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Abstract. In this paper we demonstrate the coupling of an autonomous
planning and control framework for whole-body humanoid motion, with
a brain-computer interface (BCI) system in order to achieve online real-
time biasing and correction of the offline planned motion. Using the
contact-before-motion planning paradigm, the humanoid autonomously
plans, in a first stage, its motion to reach a desired goal configuration
or contact location. In the second stage of the approach, the humanoid
executes the planned motion and the user can exert online some control
on the motion being executed through an EEG decoding interface. The
method is applied and demonstrated in a dynamics simulator with full
collision-detection on a model of the humanoid robot HRP2.

Keywords: Humanoid Whole-Body Control, Motor Imagery BMI,
Motion Planning.

1 Introduction

Within humanoid robotics research, one natural question that immediately pops
up in mind is the possibility of using the human brain motor functions to control
the motion of a humanoid robot, the same way the human does to control the
movements of their own body. This is basically the brain-machine interfacing
(BMI) problem, with the “machine” here being instantiated as a humanoid robot,
an intuitively natural hardware for implementing human brain motor control.
On the applicative side, brain-computer interface (BCI) systems provide
promising perspectives for assistive applications directed towards motion-
impaired users, enabling control of robotic prostheses or robotic assistants in
daily-life tasks, among which humanoid-designed ones are of particular inter-
est, since the non-expert user can easily be familiar with what to expect from
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a humanoid robot in terms of motion capabilities and general dexterity. More-
over, using legged humanoids allows to integrate them directly in a daily-life
environment that is designed for human activities and that accounts for human
motion capabilities, without requiring to adapt the existing environment to the
particular kinematics of the robot assistant.

These perspectives motivate our study. We propose to couple two components
that appear necessary to reach these goals, namely a motion planning and control
(MPC) framework for humanoid, with a non-invasive brain-signal measuring and
decoding system. We base our study on state-of-the-art works that had been
independently done on both ends, adapting them to allow their assembly as the
two building blocks of the proposed integrated framework (Fig. [I).

This coupling of humanoid controller with BCI system has been achieved
in previous works [I][2][3]. These works consider the problem from the follow-
ing angle: the humanoid with its black-box walking controller (walking pattern
generator) is seen as a mobile robot that can be commanded to walk forward,
backward, or to turn right and left in a 2D plan (it can even be an actual mobile
robot, ie. equipped with wheels rather than legs, in some of these works [4]), and
the BCI command is generally generated through visual stimulation techniques
(SSVEP [4][3][2] or P300 [1]).

We however chose to investigate alternative approaches from both ends. From
the humanoid MPC end, we do not target cyclic walking motion, but general
acyclic whole-body behaviours of which walking would be a particular instance.
By doing so, we are able to take full profit of the dexterous capabilities of the hu-
manoid design that initially motivate its use, for instance in climbing arbitrary-
height stairs or using obstacles as contact support to reach the goal. We achieve
this by exploiting our previously proposed multi-contact MPC paradigm for hu-
manoids [5]. From the BCI end, we generate the command signal with motor
imagery (MI) techniques rather than visual stimulation, which constitute the
state of the art in non-invasive BCI. In the present work, the MI decoding tech-
nique that we adapted from previous application on the control of one-DOF robot
and of standing-up/sitting-down motion of exoskeleton [6] allows to generate a
three-valued discrete command for a one-dimensional feature of the whole-body
motion, in this case the motion along a generalized notion of “vertical axis” of
the moving end-limb, such as the foot of the swing leg in a biped motion for
instance. However we believe, from recent and ongoing studies, that the MI ap-
proach can in the near future enable the control of a two-dimensional continuous
feature of the motion [7][g].

existing approaches for coupling the present paper proposed approach for coupling
visual-stimulation-based BCI |—»| id walkin
| : | id whole-body planner
h id manipulation/grasp o based BCI and controller /
[ visual-stimulation-based BCI_|— ller from high-level task [ oo e low-level whole-body motion
selection in menu control

Fig. 1. Overview of the two-component coupling framework
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The rest of this paper is organized as follows. The two components of the
framework, the MPC scheme for the humanoid, and the MI BCI decoding
scheme, are respectively recalled in sections 21 and [ section [ presents the strat-
egy we retained for coupled exploitation of these components in our applicative
perspective, and section Bl comments an illustrative experiment. Finally section [G]
concludes the paper.

2 Humanoid Whole-Body Motion Planning and Control

We recall our work on humanoid MPC [5]. The aim here is to autonomously
generate a whole-body motion of the humanoid that realises a desired task, thus
sparing the user the tedious task of designing the high-DOF motion and allowing
high-level (task-level) control, in line with state-of-the-art BCI capabilities.

Note that we do not make a priori assumption on the nature of the mo-
tion, e.g. cyclic walking, and thus the planning does not occur at path planning
level for a walking robot, nor at footstep planning level for an a priori biped
motion [9)[I0][I1] but rather at the high-dimensional configuration space level
of whole-body humanoid motion, including the free-floating component. Classic
approaches operating at this level for humanoids adapted randomized planning
techniques considering the humanoid with fixed foot locations as the fixed root
of its kinematic tree [12][I3][I4][I5]. Our approach merges these two planning
levels (footstep planning for cyclic walking, whole-body motion on fixed foot lo-
cations) and is classified within the contact-before-motion planning category [16].
The motion generation is done in two stages.

First, planning offline the sequence of changes in contact state with the en-
vironment, each of which is associated with an inverse-kinematics realizing con-
figuration [17]. By running a greedy best-first search algorithm on all possible
pairings (contacts) between a robot link surface and an environment surface to
be added or removed to the contact state being explored, we obtain our sequence.
See details in [I8][5].

In the second stage, an online controller tracks successively each of these in-
termediate postures (called a step), removing or adding a contact at each step. It
is formulated as a Quadratic Program (QP) optimization problem with weighted
tasks that are defined according to a finite-state machine (FSM) consisting of
two states: “Move CoM” state when removing a contact from the current stance,
and “Move Contact Link” state when adding a contact to the current stance.
See [19] for the detailed formulation of the QP and FSM states.

3 BCI Decoding

As non-invasive brain signal acquisition device we used an EEG system (64
channels and sampling rate of 2048 Hz). The brain signals are decoded and
classified using the method applied and presented in the previous work [6], based
on the spectral regularization matrix classifier [20][21], that we recall here.
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The EEG signals, of covariance matrices C considered as input, are classified
into two classes, labelled with the variable k, with respective output probabil-
ities (at sampled time t): P(k; = +1|Cy) = m, and P(k; = —1|Cy) =

% , with a; = tr[WTC,] + b, and where W is the parameter matrix to
be learned (b is a constant-valued bias).

To learn W the minimization problem min Y ;" ; In(1+exp(—kia;))+A|W]|1,
is solved, A being the regularization variable (A = 14 in the application below)
and |[W||y = Y_i_, 0;[W] being the spectral {1-norm of W (r is the rank of W
and o;[W] its i-th singular value).

Once the classifier learned, the 7-30 Hz band-pass-filtered measured EEG
signals are decoded online, by down-sampling them from 2048 Hz to 128 Hz, and
applying Lapace filtering and common average substraction to remove voltage
bias. Their covariance matrix, initialized at C; = x;'— x; for the first time step
t = 1, where x; € R'% denotes the filtered EEG signals, are updated at
every time step following C; = %x;rxt + %Ct,l , and used to compute the
classification probabilities above.

Finally, the three-valued discrete command c¢; that is sent to the robot is
selected from these probabilities through the following hysteresis (Pinresh = 0.6)

+1 if P(kt = +1|Ct) > Pthresh and Ct—1 # +1 s
Ct = -1 if P(k‘t = —1|Ct) > Pthresh and Ct—1 7& —1, (1)
0  otherwise.

4 Coupling the Two Components

The command ¢; devised in Eq. () is sent to the online humanoid whole-body
controller via UDP protocol at 128 Hz frequency and used to modify the planned
and autonomously executed motion of the humanoid robot as described below.

When the robot is executing a step that requires moving a link to a planned
contact location (state“Move Contact Link” of the FSM), then instead of track-
ing directly the goal contact location, we decompose the motion of the the contact
link into two phases: a lift-off phase in which the link first tracks an intermedi-
ate position located at a designated way-point, followed by a touch-down phase
in which the link tracks its final goal location in the contact sequence. This
two-phase decomposition allows the link to avoid unnecessary friction with the
environment contact surface and to avoid colliding with environment features
such as stairs. Each of these two phases correspond to a sub-state of the meta-
state “Move Contact Link” of the FSM, namely “Go to Way-point” and “Go to
Goal” states. Finally, in order to avoid stopping the motion of the contact link at
the way-point and to ensure a smooth motion throughout the step, the transition
between the two sub-states is triggered when the contact link crosses a threshold
plan before reaching the tracked way-point. For clarity of the presentation we
will not go into this detail.

A default position of the intermediate way-point is automatically pre-set by
the autonomous framework using the following heuristic: Let Py and P, denote
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Fig. 2. Way-point moving strategy. Only the swing foot is represented. In black its
initial position at the beginning of the step, in red its target final position as planned
at the end of the step, in blue its way-point position at mid-step. Left: a default position
is set for the way-point based on its final position. Middle: by sending the command c;
the user can bring up or down the position of the way point (in this case down). Right:
the resulting executed motion of the swing leg.

respectively the step start and goal positions of the contact link, g the gravity
vector, z = —g/||g|| the unit vector opposite to g, and u = Ps P, /|| PsP,|| the unit
vector from P, to P,. Finally let v = u x (2 x u) be the unit vector normal to u
and in the plan defined by uw and z. The way-point P, is defined as (see Fig. )
P, = P, — %FSIDZ + hwv, where h is the hand-tuned user-defined parameter
that specifies the height of the steps. The command ¢; that comes from BCI
decoding system is finally used to modify in real-time this way-point position P,
by modifying its height h. Let 6k denote a desired height control resolution, then
the modified position of the way-point through the brain command ¢; becomes

Po(cr) = Py — 2 PPy+ (h+céh)v ift=1, @)
W Py(ci_1) + ¢t 6hv ift>1.

The command ¢; could have been used in other ways, however two princi-
ples should stand in any BCI low-level control of humanoid motion 1) the full
detailed motion, that cannot be designed joint-wise by the BCI user, should
be autonomously planned and executed from high-level (task-level) command,
and 2) the brain command can then be used to locally correct or bias the au-
tonomously planned and executed motion. The way-point is a key-feature to be
controlled according to these two principles as it helps overcome the shortcom-
ings of the autonomous collision-avoidance constraint in the QP controller. This
collision-avoidance constraint acts as a repulsive field when the way-point of the
link acts as an attracting field of the contact link. The resultant field can display
local extrema corresponding to equilibrium situations in which the link stops
moving though without completing its tracking task. Manual user intervention,
here through the brain command, is then necessary to un-block the motion of
the link by moving the way-point. The brain command is thus used for low-level
correction of the inherent limitations of autonomous planning endeavours.
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5 Illustrative Experiment

We describe now the experiment we designed (Fig. Bl left) (and illustrative video
which can be downloaded at www.cns.atr. jp/~karim/iconip2013.wmv).

Fig. 3. Left: Experiment setup. Right: Initial and goal configurations.

An initial and goal configurations are pre-specified manually by the user
among a finite number of locations in the environment (Fig. 3, right). In this
case the initial configuration is standing in front of a stair and the goal task is
to go up on the stair. This selection is for now done manually, but it can later
be selected also through a brain command by embedding the strategy described
in this work within a hierarchical framework such as in [3][4], that will switch
between the behaviour of selecting the high-level goal task and the low-level mo-
tion control. Offline, the framework autonomously plans the transition sequence
(Fig. M), then the online controller is executed (Fig. Hl).

Fig. 4. The autonomously offline planned sequence of intermediate static configura-
tions. The second posture removes the left foot contact from the stance by shifting all
the weight on the right foot support. The third posture moves the now support-free
left foot and adds it to the stance, etc.

The user wears an EEG cap and is trained with 3 training sessions of approx-
imately 5 min each to learn the parameter of the classifier, through a MI task
consisting of imagining respectively left arm and right arm movements for going
up and down. The user has visual feed-back from the simulator on the desktop
computer screen. The decoding of the BCI command is done in real-time and
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Fig. 5. Tracking the BCI-controlled way-point, ie. the user controlled motion: in the
extreme left figure the small black sphere in front of the swing foot indicates the way-
point position that the user can control. When the swing foot reaches the black sphere
(second figure) it keeps following it according to the user commands (go up or down)
in the subsequent figures (up then down then up).

implemented in Matlab, and the brain command is then sent via UDP protocol
to the dynamics simulator process implemented in C++.

We tested the way-point control strategy in the second step of the motion (the
first contact-adding step along the sequence). The user controlled the position
of a black sphere that represents the way-point tracked by the foot of the robot
in real-time, while autonomously keeping balance and avoiding self-collisions,
joint limits, and collision with the environment. We then externally (manually)
triggered the FSM transition to the following step and left the autonomous
controller complete the motion without brain control. See the video.

Fig. [ illustrates the control performances of the BCI decoder. Table [II
gives computation time figures executed on a Dell Precision T7600 Worksta-
tion equipped with a Xeon processor E5-2687W (3.1GHz, 20M).

1 — iy iy — e ey 3 1 Te——— T ——

-1 _ L =T b et b ] E| -1 B oo —- —_— -
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350

0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350

Fig. 6. BCI decoding performances. On the horizontal axis is step number ¢. From top
to bottom and left to right: the command cue in thick blue, the decoded brain activities
(P(k: = +1|Cy¢)) in thin red, the probability 0.5 thresholded estimated classified label
(ie. P(ky = +1|C¢) > 0.5 or < 0.5) in thick red point marker, the command ¢; sent to
the robot (based on the threshold Pinres = 0.6) in thick green.

From this experiment, we confirmed that the MPC framework can be coupled
with the BCI decoding system in real-time and that the robot can safely realize

the task while receiving and executing the brain command.

Table 1. Execution time figures (not including OpenGL rendering time)

Offline planning 2.Tsec

Average online control command (QP) (@ 200Hz) 2.661ms

Average online simulation step (Q 1kHz) 0.389ms

BCI classifier training and learning session ~ 30min

Average online BCI signal buffering (Q 2048Hz) 0.137ms

Avg online BCI classification (@ 128Hz) no control signal sent (¢; = 0)| 0.204ms
Avg BCI classification (@ 128Hz) control signal sent (¢ = +1 or —1) [ 6.20ms
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6 Discussion and Future Work

This work demonstrated the technical possibility of real-time online low-level
control of whole-body humanoid motion using motor-imagery-based BCI.

We achieved it by coupling an existing EEG decoder and whole-body multi-
contact acyclic planning and control framework. This coupling allowed us to
control a one-dimensional feature of the high-DOF whole-body motion, designed
as the generalized height of moving link way-point, in a discrete way.

We aim now at continuous control of two-dimensional feature of this whole-
body motion, allowing not only the control of the tracked way point but also of a
corresponding threshold plan that decides when to trigger the transition between
the lift-off and touch-down phases. We believe this can be achieved based on the
previous work done for example on two-dimensional cursor control [7].

Finally, we aim at porting this framework from the simulation environment
to the real robot control.
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