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Human-Humanoid Joint Haptic Table Carrying Task with Height

Stabilization using Vision

Don Joven Agravante1, Andrea Cherubini1, Antoine Bussy1,2 and Abderrahmane Kheddar1,2

Abstract— In this paper, a first step is taken towards using
vision in human-humanoid haptic joint actions. Haptic joint
actions are characterized by physical interaction throughout
the execution of a common goal. Because of this, most of the
focus is on the use of force/torque-based control. However,
force/torque information is not rich enough for some tasks.
Here, a particular case is shown: height stabilization during
table carrying. To achieve this, a visual servoing controller
is used to generate a reference trajectory for the impedance
controller. The control law design is fully described along
with important considerations for the vision algorithm and a
framework to make pose estimation robust during the table
carrying task of the humanoid robot. We then demonstrate all
this by an experiment where a human and the HRP-2 humanoid
jointly transport a beam using combined force and vision data
to adjust the interaction impedance while at the same time
keeping the inclination of the beam horizontal.

Index Terms— Physical Human-Robot Interaction, Human
and humanoid skills/cognition/interaction.

I. INTRODUCTION

Humanoid robotics focuses on the design of robots directly

inspired by human capabilities. This design gives many

advantages when working together with humans in perform-

ing tasks. Because of this, humanoids are ideal research

platforms for physical Human-Robot Interaction (pHRI).

Typically, humans have extensive experience in physically

collaborating with each other. Humanoid robots simplify

such interactions, since they possess a human-like range

of motion and sensing capabilities. These can be used to

create suitable behaviors, reducing the need for the human

cooperator to learn how to interact with the robot. Although

this goal is clear, many challenges are still present in the

various research areas. The particular focus of this work is

in the integration of visual servoing in pHRI, specifically in

human-humanoid collaborative tasks.

Early work on human-humanoid collaboration was done

in the Humanoid Robotics Project (HRP), where the HRP-2P

humanoid cooperates with a human for a panel transportation

task [1]. Here, vision was used to recognize the panel to be

grasped. However, this is different from the topic of this

paper. Grasping the panel is an interaction of the robot and

the panel only. It does not physically involve the human.

The focus of the work here is on using visual information

during the carrying task where both human and robot already
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grasped an object on opposite ends and are moving it

together. This task has two important aspects:

1) both robot and human are doing jointly the same task,

2) a haptic interaction exists.

A haptic interaction is said to exist since forces applied by

one agent (either human or robot) are felt by the other (indi-

rectly through the object). These two conditions characterize

“human-robot haptic joint actions”. In this research area, the

main goal is to regulate the interaction forces for safety and

make the robot proactive in helping the human [2], [3]. Since

physical interaction is the focus, most works in this field use

data from force/torque sensors only to do the task.

Recent advances on human-humanoid haptic joint actions

are presented in [4], [5], where the HRP-2 carries a ta-

ble/beam with a human. This was done by first studying

human-human dyads to try and understand how they coop-

erate for such a task [4]. These observations were exploited

to achieve a proactive behavior, using impedance control [6],

which can enable the robot to be either leader or follower

in the task [5]. Both works: [4], [5] are achieved using only

haptic information. To build on these results, we propose the

additional use of visual information during the task.

Vision brings a lot of new information that cannot be

obtained from force/torque sensors. For example, informa-

tion about object motion and human gestures/pose may be

acquired. However, the integration of such information into

human-robot haptic joint actions is not straightforward. The

main issues are: what information would be helpful? how

can this information be reliably obtained in the context of the

task and platform? and how/where should this information

be used? Since the priority should still be interaction force

regulation, the last issue is particularly important and implies

the need for combining vision with force data.

In this paper, a first step to incorporating vision is pre-

sented using a particular case of “human-humanoid haptic

joint action”: carrying the table/beam together while keeping

it horizontal. In fact, in [4], [5] the height at which the HRP-

2 holds the table is kept constant, with no regard for how

the human holds the table at the other end. However, it is

desirable to keep the table horizontal to avoid any objects

on top from sliding. The other aim is that the robot should

be the one to adjust to the human when s/he is leading the

task. The strategy here is using vision to observe the table’s

inclination and then visually servoing the height in order

to correct this. This is done while regulating the interaction

forces by using impedance control.

Another interesting thing about the height control task

is that it is observable by both vision and force/torque



sensors. Although the topic here focuses on using vision,

this opportunity is taken to compare the force and vision

data observed (in the context of this task only).

To start detailing our contribution, the task of human-

humanoid table carrying is formally defined in Section II.

The same section also presents the simplified model to be

used in controlling the height. In Section III, the important

concepts of the controller framework developed in [4], [5]

(which are still used here) are recalled. The main discussion

of the vision algorithm used in estimating the table inclina-

tion is given in Section IV. Section V describes how this data

is used for height control. The results on the actual humanoid

(HRP-2) are then presented in Section VI also showing the

comparison with force data. Finally, Section VII concludes

and outlines some future works to be done.

II. TASK DEFINITION AND MODEL

Fig. 1 illustrates the task, with the reference frames and

naming convention used in the rest of this paper. The vectors

composing the Cartesian frames are color coded: Red-Green-

Blue corresponding to (~x, ~y, ~z) respectively.

Fig. 1. Human-humanoid table/beam carrying task with the reference
frames used in task modeling.

Six degrees of freedom (DOFs) of the table frame {t}
are available to be controlled. For example, a local frame

{l} can be used as a reference. In this work, {l} is defined

such that it moves (only in a planar direction) together with

the robot as it walks. Its z-axis points the opposite direction

of gravity and the x-axis is directed toward the table, as

shown in Fig. 1. The table can then be controlled with the

3 translations l(X,Y, Z)t and the rotation about each axis
l(φx, φy, φz)t. These are controlled using the humanoid’s

right and left hands {rh} and {lh}. However, the task is

constrained by the fact that human and robot collaborate in

controlling the table from opposite ends. Another constraint

is due to the robot’s rigid grasp of the table. Therefore, the

homogeneous transformation matrices rhTlh, tTlh and tTrh

are all assumed to be constant throughout the task. This

allows the arbitrary definition of a “control frame” {cf} from

which the pose of the two hand frames can be derived.

Because grasping points are predefined, a convenient def-

inition of the control frame origin is the midpoint of the

two grasp poses such that the translation, cftlh = −cftrh =
[0 ty 0]⊤, where ty is half the distance between the hand

frames origins. A further simplification can be done by

setting identical orientations for the three frames (hands and

control frame): cfRrh = cfRlh = I3. This also corresponds

to the illustration in Fig. 1.

The works in [4], [5] present a method to control the pose

(position and orientation) of the control frame. However, only
l(X,Y, φz)cf are actively controlled (similar to an object

moving in a plane) while leaving the remaining 3 DOFs

compliant. The method for controlling lZcf is the main

subject of this work and is left for the next sections. In fact,

controlling the 2 remaining DOFs l(φx, φy)cf does not fit

with the task of keeping the table horizontal. For example,

let the task include maintaining the rotations φx = 0 and

φy = 0 (both are consistent with the task of keeping the table

horizontal). If the human decides to tilt the table sideways

(rotating φx), s/he will induce some positive angular velocity

ωz > 0. To maintain the orientation, the robot needs to

impose −ωz . In this case, the human and robot apply

opposite torques at opposite ends of the table. This causes a

torsion on the table, making it uncomfortable for both and,

in the worse case, breaking the table and causing harm to

both human and robot. Therefore, to avoid this ambiguity,
l(φx, φy)cf are left compliant, as in [4], [5]. For a cleaner

notation, the reference frames may be left out in some cases.

But it follows from the explanation here that the position of

{cf} is controlled, using {l} as a reference.

Since control of lZcf is the main subject here, an appro-

priate model of the task is needed. A simplified model is

preferred in this work and illustrated as follows.

Fig. 2. A simplified “thin beam” model used to control the table height

Fig. 2 shows a simplified diagram of the task, along with

the important variables to be used in the next sections. The

variable to be controlled is Zr, which is the height difference

between how the robot holds the table and how the human

holds the other side. It can be transformed into lZcf by taking

into account the location of {l}. Ideally, Zr = 0 needs to

be imposed. However, it is difficult to observe Zr directly.

Instead, θ is used, which is the inclination of the table with

length lt. It is shown later that knowledge of lt is not required

in the final control law.

This simple model does not take into account either human

or robot holding the table/beam. There are two conditions

that make the simple model valid. Firstly, both the human and

humanoid must be compliant (to some extent) when handling



the table together. Otherwise, rigid constraints need to be

taken into account with a more complex model (for example:

an arc motion where the table pivots at the point where the

human holds it). On the humanoid side, the compliance is

achieved with the impedance controller which is described

in the next section. Secondly, it is assumed that the velocity

of both human and robot is limited, so that the compliance

can cope with the motion. In practice, this implies that a

velocity limit is imposed on the humanoid motions.

III. CONTROLLER FRAMEWORK

Before going into details, an overview of the methodology

is presented. Fig. 3 shows a simplified diagram of the

control framework along with the two main abstraction lay-

ers: an impedance controller and the Stack-of-Tasks. These

are briefly described in the corresponding subsections. The

innermost robot (motor) control is outside the scope, but it

controls the robot through a desired joint control input q.
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Fig. 3. A simplified block diagram of the control framework

A. Impedance Control

Impedance control is a method for regulating the contact

interaction of a robot with its environment [6]. The general

equation is:

f = M(Ẍd − Ẍ) +B(Ẋd − Ẋ) +K(Xd −X) (1)

where f is the wrench (force-torque screw) composed of the

force and torque vectors. The vectors Xd, Ẋd and Ẍd are

the desired position, velocity and acceleration respectively.

Correspondingly, vectors X, Ẋ and Ẍ represent the actual

position, velocity and acceleration. Finally, matrices M,B
and K are the inertia, damping and stiffness parameters that

define the desired virtual mass-spring-damper system [6].

In this work, we use an “admittance controller” which is

also described by Eq.(1), but takes as inputs the “desired”

values Xd, Ẋd, Ẍd and f (from the sensors in the wrists).

The robot is then controlled by X, Ẋ, Ẍ – the “actual”

values. Furthermore, M,B,K are tuned from experiments.

As explained in the previous section all control is done on

{cf} with {l} as the reference.

B. Stack-of-Tasks

The Stack-of-Tasks is a generalized inverse kinematics

abstraction layer [7]. As its name implies, the main advantage

it gives is the hierarchical organization of different tasks to

be executed. This allows efficient integration and abstraction

of the different humanoid robot tasks. The complete table

carrying task described here can be roughly decomposed

into the following: grasping and lifting the table, stable

walking [8], maintaining a good posture (while walking and

carrying the table) and avoiding joint limits.

IV. INCLINATION ESTIMATION FROM VISION

As explained previously, with the simplified model of

Fig. 2, vision is used to estimate θ – the inclination of the

table. This is used as an error signal for the table height

controller, described in Section V. Furthermore, in order

to increase the vision processing algorithm, we use only

one from the HRP-2’s four IEEE1394 embedded cameras.

Because of the viewpoint, θ cannot be directly observed on

images taken from the HRP-2 and must be extracted from 3D

data. Although a variety of ways to extract this 3D data exist,

a fast visual tracker is preferred here, and briefly discussed

in the first subsection. The following subsections describes

the tracker, how it is made more robust to handle walking

and finally how θ is derived from the tracker.

A. Visual Tracking

Visual tracking is used to obtain the pose of an object

resting on the table (e.g., the cube of Fig. 1 with frame {o}
linked to it). The pose is represented by the homogeneous

transformation matrix cTo where the camera frame {c} is the

reference. Frame {o} is defined so that its z-axis corresponds

to the vector normal to the table/beam (see Fig. 1 and 2).

This vector forms angle θ with the z-axis of frame {l}.

A comprehensive review of monocular visual tracking

methods is given in [9]. From the many available methods,

the virtual visual servoing approach is used here for tracking

and pose estimation [10]. This method relies on a model-

based edge tracker, and is available as part of the visual

servoing software library – ViSP [11]. It works by first

initializing the projection of the object model onto the image.

The edges are then tracked throughout the image, and a

robust optimization process is used to obtain cTo from fitting

the tracked edges onto the model [10]. A visualization of

a typical result (cTo) is shown in Fig. 4 (left and middle

images). Fig. 4 also shows, in the rightmost image, how

edges are tracked in the normal direction [10].

B. Adding Robustness to the Visual Tracker

Reliability can be an issue for visual tracking and even

state-of-the-art algorithms can fail [9]. This uncertainty is a

problem, especially if its output is to be used for control.

Therefore, precautions are taken here to prevent this. A

known platform-specific problem in humanoid robots is the

motion induced by walking. The effect on the image is a

characteristic oscillatory motion [12], [13] (shown in our

results video). Furthermore, impact forces resulting from



Fig. 4. Typical result of the visual tracker. The full image is at the left. The
middle image is a zoomed-in portion bordered by blue with the projection
of the cube’s model in red, and the object frame in green. The right image
shows how edges are tracked.

the walk can cause significant blur on some images. These

problems make it necessary to add robustness to the tracker.

Although it is possible to model the cause of these

problems (walking) and compensate for it directly [12], [13],

a more general approach is taken here that can handle other

unforeseen disturbances. More specifically, a fault detection

and tracker reinitialization process is implemented. This

method is also advocated in [9] as a possible future trend,

since all trackers can fail given a difficult enough condition.

The first requirement is an ability to detect a fault. The

covariance matrix of the tracker optimization process is used

as a “measure of goodness”. A “fault” condition arises if

var > thr where var is the variance vector (diagonal

elements of the covariance matrix) and thr is a threshold

vector that is manually tuned off-line by observing the tracker

results from a typical image dataset. When 1 or more of the

vector values is at fault, the tracker is reinitialized.

The next requirement is a reinitialization procedure using

a good guess of cTo. The reinitialization itself is trivial and

a method is already provided in ViSP. The main problem

is estimating cTo. A tracker failure often indicates that

the assumption of continuity between images is invalid.

Therefore, the data for reinitialization must come mainly

from the current image. Another important consideration

is the runtime. Obtaining a guess for cTo should be fast

enough, so that continuity towards the next images can be

safely assumed. Therefore, speed is chosen over generality.

To start, the object needs to be detected in the current

image. This is done quickly by thresholding and applying a

sliding window for optimal detection. For thresholding, the

hue space is used because the object used in this work has

a distinct color. To speed up sliding window detection, the

concept of image-pyramids is used, with “coarse detection”

in a smaller scale version of the image. The result is used for

successively “finer” detections up to the original image size.

This results in a good localization in image space I(x, y)
where x and y are normalized image locations such that:

x = cXo/
cZo y = cYo/

cZo,

with c(X,Y, Z)o the Cartesian coordinates of the object {o}
in the camera frame {c} (see Fig. 1). A correct pose at the

previous iteration t−∆t (∆t is the control time step) can be

used as a guess for the object orientation cRt−∆t
o and depth

cZt−∆t
o , so that the new pose, at the current iteration t, is

defined as:

ctto =





xt · cZt−∆t
o

yt · cZt−∆t
o

cZt−∆t
o





cRt
o = cRt−∆t

o .

Although this new pose is imperfect, it is a good guess for

reinitializing the tracker. Furthermore, the assumptions used

fit with the table carrying task done by a humanoid robot,

namely: the depth to the object cZo is fairly constant, the

rotation of the object is minimal and most of the perturbation

from walking results in a perturbation in image space I(x, y).
Lastly, another covariance check is done after the tracker is

reinitialized. In the event that even the reinitialization fails, a

failure signal is produced such that the visual servo controller

also stops thus preventing any erroneous motions. This is

more of a safety measure, since the tracker reinitialization

worked well throughout the experiments.

C. Calculating Inclination

Referring back to Fig. 2, θ is defined using {l} as the

reference. However, visual data gives cTo and as such a

change of frame is needed:

lTo = lTh
hTc

cTo. (2)

hTc is the pose of the camera in the robot’s head frame.

It is a constant matrix obtained from an off-line camera-

robot calibration procedure. The pose of {h} in the local

frame (lTh) is available from proprioception. θ can then be

extracted from the rotation matrix of lTo, lRo by

θ = arctan(−r13, r33) (3)

where rab is the element at row a column b of lRo. Eq.(3) is

obtained from the relationship between axes that a rotation

matrix represents. The z-axis of {o} is the column vector

where b = 3, since {l} is the reference, the important

components are in the x-axis (a = 1) and z-axis (a = 3). The

final result θ, is only dependent on the rotations of Eq. (2)

and the program implementation can be optimized as such.

Furthermore, only results where −π
2

< θ < π
2

are considered

valid. The limits correspond to the table being fully vertical

and provide another safety measure.

V. VISUAL SERVOING OF INCLINATION

Visual Servoing [14] enables the direct use of visual

information in the controllers. It has also been successfully

used together with impedance control achieving good results

in [15], [16]. Thus, the approach here is to design a visual

servo controller to generate the desired reference trajectory

of the impedance controller: Xd in Eq. (1). The trajectory is

properly generated since the impedance controller (200Hz)

has a significantly faster loop rate than vision (15 fps).

To start the design, the error e needs to be defined. Fig. 2

shows that θ, the angle between the table normal and the

vertical is suitable such that: e = θ − θ∗, where θ∗ denotes

the desired value of θ. To define a task that keeps the table

horizontal, θ∗ = 0 making e = θ. The vision algorithm to

estimate θ was described in Section IV. The design of the



control law to drive e to zero is shown here. To continue, a

suitable model of the task is needed. This model is obtained

from Fig. 2 by trigonometry:

lt sin θ = Zr (4)

Eq. (4) relates the observed angle θ to the height difference

(Zr) and the table length (lt). Differentiating with respect to

time and rearranging the terms results in

θ̇ =
Żr

lt cos θ
(5)

Eq. (5) is the model of the system and the controller can

be derived from this. If, for example, an exponential decrease

of the error is desired, it must be ė = θ̇ = −λθ. Since the

table length lt is constant, it can be considered as part of the

gain parameter λ. The control law then becomes:

Żr = −λθ̂ cos θ̂, (6)

where θ̂ represents the estimate of θ. If the estimation is

perfect (θ̂ = θ), plugging (6) into (5) yields: θ̇ = − λ
lt
θ. This

shows that lt contributes only to the convergence speed, and

as mentioned it is not necessary to know its value. It only

affects the tuning of the gain λ.

To use this result in the impedance control framework, Żr

is numerically integrated such that Zr at the current digital

time step is obtained as: Zt
r = Zt−∆t

r + Żt
r∆t. Lastly, a

constant velocity is assumed throughout the time step such

that Z̈r = 0. The results here (Zr, Żr, Z̈r) are then used as

the Z part of Xd, Ẋd, Ẍd in the impedance controller, taking

into account the difference in reference frame (i.e. {l} and

{cf} mentioned in Section II.

VI. RESULTS

Several experiments were performed. Some of these are

shown in the accompanying video, which also shows the

tracker result (while the humanoid is walking) at the be-

ginning. The first is the simplest involving just the arms

of the robot standing in place. Next the HRP-2 is made to

walk in place, introducing the perturbations from walking.

Finally a full experiment is done showing that the work

here integrates well to the previous works [4], [5]. Fig. 5

shows some qualitative results taken from the accompanying

results video. The top pictures show the first test (standing in

place). The bottom pictures show the 3rd test with the robot

walking together with the human. Early experiments show

that holding the table too high while walking can cause the

robot to fall down because of the human’s pulling force. This

can be explained by the fact that more torque is applied on

the humanoid since the lever arm is effectively increased the

higher the table is held. So the experiments shown here are

with a limit to the Z motion to prevent this.

To verify the controller design, a step response of the

error (θ) is obtained from an experiment where the human

holds his/her end steady with Zr 6= 0 at the beginning

(Fig. 5 top left). The controller is then activated and the robot

corrects the height difference, ending at Fig. 5 top right.

θ for this sequence is plotted in Fig. 6 (left). This result

Fig. 5. Image results: top left - before vision control is activated, top right
- result after the vision controller is activated, bottom left and right - results
while walking with the robot and changing table height

shows an exponential decrease (although with some noise

and noticeable latency of the vision algorithm), implying that

the implementation follows the design.

Fig. 6. Step response of the vision controller. Left: Plot of the error (θ).
Right: Plot of lZcf

As mentioned before, some correlation is observed on the

force/torque sensor data and the task of controlling Z. Some

preliminary experiments were done to examine the data that

can be obtained: moving the table (on the human side) up

and down, with some pause in between. The most correlated

data are the force fz and torque τy (subscripts referring to

axes in {l}). This data is plotted in Fig. 7 (top). Red lines

signify 2 of the transitions when the human moves the other

end up/down. Although there is a clear correlation, the data

is noisy and there is a bias that is difficult to account for.

Finally, the force/torque data is compared with vision data

(θ). In Fig. 7 (bottom) the up/down motion is apparent in

the raw vision data, but not the raw force/torque data. The

advantage of force/torque data is that it is obtained with a

higher rate. However there is more noise. It should be noted

that additional work can be done to process the raw data (i.e.

filtering) before concluding which is better, but this is outside

the scope of this paper and left for future works (along with

possibly fusing both vision and force data). Although θ from



vision shows to be good from coarse measurements, a future

work is to compare the vision data against a more accurate

measuring device which can be considered as ground truth.

Fig. 7. Data from force/torque sensors. Top: Plot of fz and τy showing
correlation to table inclination from preliminary experiments. Bottom:
Comparison of force/torque data with vision (θ)

VII. CONCLUSION AND FUTURE WORK

In this paper, height stabilization for a human-humanoid

table carrying task is presented. We decoupled the control

into two orthogonal spaces. The first one is the main focus

of this work: it uses visual servoing to define a reference

trajectory for the impedance controller. This compensates

for the table/beam’s eventual inclination which is estimated

from a visual pose estimate. The second one regulates the

interaction between the human and the humanoid during the

transportation of the table/beam. Real experiments conducted

with the HRP-2 humanoid robot were successful and show

the pertinence of our approach and its implementation.

Yet, our goal behind this early endeavor is to incorporate

vision into human-humanoid haptic joint actions control

and planning. This work shows results in the integration

of visual servoing directly into the control level (although

in a decoupled way). It might be interesting to actually

merge vision and force in a unified way. However, the

overall work is not limited solely to the control level.

Adding vision into the cognition level will offer interesting

perspectives in investigating the synergy with force/torque

data and the incorporation of vision data in multiple levels

of the task (i.e. low-level control and high-level cognition).

This includes human posture interpretation that can offer a

better understanding by the robot of its the human partner’s

intention and behavior. Moreover, our task will evolve in

complexity along time: the cube will be replaced by a moving

object or pot full of liquid that must be kept on the table

during walking. This will certainly call for revisiting the

walking pattern and the stabilizer to account for walking and

equilibrium in human-humanoid haptic joint actions.
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