12]. This approach leads to guar-
anteed but not very specific inversion of the interval extension of Equation (4).
Guaranteed means that, if the interval-valued matrix contains the real matrix,
then the signal is included in the interval-valued reconstructed signal. However,
this method is very computationally expensive and the guarantee relies on the
ability to predict an appropriate bound of the reconstruction error. In a pre-
vious paper [18], we proposed an alternative method that uses a capacity v to



model imprecise knowledge of the impulse response of a sensor. This modeling
entails a generalized convolution operator based on the Choquet integral leading
to modeling the measurement process by a non-linear equation of the form:

[M, M] = 0.A,(S), (6)

where M (rsp. M) is the lower bound (rsp. upper bound) of any measurement
vector that should have been obtained by using one of the impulse responses
modeled by capacity v and a real coefficient 0. Modeling the imprecise knowl-
edge with a concave capacity has two main advantages. First, it leads to a very
specific estimate of the convex envelope of all output signals that should have
been obtained by convoluting the input signal with all impulse responses repre-
sented by this modeling. Second, it leads to an algorithmic implantation whose
computational complexity is as low as that of a traditional linear convolution
operation.

This paper aims at proposing an inversion scheme of Equation (6). More
precisely, given M the actual measurement vector, we aim at finding a specific
convex set [S, S] in agreement with M via Equation (6), that is find [, S] such
that:

VS € [S,S], M € 0.A,(S). (7)

This article is organized as follows: section 2 presents the framework and
notations. This section is divided into six subsections to explain how a lack
of knowledge on the impulse response can be modeled by a capacity. Section 3
presents the interval-valued deconvolution as an extension of the Schultz iterative
procedure. Section 4 presents some illustrative experiments. Section 5 is devoted
to our concluding remarks.

2 Framework and notations

2.1 Filtering seen as an expectation operator

Let S = (Si)ie{l,...,N} € R be a real discrete signal composed of N samples.
{1,..., N} will be denoted (2. Filtering S consists of convoluting the set of all
sampled values with a particular discrete function called the impulse response
of the filter h = (h;)iez. In this paper, we only consider positive impulse re-
sponses. The digital filter output is a sequence of N sampled values denoted
M = (mg)keqa,...,ny- The computation of my, the k" output of the filter, is
given by:

N
my = Z Silg—i- (8)
=1

Let 0 = ) . cphi, pi = hi “and p = (pi)icz. p can be considered as a discrete

E

probability distribution defining a probability measure P. Let p¥ = (pF)icz be



the probability distribution defined by translating p: pf = pi—i, hence Equation
(8) can be re-written as follows:

N
mg =0 Z Sipi'c = UEPk (S)a (9)

i=1

where Py is the probability measure defined by the translated probability distri-
bution p* and Ep, is the expectation operator induced by P; on sampled values
of 2. Thus, filtering a signal with a linear filter whose impulse response is posi-
tive can be seen as an expectation operation multiplied by a constant real value.
This operation can be presented in matrix form:

M = cApS, (10)

where M and S respectively denote the measurement and the input signal vector,
and with Ap defined by:

p§ p?---piv po p-1 - PN
Ap = Po PL PN | _ | PL PO .- P-N+1 (11)
Py PY - PN PN PN—1--- PO

2.2 An interval-valued generalization of the expectation operator

This section proposes an interval-valued generalization of the conventional ex-
pectation operator. It sums up different results presented in [18]. It is based on
replacing the usual probability measure by a more general confidence measure
called a capacity (see e.g. [1]). The use of a capacity to represent a confidence
measure entails using a more general expectation operator called the Choquet
integral (see [2]).

This part begins with some necessary definitions and properties concerning
the capacities and the Choquet integral.

Let 2 ={1,...,N} be a finite subset of N (which can be considered here as
a set of indices corresponding to the signal samples), while P({2) is the set of
all subsets of 2 and V is the set all the real functions defined on (2. Note that
X €V can also be considered as a vector X = (x1,...,2x5)T, where (.)T is the
transposition operator.

Definition 1 A capacity v is a set function v : P(£2) — [0, 1] such that v(2) =
0, v(2) =1, and VA C B = v(A) <v(B).

Given a capacity v, its conjuguate! v¢ is defined as: v°(A) = 1 — v(A°),
for any subset A of (2, with A° being the complementary set of A in 2. A
capacity v such that VA,B € P(£2), v(AUB) +v(ANB) < v(A) +v(B) is

! The conventional 7 notation will not be used in this paper so as to make the equations
below more easily understandable.



said to be concave. If a capacity is concave, its conjugate is convex, i.e. VA, B €
P(2), v°(AUB) +v°(AN B) > v°(A) + v°(B)

The core of a capacity? v, denoted core(v), is the set of probability measures
P defined on 2 such that VA € 2, v(A) > P(A).

Definition 2 Let v be a capacity on P(§2), and X € V be a finite positive real
function, then the Choquet integral of X with respect to v is defined by:

Co(X) = am)(W(Awm) = Y(Amin),

n=1

where (.) indicates a permutation that sorts the x,, in increasing order: w1y <
. S a(Ny, with subsets Ay being defined by: Agy = {(i),...,(N)}, and An11) =
.

The standard Choquet integral is defined for positive functions. Since our
approach is dedicated to filtering signals that can take negative values, we will
use the standard extension of the Choquet integral [9].

Let X € V be a real function. Let us define the two real functions X+ € V
and X~ € V by: XT = max(X,0) and X~ = max(—X, 0), where 0 denotes the
function equal to 0 everywhere and max(X,Y") denotes the point-wise maximum
of X and Y. By construction, X~ and X are positive real functions and X =
XT—-X".

Definition 3 Let X € V be a real function and v be a capacity on P({2), then
the asymmetric Choquet integral of X with respect to v is defined by:

Co(X)=C,(XT) = Cpe(X7).
An important result, proved by [3], will be used hereafter:

Theorem 1 Ifv is a concave capacity on P(2), then for all X € V, Cpe(X) =
inf pecorer) Ep(X) and Cy(X) = suppeoren) Ep(X), where Ep is the standard
expectation based on the probability measure P.

Thus, if v is a concave capacity, then VX € V and VP € core(v) we have
Cpe(X) < Ep(X) < Cy(X). The interval-valued extension of the expectation
operator we propose is based on this property.

Definition 4 Let v be a concave capacity defined on P(§2) and X € V be a real
function on (2, then the imprecise expectation of X with respect to v is defined

by: E, (X) = [Coe (X), Co(X)]

2 In [20] the core is defined for a convex capacity. Our definition coincides with the
definition proposed in [3] considering its conjugate (concave) capacity.



Based on Theorem 1, this extended expectation operator satisfies the prop-
erty: VP € core(v), Ep(X) € E, (X). It is an extension since a probability
measure is simply an additive capacity (i.e. a capacity that is concave and con-
vex) and the imprecise valued expectation coincides with the usual precise valued
expectation when the considered capacity is a probability measure: Ep = Ep.

See [18] for more details.

We will also need to consider an extension of this interval-valued operator
to interval-valued functions. Let IV be the set of all interval-valued functions
on (2. [X] € IV can be seen as an interval-valued vector defined by: [X] =
([ﬂ, 71, -, [on, TN )T where Vi, [z;,T;] is a real interval denoted [x;].

Such an interval valued vector can also be defined by two real vectors X =
(ﬂ, . ,x_N)T and X = (77,... ,W)T. We will thus denote an interval-valued
vector [X] by: [X] = [X, X].

The standard precise valued expectation operator can be easily extended to
interval-valued functions (see [4]), i.e. with P being a probability measure on 2
and [X] = [X, X| € IV being an interval valued function, then Ep([X]) can be
defined by: Ep([X]) = [Ep(X),Ep(X)]. It verifies: VY € [X], Ep(Y) € Ep([X])
and VW € Ep([X]), IY € [X] such that W =Ep(Y).

The asymmetric Choquet integral is an increasing function, thus if v is a
concave capacity: X < X entails C. (X) < C, (7) The imprecise valued ex-
pectation we propose can thus be easily extended to an interval-valued func-
tion by considering the union of all precise valued expectations: V[X] € IV,
E, (X)=U pecore() EP([X]). Computation of this interval-valued expectation
takes advantage of the fact that the asymmetric Choquet integral is increasing.

Definition 5 Let v be a concave capacity on P(£2) and [X] = [X, X]| € IV be
an interval valued function on (2, then the imprecise expectation operator of [X]

with respect to v can be computed by: E, ([X]) = [C,e(X), C, (X))

Proof: with v being concave, for all P € core(v), we have V[X] € IV,
Ep([X]) € [Cue(X), Cp(X)] which entails pe oren) Er([X]) € [Cre(X), Cu (X)].

Now let m € [Cpe(X),C(X)], as VX € V, Cpe(X) = inf pecore() Ep(X)
and C,(X) = SUP pecore(v) BP(X), there are two probability measures Py and

Py € core(v) such that Ep, (X) <m < Ep, (X). Now there are two cases. Either
Ep, (X) < m < Epy(X) and then [Cye(X), Co(X)] € Upecore) Er([X]) and
the property is verified. Otherwise Ep, (X) < m < Ep (X) and, due to the
continuity, 3P, € core(v) such that m = Ep,(X). In this case, IP € core(v)

such that m € Ep([X]) which concludes the proof. B

2.3 Interval-valued vector arithmetic

The Minskowski addition is the natural generalization of the conventional ad-
dition of real vectors to real interval-valued vectors. Let + be the conventional
addition between vectors, i.e. VXY € V, Z = X + Y means that Vn € (2,



Zp = Tp +Yn. Let [X] = [X, X] and [Y] = [V, Y] be two interval valued vectors,
then their Minkowski addition [Z] = [X] @ [Y] is defined by:

Z]=X]®[Y]=[X+Y,X+Y]. (12)

A dual extension of the addition of real vectors can be defined under the
name dual Minkowski addition by:

[Z) = X]B[Y] = [mnX +Y, X +Y)max(X +Y,X +Y)], (13)

where the min(A, B) operator (resp. max(A, B)) is the pointwise minimum (resp.
maximum) of two vectors A and B. This dual addition is defined according to the
previous one in the sense that it is the point-wise solution of a set of two equations
involving the Minkowski addition, i.e.: [X] = [Z] ® [-Y] and [Y] = [Z] & [-X].
In fact, when considering the nt"* coordinates of these two equations, only one
of the obtained equations [Xn] = [zZn] ® [—yn] and [yn] = [2a] & [—%xx] has a
solution and it is given by [zn] = [xn] B [yn]-

2.4 The Schultz iterative procedure

As explained in the introductory part of the paper, the least squares inversion
of Equation (4) can be obtained by computing A% the pseudo-inverse of the
matrix A: § = ATM. S is the standard solution of the regularized equation
(ATA)S = ATM. In fact, if matrix AT A is well conditioned and of reasonable
size, then AT can be computed by A+ = (AT A)~1 AT, Recursive procedures like
the Gréville algorithm can also be used. Conversely, if (AT A) is ill-conditioned
or if its size is too huge, then the direct estimation of S by computing A*
has to be replaced by other procedures. One of these methods is the Schultz
iterative procedure (often called the Hotelling iterative procedure, see [10]). This
method has been extensively used for inverting ill-conditioned problems, e.g. for
tomographic reconstruction [8]. Starting from a wrong solution (e.g. S° = 0),
the Schultz procedure iteratively corrects this value and converges towards the
least squares solution. The computation of the Schultz procedure is given by:

St = 8"+ R(M — ASY), (14)

where S? is the estimation of S at the i" iteration and R is an estimate of
the pseudo-inverse matrix A'. Such an approximation can be obtained by: R =
ADAT . where D is the diagonal matrix composed of the inverse elements of
the diagonal elements of (AT A) and \ is a positive real. The convergence of S°
towards S is known to be slow but is guaranteed for X € (0,1] [5].

In this article, we aim at inverting a non-linear interval-valued measurement
equation of the form of Equation (6). Our proposition is to extend the Schultz
iterative procedure to this interval-valued equation. This extension needs a par-
tial re-interpretation of the Schultz iterative procedure including considering set
additive and subtractive operations.



2.5 Matrix A and the impulse response h: a continuous to discrete
relation

Usually, when considering that the sampling frequency is very high compared
to the highest frequency of the input signal, matrix A involved in Equation (4)
can be defined by the sampled values of the continuous impulse response h. Let
T be the sampling period, then matrix A is defined by:

A= O’h.AP (15)

where o, = 3" h(iT), Vi, p; = 0}, 'h(iT), then Ap is the matrix defined by
(11) and P is the probability measure associated with (p;)icz.

However, this situation is not very realistic. Even analog-to-digital converters
with a high sampling frequency have a non-negligible impulse response, since
the measurement consists of integrating the signal over a short period. Thus the
relation between the continuous and the discrete model is better modeled by a
sampling kernel £ [21]. Within this new modeling, the values h(iT') in equation
(15) have to be replaced by (h@~x™T)(0), with x*T being the kernel  translated in
iT and defined by: kT (t) = k(iT —t) [14] and ® being the convolution operator.
When the conversion is considered as being transparent, then we consider h ® k
instead of h in the digital signal processing, which can lead to a consequent bias,
particularly in iterated signal processing or inversion.

Finally, matrix D used in the Schultz procedure (Equation (14)) to define an
approximation of matrix A% will be simply: D = W.Id;v, which can
be approximated by D = a,:%[dN, with I'dy being the N x N identity matrix.
Thus, matrix R is given by R = )\U;QAT.

2.6 Imprecise filtering

As noted in section 2.1, when the impulse response of the filter is positive,
then the filtering procedure can be seen as a linear aggregation. Let us consider
Equation (9). Let v be the concave capacity dominating P, i.e. the probability
measure induced by p, thus the capacity vy, which is the capacity v translated
in k, dominates P, which is the probability measure induced by p*. Therefore,
by simply substituting Ep, by Eyk in Equation (9), we thus define an imprecise
filtering process by:

[mu, M) = ok, (5). (16)

This operator satisfies the following property: my = oEp, (S) € [mu, T

Let us now suppose that the impulse function is known but that the kernel
that ensures the continuous to discrete interplay is unknown. In that case, it is
possible to define a capacity whose core is the set of all discrete kernels that
would have been obtained by convoluting a sampling kernel with the known
continuous impulse response. How this capacity is built is explained in [18].

Let us define [M] the interval valued vector by : [M] = ([my, ™1, ..., [mn,TN]),
then all imprecise filtering operations defining [M] can be denoted by:



[M] = 0.4, (S). (17)

As the asymmetric Choquet integral is an increasing function, this impre-
cise filtering operator can be easily extended to interval valued input signals by
simply replacing S (the precise valued vector) by [S] (an interval valued vec-
tor): [M] = 0.4, ([S]), which is a condensed notation for: Vk € 2, [my, M) =
oE,, ([S).

In the same manner, we defined core(v) as a convex set of probability mea-
sures, we define core(A,) as the set of all linear operators associated with a
matrix Ap (equation (11)) where P, the probability measure induced by p, be-
longs to core(v). We also define v7 as being the capacity that dominates p”', the
probability distribution that induces the probability measure associated with
the matrix AL (pf = p_;).

3 Interval valued deconvolution

In this section, we propose to try and invert in a certain sense the linear equa-
tion (17) by extending the Schultz iterative procedure. The non-linear iterative
procedure we obtain is based on an alternative interpretation of Equation (14).
This interpretation means that, at the (i 4+ 1) iteration, the best estimate of
A’ which is the additive update of S? to obtain an estimate S**! closer to S
than S?, is given by:

A" = R(M — AS") = §"1 — §°. (18)

In other words, S**! is the solution of Equation (18). By construction, A =
opAp and R = )\U,ZQAT, thus:

Al = No, 2 AL(M — 0, ApSY). (19)

3.1 Definition

Let M be the actual measured vector. In the same way as the Schultz iterative
procedure builds a sequence of estimates S? such that AS**! is closer to M than
AS? we aim at building a sequence of interval valued estimates [S?] such that
o AL ([S1]) is closer to M than o4.A,([S]). We aim at obtaining a solution
[S] = [S,S] = lim;_,[S?] that corresponds to the convex hull of all the least
squares solutions of Aoy Ap(S) = M with P € core(v).

The principle of the solution we propose is very simple. Let [S] be the es-
timated interval at the ' iteration. We can thus compute the interval [M‘] =
[M?, M'] which is a specific as possible convex hull of all the values ojAp(S)
with S € [S?] and P € core(v) by: [M?] = o1,.A,([S?]).

Let [AY] = M\oj, 2A,r(M — 04.A,([S7])). By construction, [AY] = {A =
)\U;Q.Ag.(M —opApS),S € [S,P,Q € core(v)}. A first approach to gener-
alize the Schultz procedure would consist of setting [S**!] = [S?] @ [A]. This



solution is not appropriate since the use of the Minkowski addition & would lead
to a sequence of interval-valued solutions whose length increases with the iter-
ations. The obtained solution would be completely non-specific, and therefore
uninformative. Based on the interpretation we gave on the Schultz procedure,
we can say that [S“T!] is the set of all solutions of A = S — B either for all
B € [SY] and at least one A € [A?] or for all A € [A?] and at least one B € [S?].
Considering each coordinate, this interpretation gives:

Vs € [siT], (Vb € [s}], 36 € [04]) or (V6 € [6;],3b € [s}]) such that § = s — b,

with [ay] being the k" coordinate of a vector [A] € IV, that is [s;"'] is the
solution either of [0%] = [s;™'] ® [—si] or of [si] = [s;"'] @ [-5}]. As shown in
Section 2.3, the solution of this set of equations is given by [S*H1] = [S?] H [AY].

Practically speaking, the convergence of this method highly depends on the
value of the real factor A. Contrary to the precise-valued case, the convergence
does not seem to be achieved for any value of A in (0, 1].

In iterative inversion procedures, the question often arises as to when to stop
the iterative process (i.e. how to detect the convergence)? For precise-valued
estimations, one possible criterion is the distance between M and AS®. When
the equation has an exact solution, then ||[M — AS?|| can be compared to the
computation precision in order to stop the process. However, when the process
is noisy because the measurements are noisy or because the model is imprecise
then after a convergence period, the estimated value diverges from the “true”
value.

In the interval-valued case we propose, there is another answer to this ques-
tion. In fact, if the noise comes only from the imprecision of the model (i.e.
the phenomenon we model) then a kind of adequacy convergence can be easily
detected by the fact that, for certain iterations ¢, M € [M i,Mz].

Since we have [M*, M'] = o5,.A,([S]), according our construction, [M*, M ']
is the union of all the values o, ApS with S € [S?] and P € core(v). So a simple
interpretation of the adequacy convergence criterion is: there is at least one P in
core(v) and one S in [S?] such that M = 0, ApS. Stopping the reconstruction
when the adequacy convergence is reached means that there is a solution in the
obtained interval-valued reconstructed signal that corresponds to an impulse
response in the considered set of impulse responses.

3.2 Properties

Definition 6 The interval-valued inversion process is said to be adequacy con-
vergent if there is an index p such that M € [MP?, Mp].

Proposition 1 The adequacy convergence defined in Definition 6 is equivalent
to 3p € N such that 0 € [AP], with 0 being the vector equal to 0 everywhere.

Proof:



— If, for an index p, M € [MP], thus 3S € [SP] such that 3P € core(v) such
that M — o, Ap(S) = 0. Note now that A,r(0) = 0 implies 0 € [AP].

— If, for an index p, 0 € [AP] then, for each coordinate k, 3P € core(r) and
3S € [SP] such that B = 0, ApS and my, — b, = 0 and thus M € [MP?].

Definition 7 The interval-valued inversion process is said to be completely ad-
equacy convergent if there is an index p such that Vi > p, M € [Mi,ﬁz].

Proposition 2 The complete adequacy convergence is equivalent to dp € N such
that Vi > p 0 € [AY], with 0 being the vector equal to 0 everywhere.

Proof: For this property, the equivalence proved in Proposition 1 is statisfied
for all indexes i > p. &

The non-linear inversion process we propose leads to a sequence of inter-
vals. Convergence of this sequence to its interval-valued limit is the solution of
Equation 17, and corresponds to what we call the complete convergence of the
process.

Definition 8 The interval-valued inversion process is said to be completely con-
vergent if there is an index p such that Vi > p, [S*F!] = [S"].

Note that if p exists such that [SPT!] = [SP] then for all i > p we have
[StH1] = [S?]. Complete convergence of the iterative inversion procedure implies
the adequacy convergence and more precisely we have the following result.

Proposition 3 The following assertions are equivalent:

— Jp such that [SPT] = [SP]
— [AY] the k-th coordinate of [AP] is either O or the interval centred on 0 with
a radius twice the radius of [SY].

Proof: If Jp such that [SP*!] = [SP] then [SP] is solution of the equation
[X] = [X]B[A].

For each coordinate k, the previous condition entails either [0] = [xx|B[—xx]
or [xx] = [xi] @ [0k]-
— If [0k] = [xk]) ® [—%xk] = [2}, — Tk, Tk — ), then [0] is an interval centred on

0. Moreover, the radius® of interval [0z] is twice the radius of interval [xy].
— If [Xk] = [Xk] b [5k] = [Qk — 0k, Tk 7ék]7 then 0 = ék =0.

Reciprocally, if [A}] is either 0 or the interval centred on 0 with a radius
twice the radius of [SY] then, using the equation [S'*'] = [S’] H [A’], the first
assertion is satisfied. B

Note that complete convergence entails adequacy complete convergence.

® with [x] = [z, 7] being a real interval, its radius is defined by rad([x]) = (Z — )



This implication scheme cannot be reversed. In fact, if for a particular itera-
tion p, 0 € [AP] (i.e. adequacy convergence) due to the dual Minkowski operator,
the fact that 0 € [APT1] cannot be guaranteed. In the same way, complete ade-
quacy convergence does not lead to complete convergence, i.e. the fact that there
is an iteration p such that Vi > p 0 € [A?] does not imply that the imprecision
of the interval valued reconstructed signal is constant. The conditions that both
signal and capacity have to fulfill to achieve one of these convergences of the
algorithm (adequacy, complete adequacy, complete) require further study.

4 Experimentation

The two experiments we propose aim at illustrating the different properties we
mentioned and highlight a certain number of other properties. This experiment
is based on simulating a signal acquisition via a sensor whose discrete impulse
response has been identified but with no information about the sampling kernel
ensuring the continuous to discrete interplay. The discrete impulse response of
the sensor is depicted in Figure 3. The signal whose measurement is simulated
is made of a weighted sum of 10 sine waves whose frequencies were randomly
chosen. The signal we process is of high dimension (100000 samples) to comply
with the hypothesis that the pseudo-inverse cannot be easily computed. The
figures we present here only plot 10% of the signals.

We model the fact that the sampling kernel is unknown by using a capac-
ity constructed with the procedure defined in [18]. In addition, we compute 40
different discrete impulse responses while hypothesizing 40 different sampling
kernels. We reconstruct an imprecise valued estimate of the signal by using our
interval valued iterative procedure and 40 precise valued estimates of the signal
by using the conventional precise valued least squares iterative procedure. 50
iterations of the reconstructing processes were performed.

4.1 Experimentation with no random noise

Within the first experiment, the measurement process is supposed to be free of
random variations, i.e. the measurement noise is only due to the fact that the
sampling kernel is unknown. Figure 1 shows the superposition of the interval-
valued reconstructed signal (blue-upper, red-lower) with the true signal (dotted
black) and the 40 precise least squares reconstructions using the 40 different
discrete impulse responses (cyan). In Figure 1.a, all the reconstructed signals
seem identical. 1.b plots a zoomed detail of this superposition. As can be seen
in this last figure, all precise valued reconstructed signals are included in the
imprecise valued reconstructed signal. This property is true for any iteration of
the reconstruction process. It is the main motivation for this work, i.e. to be
able to derive an interval-valued reconstruction process that includes all precise-
valued reconstruction processes it models.

This inclusion has not yet been mathematically proven. If this property holds
whatever the signal, it can be considered as a kind of robustness of the inversion



process since, if the lack of knowledge on the impulse response of the sensor is
properly modeled by the capacity (i.e. 3P € core(v) such that M = o, ApS),
then the inclusion of the signal in its interval-valued estimate seems to be guar-
anteed. Moreover, within this random-noise free experiment, the true signal is
included in the interval-valued estimate of the signal while none of the 40 pre-
cise estimates of the signal have converged to the true signal. Inclusion of the
true signal in its imprecise estimate is measured by computing the proportion of
signal samples that are included in its interval valued reconstruction during the
reconstruction process. The value of this proportion for each iteration is plotted
in Figure 4.

The criterion to be minimized is the distance between the measurement vec-
tor M and the modeled measurement of the interval valued reconstructed signal.
As can be seen in Figure (2), this imprecise measurement includes the measure-
ment vector and all precise measurements of the 40 precise valued reconstructed
signals.

We also compute the proportion of measurement samples that are included
in the imprecise measurement for each iteration. The value of this proportion
versus the iterations is plotted in Figure 5. Within this experiment, what we
call complete adequacy convergence is obtained after less than 10 iterations.
The number of iterations that are necessary to obtain this convergence is not a
constant of the method and varies with the experiments. Note however, that in
a noise-free context, this convergence also corresponds to the total inclusion of
the true signal in the interval-valued reconstructed signal (see Figure 4).

Finally, Figure 6 plots variations in the interval valued estimate mean impre-
cision (i.e. the mean of the interval valued estimate length) versus the iterations.
It can be easily seen that this mean imprecision converges (which is true when
the number of iterations tends to infinity).

4.2 Experimentation with random additive noise

The second experiment is performed by adding centered Gaussian random noise
with a standard deviation of 0.8 to the measurement samples, i.e. the signal-to-
noise ratio is about 50 dB. When the measurement is noisy, then the reconstruc-
tion cannot be exact. In this case, the Schultz procedure converges towards the
least squares solution. Moreover, as usual, the reconstructed signal diverges from
the true signal, since this procedure is not regularized. In this experiment, the
divergence occurs after 20 iterations, as illustrated in Figure 9. The measurement
samples are also not included in their interval-valued estimates, as illustrated in
Figures 8 and 10.

When variations in the measurements are not accounted for by the capacity-
based imprecise representation of the discrete impulse response, which is the case
here, the desired inclusion property is no longer ensured. In fact, after a certain
number of iterations, the least squares solutions obtained when considering im-
pulse responses that are dominated by the considered capacity are no longer
completely included in the interval-valued reconstruction. As a matter of fact,
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the inclusion property seems to be linked with least squares convergence and di-
vergence, as illustrated in Figures 7, 9 and 13. Figure 7 plots the interval-valued
reconstructed signals superimposed with 40 precise-valued reconstructed signal
after 15 iterations of the reconstruction process. For 15 iterations, the inclusion
property is verified (but the true signal is not included in the interval-valued
reconstructed signal). Figure 13 plots same superposition after 2000 iterations
of the reconstruction process. In that case, every least squares solution has com-
pletely diverged and is far from the true signal. This divergence is illustrated
in Figure 9: after 18 iterations, the number of signal samples included in the
interval-valued reconstruction decreases when the number of iterations increases.
On the other hand, the 40 precise estimates of the measures are always included
in the imprecise estimate of the measures whatever the number of iterations (see
Figures 8 and 12).

A way to regularize an iterative reconstruction process is to stop a non-
regularized iterative reconstruction process when a convergence criterion is ver-
ified. However, finding a robust criterion to achieve this interruption is still an
open problem [22]. Within our interval-based reconstruction process, a very sim-
ple regularization can be achieved by stopping the reconstruction process as
soon as the inclusion of the measurement in the interval valued estimate of the
measurement is stabilized (which is obtained here after the 18" iteration — see
Figure 10). Figure 11 seems to show that the mean length of the interval-valued
estimate is also stabilized after 18 iterations. This interpretation is wrong. In
fact, the mean length of the interval-valued estimate slowly increases with the
iterations, highlighting the fact that the modeling is not suitable for this problem
(since the least squares process is not regularized).

Moreover, the fact that the adequacy convergence is never verified (see Fig-
ure 10) can be considered as a criterion for detecting poor conditioning of the
considered inverse problem. When continuing the reconstruction process, the
interval-valued estimate of the measurement tends to include the measurement
while its imprecision slowly increases, as illustrated in Figure 12. At the same
time, the interval-valued estimate of the signal diverges from the true signal by
adding artifacts (see Figure 13). Knowledge on the measurement noise can per-
haps be included by considering the measured samples as being interval valued
(with the interval valuation accounting for a known confidence interval).

As alast remark, it can be experimentally highlighted that the noise-quantification
ability of this kind of method, as mentioned in [15], seems to apply. That is, the
imprecision of the interval-valued estimate is a marker of the impact of the
measurement noise on the estimation. This last interesting property should be
experimentally and mathematically studied in a future work.

5 Conclusion and discussion

When reconstructing a signal from its measurements by using a deconvolution
process, the fact that the impulse response of the acquisition system is ill-known
is barely taken into account. Most papers focus on the measurement random
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noise. In [18] we have proposed a very simple modeling of this ill knowledge by
considering a whole convex set of imprecise responses and replacing the precise
convolution operation by an imprecise convolution operation. The obtained im-
precise output is simply the convex hull of all outputs that should have been
obtained by a precise convolution operator with different modeled impulse re-
sponses. In this paper, we have proposed an inversion of this model, which leads
to an imprecise estimate of the original signal knowing its measurement and a
set of possible impulse responses of the sensor. A certain number of properties
of this procedure have been proved while others have just been highlighted via
some experiments.

This pioneer work leads to more questions than answers. For example:

- is the reconstructed signal the most specific one that verifies the desired
properties?

- can this approach be extented to impulse responses having positive and
negative values?

- what is the relation between this kind of method and the usual guaranteed
interval-based approach?

- is it possible to also consider that the gain in the impulse response is also
imprecise?

- is it possible to consider any concave capacity?

- is it possible to add a regularization in this procedure and thus decrease
artifacts due to random noise?

- is it possible to account for knowledge on the random measurement noise?

It should now be of prime importance to test this kind of deconvolution
in applications, in order to see wether such an interval base approach leads to
improvement in signal analyses or not.

Moreover, if it appears that solving this kind of problem is instrumental
in signal processing applications, it would be relevant to envisage other gener-
alizations. In fact, in the precise valued linear signal processing context, de-
convolving by using the Schultz iterative procedure is neither the most ef-
fective nor the fastest solution. Other methods could be used like a singular
value decomposition of matrix Ap with zeroing the smallest eigenvalues, or an
expectation-maximization strategy based on an appropriate cost function. Such
approaches have been successfully used for inverting measurement equations in-
volving interval-valued matrices. Our modeling of the measurement equation
does not come within this framework, so extending the singular value decom-
position approach would require reinterpretation of the concept of eigenvalues
and/or eigenvectors. Extending the expectation-maximization approach requires
an appropriate cost function and a generalization of the corresponding iterative
algorithm.

Thus, the global problem remains open. What we have proposed here is just
a convenient, effective and simple solution.
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