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Abstract— usually a software product line (SPL) is developed
by exploiting available resources of a set of software variants
that deem similar. In order to reengineer such variants that
are developed by ad-hoc reuse into software product line that
are developed by systematic reuse, it is necessary to identify
traceability links between features and source code in a
collection of product variants. Information retrieval (IR)
methods are used widely to achieve this goal. These methods
handle product variants as singular entities. However when
product variants are considered together, we can get additional
information that improves IR results. This paper proposes an
approach to improve IR results when they are applied to
identify traceability links in a collection of product variants.
The novelty of our approach is that we exploit commonality
and variability across product variants at feature and
implementation levels to apply IR methods in efficient way.
The obtained results proved that our approach significantly
outperforms direct applying IR technique in conventional way
in term of precision and recall metrics.

Keywords- Traceability links, features, source code, object
oriented, variability, software product line, latent semantic
indexing, product variants.

L INTRODUCTION

SPL aims to reduce development cost and time by
producing a family of software products at a time. According
to software engineering institute (SEI) definition, a SPL is
“a set of software-intensive systems sharing a common,
managed set of features that satisfies the specific needs of a
particular market segment or mission and that are developed
from a common set of core assets in a prescribed way” [3].
Usually SPL is developed by exploiting available resources
of a set of software variants that deem similar to build SPL
core assets. Such resource includes: source code, design
documents, features and so on [8].

Software product variants represent a set of similar
products that are developed by ad-hoc reuse techniques such
as “clone-and-own”. These variants share some features and
also differ in others to meet specific needs of customers in a
particular domain. For example, Wingsoft Financial
Management System (WFMS) was developed for Fudan
University and then evolved many times so that all evolved
WEMS systems have been used in over 100 universities in
China [5].

At first glance, clone-and-own technique represents an
easy and fast reuse mechanism so that it provides the ability
to start from existing already tested code and then making
required modifications to produce a new variant. However
when number of product variants and features grows, such

ad-hoc reuse technique causes critical problems such as:
maintaining efforts will be increased because we should
maintain each variant separately from others, and sharing
features in new products will be more complicated. When
these problems accumulate, it is necessary reengineering
product variants into a SPL for systematic reuse.

The first step in this reengineering process is to identify
source code elements that implement a particular feature
across product variants. This mapping between features and
corresponding source code elements is known as traceability
links.

The identified traceability links can be used to facilitate
products derivation process from SPL core assets, find
dependency  between  features, facilitate  program
comprehension process and also no maintenance task can be
completed without identifying source code elements that are
relevant to the task at hand[11].

Numerous approaches that are based on IR techniques
have been proposed to identify links between source code
and features [6]. These approaches handle product variants
as singular entities (one product at a time). However when
product variants are considered together, we can get
additional information that can help to improve IR
techniques results. This information is about commonality
and variability across product variants at feature and
implementation levels.

In this paper, we propose new approach to identify
traceability links between object oriented source code of a
set of product variants and given features of these variants
using latent semantic indexing (LSI). Our approach aims to
divide LSI search space at feature and implementation levels
for each variant into two partitions (or subspaces): common
and variable partitions. At features level, common partition
represents a set of features that are shared by all variants
(common features) while other features in the same variant
represent variable partition (optional features). At
implementation level, common partition refers to source
code elements that realize common features while other
implementation in the same variant represents variable
partition that realize optional features. Source code elements
implementing common features are called common source
code elements while source code elements implementing
optional features are called variable source code elements.
The intuition behind this dividing process is to isolate
common features and their corresponding code in each
product variant. Consequently, we can also isolate optional
features and their corresponding code in each product
variant. The experimental results show that our approach
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gives promised results comparing with applying LSI in
conventional way (a variant as atomic chunk).

The remainder of this paper is organized as follows.
Section 2 presents background and related work. Section 3
presents our approach. Section 4 shows experimental results
and evaluation. Finally, Section 5 presents conclusion and
future work.

II.  BACKGROUND AND RELATED WORKS

This section describes LSI and traceability links in
software engineering, and discusses related works.

A. Traceability Links

Traceability is the ability to describe and follow the life
cycle of an artifact (requirements, design models, source
code, etc.) created during the software life cycle in both
forward and backward directions [13]. Traceability relations
can refer to overlap, satisfiability, dependency, evolution,
generalization/refinement,  conflict or rationalization
associations between various software artifacts. In general,
traceability relations can be classified as horizontal or
vertical relations. The former type refers to relation among
artifacts at different levels of abstraction (e.g. between
requirements and design) and the latter type refers to relation
among artifacts at the same level of abstraction (e.g. among
related requirements) [14].

Identifying traceability links among software artifacts at
different levels of abstraction of product variants provide
important information about development and maintenance a
SPL. Such traceability is useful to derive concrete products
from SPL core assets.

B. LSIin Software Engineering

Several IR methods exist such as: probabilistic method
(PM), vector space method (VSM) and LSI [15]. All of
these methods assume that all software artifacts are in textual
format. In each method, one type of software artifact is
treated as query and another type of artifact is treated as
document. IR methods rank these documents against queries
by extracting information about the occurrences of terms
within them. The extracted information is used to find
similarity between queries and documents. In the case of
recovering traceability links, this similarity is exploited to
recover traceability links that might exist between two
artifacts, one of them is used as query.

LSI is an advanced IR method. The heart of LSI is
singular value decomposition technique (SVD). This
technique is used to mitigate noise introduced by stop words
like (the, an, above, etc.) and to overcome two classic
problems arising in natural languages processing: synonymy
and polysemy. The intuition behind SVD is rather complex
to be presented here and see [16] for further details.

We chose LSI because it already has positive results to
address maintenance tasks such as concept location [15],
detection in software [17], and recovery of traceability links
between source code and documentation [1].

C. Related Works

A comprehensive survey about techniques that have been
proposed to identify source code elements relevant to a
feature can be found in [9]. These techniques depend on
static, dynamic or textual analysis, or a combination of these.
Static analysis examines structural information such as
control or data flow. Dynamic analysis relies on execution
trace according to scenarios related to specific feature(s).
Finally, textual techniques examine words in source code
using IR methods. All these techniques identify traceability
links between source code and corresponding features in a
single product while our approach considers a set of product
variants. The following works represent the most relevant
works to us.

Ghanam et al. [4] have proposed a method to keep
traceability links between feature model (FM) of a SPL and
source code up-to-date. When SPL evolves, the traceability
links become broken or outdated due to evolution at features
and implementation levels. Their method is based on
executable acceptance tests (EAT). EAT refers to English-
like specifications (such as: scenario and story tests).These
EATSs represent the specifications of a given feature and can
be executed against the system to test the correctness of its
behavior. Their approach starts from already existing links
to make them up to date while our approach is differ from
this work where we start from scratch and assume that no
already existing links.

Rubin et al. [12] focused on locating distinguishing
features of two product variants realized via code cloning.
Distinguishing features mean those features that are present
in one variant and absent in another. Their approach relies on
capturing the information about unshared part of the code
between two products. This unshared part can be obtained by
comparing a variant’s source code that has the features of
interest to another one that does not has. The distinguishing
features between to variants reside on this unshared part of
code. Their work aims at isolating source code that
corresponds to distinguishing features and then apply feature
location techniques in efficient way. However, if the number
of distinguishing features is large their approach becomes
infeasible because in this case we map a large number of
features with a large part of code.

III. THE PROPOSED APPROACH

In this section, we describe input data of our approach;
discuss how to divide each variant at feature and
implementation levels into two partitions and how to apply
LSI for recovering traceability links.

A.  An lllustrative Example

Consider a collection of four variants of text editor
system as shown in table 1 below. The initial product in this
collection is T_Editor_V1.0. It supports just core features
for any text editor such as: open, save and create a file. The
initial product is enhanced to be T_Editor_VI.1 by adding
search and text edit features. T_Editor_VI1.2 is another
enhancement of initial product. T_Editor_V2.0 is an
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advanced variant of text editor. It supports all previous
features in addition to replace feature.

Tablel. Features Set of Four Text Editor Variants.

Product Name Features

T_Editor_V1.0 | Core (Open, Save, Create).

T_Editor_V1.1 Core, Search, Edit.

T_Editor_V1.2 | Core, Print, Edit.

T_Editor_V2.0 | Core, Search, Edit, Replace, Print.

B. Input Data

Our approach takes object oriented source code of a set
of product variants and a given set of features of these
variants as input (like table 1). Each feature is identified by
its name and description. Feature description is a natural
language description. This information about feature
represents a domain knowledge that is usually available
from product variants documentation. In our work, feature
description consists of small paragraph or some sentences.

C. Feature versus Object-Oriented Elements

In the literature, there are many definitions of feature. In
this work, we rely on the following definition: a feature is a
prominent or distinctive user-visible aspect, quality, or
characteristic of a software system or systems [19]. We
adhere to the classification given by [18] which
distinguishes three categories of features: firstly, functional
features express the behavior or the way users may interact
with a product. Secondly, interface features express the
product’s conformance to a standard or a subsystem.
Finally, parameter features express enumerable, listable
environmental or non-functional properties. In our work, we
deal with functional aspects of features where functionalities
are grouped together into at a high level of abstraction to
form features.

As there are several ways to implement features [7], we
assume that functional features either common or optional
are implemented at the programming language level. Thus in
an object oriented source code, functional feature can be
implemented by different object oriented building elements
(OOBEs). OOBEs include packages, classes, methods,
attributes, etc. A feature has coarse granularity elements
when its implementation consists of high level building units
such as: packages, classes and interfaces. On the other hand,
a feature is fine-grained when its code is composed by lower
level units, such as methods, attributes, statements. In our
work, we consider that a feature is realized at
implementation level by a set of classes because the class
represents a main building unit in any object oriented
language.

D. Identifying Common and Variable Partitions at Feature
and Implementation Levels For Each Variant

The goal of our approach is to reduce LSI search space as
much as possible at feature and implementation levels. The

Common Code
Elements
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~— Source Code Elements
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Package

=T

< IHI

Method
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Variable Code |1.* 1.%| Variable
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Figurel. Feature-Source code mapping model in product variants.

underlying intuition behind this goal is to map less features
to less implementation in order to apply LSI in efficient
way. In our previous work published in [22], we deal with
product variants as a collection and divided this collection at
feature and implementation levels into two partitions
(common and variable partitions). At feature level, common
and variable partitions represent common and optional
features across product variants respectively. At
implementation, common and variable partitions implement
common and optional features respectively. During this
current work, we will divide each product variant at feature
and implementation levels into two partitions considering
variability and commonality distribution across product
variants.

Presence or absence a feature in product variant should be
reflected in the implementation by presence or absence
corresponding source code elements. Thus, we proposed an
approach to divide each product variant at feature and
implantation levels into two partitions as follow:

1) At Feature Level

We rely on lexical similarity of feature names and
descriptions to determine common features across product
variants such as core features in our illustrative example
(open, save and create).

Algorithm1: ICFeatures.

Input:features sets of product variants PVF = { PF,,...,PF,}.
Output:common features (Fj,).

1: F,, :=PF,

2: for i:=2 to length [PVF] do
3: F,.:=F,,n PF;

4: return F,

For a set of features of set of product variants, our
approach firstly defines a subset of same name features (F\,)
according to given above ICFeatures algorithm. ICFeatures
takes as input sets of features of product variants (PVF) and
return common features (Fy,). PVF represents a multiset
data structure where each set corresponds to specific
product variant. For instance, PF; corresponds to product
variant]l features. Step three compute shared features by
conducting an intersection among all product variants
features.
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A feature may be renamed to response changes in
software environment or the adoption of different
technology [2]. Our approach considers this issue into
account by computing lexical similarity pair-wisely for
those features that don’t have same name based on longest
common subsequence (LCS) of their feature descriptions
[21]. For example, for two features f; and f, where f,€ PF},
€ PF, and f;.name # f>.name, if LCS for description of f;
and f; has the same subsequence terms we can consider f;
and f, represent the same feature.

By identifying common features across product variants,
the rest features in any variant represent optional features. In
our illustrative example, core features are common features
across product variant while search and edit features
represent optional features in 7_Editor_V1.1.

2) At Implementation Level

Our approach analyzes source code of a set of product
variants itself. Source code for each product variant is
decomposed into a set of elementary construction units
(ECU). ECU considers packages and classes. ECU takes the
following format:

ECU = { Package.Name_Class.Name}.

This representation is inspired by the model construction
operations proposed by [20]. Each product variant P; is
encoded as a set of ECUs, i.e. P,={ECU,ECU,,...,ECU,J.
We can note that our ECU can appear any structural
changes at package and class levels. We call these changes
as variations levels in the source code. These variations can
reflect any changes at feature level (e.g. add or remove
features) directly in the implementation level by adding or
removing corresponding OOBE:s.

Algorithm2: IC_ECUs

Input:Set of product variants (AIIPV) abstracted as ECU.
AlIPV = {P,P,,....P,}.
Output:Common ECUs (C_ECUs)

1: C_ECUs =P,

2: for i:=2 to length [AlIPV] do
3: C_ECUs:=C_ECUs n P;

4: return C_ECUs

In order to identify common ECUs shared by all product
variants, we proposed above IC_ECUs algorithm. IC_ECUs
takes as input a set of product variants abstracted as a set of
ECUs and returns common ECUs (common source code
elements) across product variants. Step three compute
shared ECUs by conducting an intersection among all ECUs
of a set of product variants. These shared ECUs implement
common features.

By identifying common ECUs (C_ECUs) across product
variants, the rest ECUs in any variant represent variable
ECUs (V_ECUs). V_ ECUs represents variable source code

elements. In our illustrative example, if we consider that
T_Editor_V1.0 is implemented by {ECU,; ECU,} and
T_Editor_VI.1 is realized by {ECU,, ECU,, ECU;, ECU,,
ECUs}. Our approach reports that C_ ECUs = {ECU,,
ECU,} while V_ECU = {ECU3;, ECU,, ECUS5}.

E. Recovering Traceability Links By LSI

Domain knowledge and concepts are recorded in the
source code through identifiers. Thus, our approach uses
LSI for analyzing these elements to identify traceability
links between common features and common source code
elements (classes), and between optional features and
variable source code elements in each product variant. Our
applying of LSI is similar to [1]. It involves building LSI
corpus and queries.

1) Building LSI Corpus

Our approach depends on four steps to process source
code: (1) Identifiers extraction. (2) Tokenization. (3) Tokens
manipulation. (4) Determining document granularity.

Firstly, identifiers extraction needs a parser to extract all
source code information. During our work we used a Java
parser to build abstract syntax tree of the source code that
can be queried to extract required identifiers.

Secondly, identifiers must be tokenized. We considered
two commonly styles for identifiers: one is the combination
of words wusing underscore as delimiters (e.g.,
traceability_links); and the other is the combination of
tokens using letter capitalization for separation (e.g.,
TraceabilityLinks ). All identifiers that follow these rules
are tokenized into singular tokens (e.g., traceability links
for the above examples).

Thirdly, tokens are manipulated by reducing every token
to its root. For example, take, took and taken are reduced to
the same root fake. Finally, we choose each class to be a
separate document. A document contains lines of all
identifier inside a class.

After source code processing, each product variant (P) is
decomposed into a set of documents. These documents
represent LSI corpus.

2) Building Queries

In our approach, LSI uses feature name and description as
query to retrieve classes relevant to a specific feature. Our
approach creates a document for each feature. This
document contains feature name description, and it also is
manipulated likes source code. Our approach extracts tokens
from feature name and description. It uses white space and
punctuation marks as delimiters. Then it reduces every
token to its root.

3) Establishing traceability links

We feed LSI with documents and queries to build topic
model. LSI builds a vector of weights for each document
and query. Each weight represents a probability of
affiliation for a given document and a query to the same
topic. Then, LSI measures the similarity between queries
and documents using cosine similarity. It returns a list of
documents ordered based on their similarity against each
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query. In our work, we consider the most widely used
threshold for cosine similarity that equals to 0.70 [1], i.e.,
documents that will be retrieved have a similarity with a
query greater than or equal to the threshold value.

IV. EXPERIMENTAL RESULTS AND EVALUATION

In this section, we show the case study used for the
evaluation of our approach, present the evaluation metrics
and discuss the experimental results.

A. Case Study

We have applied our approach on a set of product
variants from ArgoUML modelling tool. These variants
represent members of ArgoUML-SPL' published in [10].
We generated four variants from ArgoUML-SPL as shown
in table 2 below.

The four variants provide two common features (class
diagram and cognitive support features) and seven optional
features (state, collaboration, usecase, activity, deployment
and sequence diagram features). The advantage of
ArgoUML-SPL is that it implements features at different
levels where features are implemented at package, class,
method and attribute levels. Preprocessor directives have
been used to annotate the source code elements associated to
each feature. This pre-compilation process allows us to
establish the truth links (real implementation for each
feature) to evaluate the effectiveness of our approach.

Table 2: Set of ArgoUML-SPL members.

Products Features

Productl | Class, cognitive, sequence, usecase, state,
activity.

Product2 | Class, cognitive, sequence, usecase,
collaboration, activity.

Product3 | Class, cognitive, collaboration, deployment,
state.

Product4 | Class, cognitive, state, activity,
collaboration, deployment.

B. Evaluation Measures

We have used two measures to evaluate our approach:
Precision and Recall. These measures are commonly used
to evaluate IR methods [1].

1) Precision

Precision describes the precision of retrieved traceability
links for a given feature. Precision is the percentage of
correctly retrieved links (classes) to the total number of
retrieved links. Equation 1 below represents precision metric
equation where i ranges over the entire features set.

Precision — Y.; Correctly Retrieved Links o
recision = Y, Total Retrieved Links

EQ(1)

Precision values can have any value in the interval [0, 1].
Higher precision values mean better results for the approach
that establishes traceability links.

! http://argouml-spl.tigris.org/

2) Recall

Recall quantifies number of relevant links that are
retrieved for a given feature. Recall is the percentage of
correctly retrieved links to the total number of relevant links.
Below given equation 2 represents recall metric equation
where i ranges over the entire features set.

¥; Correctly Retrieved Links
Recall = : %
¥; Total Relevant Links

EQ(2)

Recall values can have any value in the interval [0, 1].
Higher recall values mean better results for the approach
that establishes traceability links.

C. Performance of Our Approach

LSI associate related tokens into topics based on
their occurrences in the documents in a corpus. The
most important parameter to LSI is the number of topics that
should be used for topic-model building. We need enough
topics to catch real term relations. Too many topics lead to
associate irrelevant terms. Small number of topics lead to
lost relevant terms. According to Dumais et al. [23], the
number of topics is between 235 and 250 for natural
language. For a corpus of source code files, Poshyvanyk et
al. [24] recommended that the number of topics is 750.

In this work we cannot use a fixed number of topics for
LSI because we have different size of partitions. Thus, we
use a factor k between 0.01 and 0.04 to determine number of
topics. The number of topics (#topics) = k X docy, where
docy is document dimensionality of term-document matrix
that is generated by LSI. We evaluate the performance of
our approach for #topic at k= 0.01, 0.02, 0.03 and 0.04.

Figures 2 and 3 compare the precision and recall results
for our approach against applying LSI in conventional way.
The graphs A,B,C,D given in figures 2 and 3 corresponds to
Productl,Product2,Product3 and Product4 respectively.
The X-axis in the graphs represents the number of LSI
topics while Y-axis in the figures 2 and 3 correspond to
precision and recall respectively. It can be noticed that our
approach always gives a better precision and recall results
than applying LSI in conventional way.

The threat to the validity of our approach is that if
developers don’t use the same vocabularies to name source
code identifiers across product variants. This would means
that lexical matching at implementation level will be
effected. However, when a company has to develop a new
product that is similar, but not identical, to existing ones, an
existing product is cloned and later modified according to
new demands.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented an approach that uses LSI in
effective way to establish traceability links between the
object oriented source code of a collection of product
variants and a given features of these variants. Our approach
exploits variability and commonality distribution of product
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Figure 2. Precision results for our approach against applying LSI in
conventional way.
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Figure 3.Recall results for our approach against applying LSI in
conventional way.

variants to reduce features and implementation spaces such
that LSI can be applied in efficient way. The evaluation of
our approach with a collection of four ArgoUML-SPL
products showed that our approach significantly
outperforms applying LSI in conventional way according to
the precision and recall metrics.

In our future work, we plan to use existing

relationships between source code elements (e.g.,
method call, class inheritance and son on) to improve the
relevance of identified traceability links. This will require a
definition for semantic similarity measure between source
code elements.
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