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Point-Cloud Multi-Contact Planning for Humanoids:

Preliminary Results

Stanislas Brossette, Joris Vaillant, François Keith, Adrien Escande and Abderrahmane Kheddar

Abstract— We present preliminary results in porting our
multi-contact non-gaited motion planning framework to operate
in real environments where the surroundings are acquired using
an embedded camera together with a depth map sensor. We
consider the robot to have no a priori knowledge of the environ-
ment, and propose a scheme to extract the information relevant
for planning from an acquired point cloud. This yield the
basis of an egocentric on-the-fly multi-contact planner. We then
demonstrate its capacity with two simulation scenarios involving
an HRP-2 robot in various environment before discussing some
issues to be addressed in our quest to achieve a close loop
between planning and execution in an environment explored
through embedded sensors.

I. INTRODUCTION

Humanoid robots are expected to move and achieve tasks

in ways similar to humans. In cumbersome and unstructured

environments, we humans move in a non-gaited acyclic way:

we choose appropriate parts of our body to create contacts

with the surrounding environment in order to support the

motion of the remaining parts while avoiding obstacles. A

whole motion is a sequence of contact creations and releases.

Since we are biped, we mostly use our feet to move. As

the environment becomes more difficult to cross, hands may

come into play together with feet to help with the motion.

Narrow passages may even require other parts of our body

(knees, elbows, back...) to make contact in order to support

the motion.

Recently, we have dedicated considerable efforts in

proposing a general multi-contact motion planner to solve

such cases of non-gaited acyclic planning. Given a humanoid

robot, an environment, a start and a final desired postures,

our planner generates a sequence of contact stances allowing

any part of the humanoid to make contact with any part of the

environment to achieve motion towards the goal. A typical

experiment with a HRP-2 robot achieving such an acyclic

motion is presented in [1], and the planner is thoroughly

described in [2]. Extensions of this multi-contact planner to

multi-agent robots and objects gathering locomotion and ma-

nipulation are presented in [3], and preliminary validations

with some DARPA challenge scenarios, such as climbing

a ladder, ingress/egress a utility car or crossing through a

relatively constrained pathway are presented in [4]. In [2]

and [3], we describe works in multi-contact that are achieved

by other colleagues in robotics.
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All of our previous works, namely the planning scenarios

experimented on the HRP-2 humanoid robot, use perfect

3D models of the environment to plan motion. In fact,

our previous experiments use model-based, off-line, multi-

contact planning. The results are then experimented on

the real environment only after a very careful calibration

assuming no changes in the object’s positions occur during

the trials. To achieve dynamic motions that account for whole

body motion, we still use off-line planning, see e.g. in [5].

Practical implementation and use of our multi-contact

planner will not be a plausible option if it cannot be extended

to work with data acquired directly from the robot’s em-

bedded sensors. Namely, if the environments and composing

object models are known, then the robot-environment careful

calibration would be ideally done by the robot continuously.

In contrast, if the environments and/or composing object

models are not known, then the robot must acquire them

progressively and build knowledge on which multi-contact

planning can still be carried out. This paper examines the

possibility to extend our multi-contact planner to work with

information acquired by the humanoid embedded visual

system, a camera with depth information, providing 3D point

cloud data. We assume that we do not have the 3D models

of the environment and composing objects.

Although preliminary, our first trials show promising re-

sults. We describe the changes made on our multi-contact

planner to work with partial 3D point maps, and present two

case studies of successful multi-contact planning simulations

on 3D point clouds with the HRP-2 humanoid robot. As a

preliminary work, we dedicate a large part of our contribution

for discussion.

II. BACKGROUND AND MOTIVATION

Our multi-contact planning (MCP) is made of several

modules. The Fig. 1 illustrates the main components and their

relation. The core of the planner consists in the multi-contact

search and the posture generator. The former incrementally

builds a tree of contact sets. The children of a node are

obtained by adding or removing exactly one contact to its

set. At each iteration of the search, the best leaf, according

to a potential field, is expanded this way. The tentative

sets of contacts are tested by the posture generator: for a

given set of contacts, it attempts to find a configuration of

the robot that satisfies these contacts while being statically

stable, avoiding collision and staying within the robot’s state

and torques limits. This is done by automatically writing and

solving a non-linear optimization problem. Upon success, the

contact set is validated, and a new leaf is created. The goal is



Fig. 1. Multi-contact planner architecture.

written as a set of constraints defining a sub-manifold of the

configuration space. A node is the final node if its associated

posture generation problem augmented by these constraints

remains feasible. By backtracking from this final node to the

initial root node, we obtain a sequence of nodes and thus a

sequence of contact sets, that can be executed on the robot

by a whole-body controller. We developed such a controller

based on a quadratic programming (QP) formulation [6].

The potential field is derived from a crude path, made of

a few key postures, that does not take contacts into account.

Such a path is either user-defined or can be the output of a

first dedicated planner [7].

The MCP relies largely on the 3D geometric models of the

environment and robotic agents. In our previous work [2],

[3], the geometric models are provided by the user. The

contact transition for the robot are planned off-line and later

executed by the robot assuming exactness of the models

and their relative positioning. We aim at extending our

MCP to deal directly with real data acquired by the robot.

Subsequently, we must deal with two kinds of situations:

1) the models of the objects in the environment are

known: in this case adapting the MCP consists mainly

in dealing with recognition, model superposition and

handling uncertainties. In brief, once model superpo-

sition is achieved, we can use the 3D model for MCP

as in [2], [3], yet some adjustments are needed.

2) the models of the hurdles and the environment are

not known (e.g. disaster or outdoor environments, for

example related to the Fukushima disaster that inspired

the DARPA Robotic Challenge), MCP is to be achieved

in an ego-centric way with models built from the

robot’s embedded sensors. This paper deals with this

case and we describe how the MCP is modified to

achieve this goal. In a nutshell, we construct planar

surfaces from the 3D point clouds data and feed them

to the MCP.

In robotics, the use of 3D-based vision for recognition and

navigation in environment known or partially unknown has

first been used on mobile robots, evolving in flat environ-

ment, for example by coupling it with a SLAM system [8].

Another approach consists in extracting the surfaces from the

point cloud, and then link them to the known environment

or simply consider them as obstacles to be avoided [9].

Since working on raw point clouds is costly because of the

high number of data points, this extraction has also been

enhanced [10] in order to be run in real-time. This approach

has been recently experimented on a humanoid robot in [11],

that combines two methods: the surface extraction from a

point cloud, and the voxel-based 3D decomposition of the

environment [12]. Still, since the robot only navigates in a

flat environment, and does not realize manipulation tasks,

the surfaces extracted from the 3D point cloud are down

projected to a 2D plan, on which are based the navigation

and collision avoidance processes.

The use of humanoid robots allows to navigate in more

complex environment, and recently, some work has been

done to make a humanoid robot go down a ramp [13] or

climb stairs [14]. Yet, those methods use laser-based vision

rather than point-cloud-based vision, so as to have a precise

analysis of a known environment.

In this work, we aim at enabling a robot to analyze and

plan a motion into a 3D environment. Hence, we use the

surface extraction of a point cloud to directly have a global

picture of the environment and determine the convex planar

surfaces that the robot can use at its advantage to progress

using the MCP. In our approach to make such an extension,

we intentionally seek for technical solutions that minimize

changes to be done on our existing MCP software.

III. BUILDING AN UNDERSTANDABLE ENVIRONMENT

FOR OUR PLANNER

Our first concern is to build an environment that our

multi-contact planner is able to “understand” and that can

be extracted from a point cloud scene.

The simplest entity that our planner would be able to

deal with and that could correctly describe the robot’s

environment is a set of convex polygonal planar surfaces.

Therefore, starting from an acquired point cloud, we try to

extract a relevant set of such geometrical entities that will

be a first description of the surroundings of the robot.

In this section, we present the different steps we follow to

create a set of relevant convex polygonal plane surfaces out

of an acquired point cloud.

The Fig. 2 illustrates the major steps of this point cloud

treatment. We use Willow Garage’s Point Cloud Library1

(PCL) [15] extensively for processing the point cloud.

A. Acquisition of point cloud from a RGB and depth sensor

For our experiments, we use an Asus Xtion Pro camera,

that provides a 640×480 pixel depth image, and the OpenNI

Grabber. The obtained point cloud representing our scene

contains points defined by their space coordinates and colors,

and will be the entry of our point cloud treatment algorithm.

We do not use the color information for now except for

display purpose. It may however be useful in the future

in matching object models with sensor data and to perform

color-based region growing algorithms.

1http://pointclouds.org/
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Fig. 2. Top: flowchart describing the main elements of our algorithm and the type of data that is passed between them.
Bottom: the data throughout the process, illustrated in the case of our first experiment (see Sec. V-A).

B. Filtering

In order to reduce the computation time and improve

the efficiency of our point cloud treatment algorithm, it is

necessary to reduce the overall size of the data set. We first

remove all points further than 5 meters from the camera: such

points are not reliable enough and thus a potential source of

error for the following steps.

We then downsample the cloud, since it is excessively

dense for our purpose. To do so, we use a voxelized grid

approach (using the pcl::VoxelGrid class): we create a

3D voxel grid over the input point cloud data. Each voxel

represents a group of points that are close enough from each

other to be represented by a single point that would be their

centroid. The centroid is chosen instead of the center of

the voxel because it represents the real environment more

accurately. Another advantage of this method is that the filter

can easily be parametrized by choosing the size of the voxels.

Those two steps allow us to greatly reduce the number of

points in the data set. Typically, in our experiments, this

divides the number of points by a factor 5 to 6.

C. Region growing segmentation

In order to divide a global point cloud scene into sev-

eral sets of points that belong to the same flat area,

we use a region growing algorithm [9] (implemented in

pcl::RegionGrowing class). Its purpose is to merge

the neighboring points that are close enough in terms of

smoothness constraint. The output of this algorithm is a set

of clusters representing sets of points that are considered to

be a part of the same plane surface. This method is based on

the comparison of the angles between the points’ normals. It

is used right before the planar extraction algorithm in order

to obtain an accurate list of points and plane models they

represent.

D. Planar extraction

We use a plane segmentation to extract and group all the

points that support a same plane model. Thus, we obtain

a set of distinct point clouds. Indeed, this method finds

the plane model that can carry the biggest set of points

without regard for their proximity to each other. Then this

first set of points is extracted from the initial point cloud

and the algorithm can be applied to the remaining cloud

recursively until the remaining cloud is small enough (in

terms of number of points). For this purpose, we use the

pcl::SACSegmentation class.

This process works better on mostly flat point clouds

(composed of a small number of large plane surfaces).

Indeed, if it is applied to a point cloud that represents some

stairs, instead of finding a set of points and a plane model for

each step, it will most likely find a set of points and a plane

model that represent the average slope of the stairs, and the

reason for that is that the criteria of choice of a plane model

is the greater number of points it bears, no importance is

given to the proximity between the points of a planar set.

That is why we apply the region growing algorithm III-C,

that provides a list of clusters that represent the flat surfaces

of the scene, before applying the planar extraction process

on each of those clusters. It then computes a correct set of

points and a plane model per region cluster.



E. Planar projection and hull convex generation

The exact knowledge of all the data points contained in the

plane model of a flat area is not necessary for our planning;

we can reduce the point cloud to its convex hull without

loss of information (except if the surface is concave, but this

issue will be tackled in future works). In order to obtain the

convex hull of each set of points, we first project every point

of the set on its plane model (pcl::ProjectInliers

class) and then compute the 2D convex hull of the projected

set of points (pcl::ConvexHull class). After this step,

each plane surface of the scene is represented by a frame

composed of 3 vectors that are respectively a tangent, bi-

tangent and normal vector of the plane model, an origin point

that is the barycentre of the set of points and a small set of

points that define its convex hull (the points’ coordinates

being calculated in the referential defined by the frame and

the origin of the surface in order to make further calculations

easier).

F. Re-orientation and transfer to the planner

Before sending the previously computed data to the plan-

ner, it is necessary to take into account the initial orientation

of the camera. Indeed, if the camera was not aiming in a

perfectly horizontal direction, then the entire point cloud

would be misoriented. Therefore, it is necessary to re-

orientate the surfaces before sending them to the planner. To

do so, we simply apply a rotation matrix (that is computed

from the initial camera orientation) to each of our data set’s

frame and origin to settle that problem. From there, the

transfer of the surfaces to the planner can be done without

any specific issue.

Re-orientation is done as a last step for the sake of

performance: obviously we need to re-orient only a few

frames, compared to an early re-orientation of the point cloud

that would require to apply a transformation on thousands of

points.

IV. PLANNING ON POINT CLOUDS

A. Convex surfaces inclusions

We adjusted slightly our planner and posture generator to

handle contacts between convex polygonal plane surfaces.

The main modification made in the posture generator deals

with properly writing the constraints that enforce the in-

clusion of one surface into another one. In our previous

implementation, contacts are searched between rectangular

patches attached to the robot body or the environment.

Now any polygonal convex-shaped patch can be checked

for inclusion in another; that is to say, the vertices of a

convex 2D polygon are indexed counter-clockwise around

its carrying plane surface’s normal vector. A point that is

inside the polygon is on the left side of all its edges. On

the opposite, a point that is outside of the polygon will be

on the right side of at least one of the polygon’s edges.

The following is the algorithm we use for the constraint

generation:

Algorithm 1 Surface inclusion constraints for Si ⊂ Sj

Let Si and Sj be two coplanar plane surfaces

Si = p0, p1, . . . , pn and Sj = q0, q1, . . . , qm
~N is Si’s normal vector

for k = 0 → n do

for l = 0 → m do

Constraint : [−−→qlpk ×−−−→qlql+1] . ~N ≤ 0
end for

end for

For a couple of coplanar surfaces Si, Sj respectively

represented by n and m points, we create n×m constraints

to ensure that the former is included in the latter one.

Once the surfaces are defined, it is possible to choose

which ones are suitable for the robot to make contact with.

Although it is not a mandatory step, it allows to reduce the

exploration during the planning phase by removing undesired

or inappropriate pairs of robot/environment surfaces. For the

time being, this is determined by heuristics that are defined

depending on the situation. For example, if we want the

robot to walk on various surfaces, only surfaces that have

a normal vector closely aligned with the gravity field would

be selected as potential candidates (so as to eliminate the

walls and other surfaces on which the robot cannot walk).

Similarly, only surfaces located at a certain height can be

considered for hand contact, etc.

B. Collision detection

In order to generate a feasible plan, we need to ensure

that the robot avoids collisions with its environment and with

itself. To do so, we consider each surface generated by our

point cloud treatment algorithm as a thin 3D body. Basically,

we extrude each surface by few centimetres in the direction

opposite to its normal (provided that this normal is pointing

toward the outside of the real body) and create a convex

hull surface using QHull [16]. The collision avoidance is

then computed by using the GJK algorithm implemented

efficiently for several convex shapes in [17].

V. RESULTS

In order to illustrate our method, we present two exper-

iments in which the HRP-2 robot is asked to move 2m

forward. In both scenarios, this results in climbing on a table

(The first one is 0.71m-high and the second one is 0.53m-

high) with the help of various surrounding objects. The

knowledge about the environment and surrounding objects

is obtained from a point cloud captured by an ASUS Pro

Xtion camera in one single shot. The camera was placed at

the height of the robot’s head, see Fig. 2.

All the computations of the following experiments are

performed on a single thread of an Intel(R) Core(TM) i7-

3840QM CPU at 2.80GHz, with 16Go of RAM.

A. Plan 1: irregular stairs

In this first experiment, the robot has to walk up some

irregular stairs made of several random pieces of furniture



to reach its goal. The filtered point cloud contained 60286

points, that were split into 6 plane surfaces. The whole cloud

processing was done in 2.7 s. The planner computations

generates a path of 11 nodes, some of which are depicted

in Fig. 3. We notice that the robot climbs the stairs one

by one without ever putting its two feet on the same step

and without any noticeable problem. In total, 23 nodes were

generated and the planning time was 98.4 s.

B. Plan 2: helping motion with the hand

This second experiment was designed to showcase a more

complex plan involving the use of the HRP-2 upper limbs.

In this experiment, the filtered point cloud contained 66907

points, from which 11 surfaces were extracted. The whole

cloud processing was done in 2.7 s. The planner computation

generates a path of 19 nodes, some of which are depicted

in Fig. 4. To climb on the table, the robot uses its left arm

and walks on an inclined slope before climbing a step at the

end of the slope, once again, with the help of its left arm as

support. In total, 40 nodes were generated and the planning

time was 122.3 s.

VI. DISCUSSION

This work is a first step toward a fully sensory-perception-

based multi-contact planner. It raises several interesting ques-

tions on the way to adapt our MCP.

One advantage of our approach is to avoid having to

precisely position the robot in the environment prior to the

plan execution. Yet, for now the positioning is done once

and for all with the acquisition of the point cloud, before

planning. When executing the plan, the robot might still

deviate from it, for example a support might move, or a

foot might contact a few centimetres away from where it

was planned to, or the support might not be at its expected

position because of measurement errors in the acquired point

cloud. We thus need to close the loop between the planning

and its execution. To do so, we need robust detection of

discrepancies to be made by the robot. This can be achieved

by combining point-cloud-based SLAM with contact sens-

ing. Once the robot has acquired knowledge of its deviation

or of the position error of the support, it has to adapt to it.

This adaptation should not be time-consuming so as to not

interrupt the execution for too long. A slight deviation can be

recovered by simply positioning with care the next contacts

and the closed-loop multi-contact controller shall work on

guarded-motions basis. However, a bigger deviation might

make the next contact stances infeasible. In this later case,

re-planning the next contacts is necessary to go back to the

plan. How many contacts have to be re-planned depends on

the context. In difficult situations, changes in contacts might

cascade up to requiring an entire re-planning. Recognizing

the situation should be the task of a local planner that re-

plans as few steps as possible. In case too much contacts

must be reprocessed, the re-planning phase can be stopped

before it ends and resumed at the next step.

This partial planning approach can also be seen in the

context of semi-autonomous motion: an operator gives the

overall direction with, for example, a joystick, and the

planner reactively finds a sequence of a few contact sets

to move as closely as possible in this desired direction. The

operator is thus in charge of preventing the robot from getting

stuck while the planner only concentrates on finding the

correct contacts over a short time window.

Another question stems from the partial knowledge of the

environment: it is not possible to give a guide path as we used

to do with the 3D models. This guide path will necessarily

be very crude, either a line to a desired position, or a plan

in a known environment before it was changed (for example

in the case of a disaster in a plant). The planning must then

be driven also by the need of getting information about the

environment, for example reaching a viewpoint allowing to

see parts of the environment that were hidden before, filling

empty spaces and possibly adding new supports on-the-fly.

Planning is then only partial since necessary part of the

environment might be unknown.

Later on, the discovery of the environment might be

improved by the use of other sensors. One can then imagine

having the robot test for a contact to ensure a given surface is

fit for support or that it is precisely at the position measured

by vision. If the surface is not, this is another kind of

discrepancy in the plan than needs to be handled by re-

planning.

VII. CONCLUSION

We present preliminary results in extending our previous

work in multi-contact planning to operate directly on en-

vironment that is built on-the-fly from a robot’s embedded

sensors. This first study makes use of depth camera and

implemented modules from the PCL which extract planar

surfaces that are fed to our MCP. We intentionally seek

for technical implementations that minimize the changes on

our existing MCP software and illustrate successful plans

generated on the basis of 3D point clouds solely.

The simulation results revealed that indeed our MCP does

not require major adjustments to handle egocentric sensory

data. Of course, this does not mean that we are fully satisfied

since our results also suggest additional future work.

First, although we choose to treat the case of not having

3D models, we believe that the implementation of an MCP

with knowledge of the 3D model is necessary. For example,

even in a disaster situations as in Fukushima nuclear power

plants, the inside exploration videos available show that

many objects kept their shape and were not totally destroyed

(e.g. door, stairs, ladders, etc.). So having their model would

then still permit our MCP to rely on 3D models to plan

contacts for motion. PCL provides only partial information,

it is then necessary to drive the planner by the mission

objective and also a perceptual one (e.g. SLAM). Of course,

our ultimate future plan is to handle uncertainties, control

and planning recovery of discrepancies when they occur.
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Fig. 3. Table climbing simulation using irregular stairs. Of the 11 nodes of the path, we depicted the nodes 1, 4, 6, 8, 10 and 11.

Fig. 4. Slope and step climbing simulation. Of the 19 nodes of the path, we depicted the nodes 1, 7, 12, 15, 17 and 18.
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