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Abstract. Due to the high heterogeneity of ontologies, a combination of many
methods is necessary in order to discover correctly the semantic correspondences
between their elements. An ontology matching tool can be seen as a collection of
several matching components, each implementing a specific method dealing with
a specific heterogeneity type (terminological, structural or semantic). In addition,
a mapping selection module is introduced to filter out the most likely mapping
candidates. This paper proposes an empirical study of the interaction between
these components working together inside an ontology matching system. By the
help of datasets from the Ontology Alignment Evaluation Initiative, we have car-
ried out several experimental studies. In the first place, we have been interested in
the impact of the mapping selection module on the performance of terminological
and structural matchers revealing the advantage of using global methods vs. local
ones. Further, we have carried an extensive study on the flaw of the performance
of a structural matcher in the presence of noisy input coming from a terminologi-
cal method. Finally, we have analyzed the behavior of a structural and a semantic
component with respect to inputs taken from different terminological matchers.

1 Introduction

The field of ontology matching has matured considerably as a result of more than a
decade of research and practice. Many ontology matching approaches and systems have
been developed dealing with the semantic heterogeneity problem by taking into account
various aspects of this problem [20]. Methodologically speaking, these approaches rely
on techniques from fields as diverse as machine learning, graph matching, information
retrieval, relational algebra, logics, – each of these fields providing a framework to
deal with a certain heterogeneity type. In this respect, a standalone ontology matching
system is a successful combination of several matching components. We consider that
time has come to pay attention to the way these components connect to each other
within a matching system and how these interactions impact the overall quality of the
produced alignments.

Many challenges stand in front of the ontology matching community – a full picture
is given in [20]. By this study, we contribute to the solution of matcher selection and
combination problems, which are fundamental for the development of a stable system.
A matching system can be seen as a combination of four main components: a termino-
logical, a structure-based and a semantics-based matcher accompanied by a mapping
selection module1. Although these components exploit different features of the entities

1 Not each of these components is always and necessarily part of the system’s architecture.
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of an ontology, they are not independent. A structure-based matcher takes as an in-
put the mappings resulting from a terminological matcher [1, 7, 24]; a semantics-based
matcher may take as an input the mappings resulting from either a terminological [5,
9], or a structure-based matcher, or a combination of the mappings resulting from both
[4, 6]. Therefore, difficulties can arise not only inside each component but also on the
interaction lines between them. We take into consideration several of these difficulties.

A mapping selection module is usually introduced in order to filter out the best
mapping candidates, at each of the different matching levels. The interaction of this
module with the matchers is, therefore, among the basic issues to be addressed.

A terminological matcher discovers mappings by comparing annotations (i.e., la-
bels, comments) of entities. To this end, it may use many different similarity measures.
The difficulty is, on the one hand how to select the most appropriate similarity measures
and, on the other hand, how to effectively combine them.

A structure-based matcher discovers mappings between entities by analyzing the
similarity of the structural patterns, which these entities are part of. However, according
to [3], almost all methods of this type are not stable and do not improve the matching
quality when the structures of the ontologies are different. Moreover, structural match-
ers are error-prone, since they strongly depend on initial mappings provided by a termi-
nological matcher and on the specific settings of the mapping selection component.

A semantic matcher is mainly used to refine candidate mappings [5, 6, 9]. It exploits
the semantic constraints between entities in the ontologies in order to discover conflicts
between potential mappings and remove them from the list of candidate mappings.
To do that, in some tools [5, 9], the semantic module requires a confidence value for
each mapping candidate. Then, it applies a global optimization method in order to find
the minimal inconsistent set of mappings. Therefore, similarly to structural methods,
semantic methods are error-prone because they also depend on the confidence values of
the mappings obtained at previous steps.

This empirical study aims to investigate the interconnections between the different
components in an ontology matching system. Our intention has been to make explicit
the relations between these components by showing how one impacts the other and
thus guide practitioners and researchers in the choice of the matchers with regard to the
global quality of the matching system.

The rest of the paper is organized in the following manner. In the next section, we
present a generic ontology matching system architecture together with an evaluation
scenario for the ontology matching task. We continue by presenting two basic stud-
ies. With respect to different settings of the mapping selection module, we evaluate the
performance of different terminological methods (Sections 3) and different structural
methods (Section 4). Further, we go into a detailed study of the interaction between ter-
minological, structural and semantic methods. We first study the performance of differ-
ent structural matchers at the presence of noisy input (Section 5) and then the behavior
of structural and semantic matchers with respect to mappings produced by different ter-
minological methods that they take as an input (Section 6). Sections 3 to 6 present one
independent study each and are structured in an uniform manner: the matching methods
are presented first, followed by a presentation of the evaluation data and strategy and,
finally, the results are given and supported by an in-depth discussion.
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2 A Generic Framework for Ontology Matching and Evaluation

The main components of a standalone ontology matching system are depicted in the
lower part of Fig. 1. As discussed in the introduction, the three core matching compo-
nents are based on terminology, structure and semantics. The role of these matchers is
to discover correct mappings or remove incorrect ones according to specific features
extracted from the entities of the input ontologies. Additionally, a mapping selection
module is introduced to act as a filter which selects the best candidate mappings. We
define a matching strategy as the way the matcher and selection components work to-
gether in order to produce an alignment.

Fig. 1: Ontology Matching: System Architecture and Evaluation Scenario

To perform an evaluation of the quality of the different matching strategies, the
ontology matching system requires matching scenarios as an input (upper part of Fig.
1). A matching scenario consists of a source and a target ontology and a reference
alignment provided by a domain expert. Given a matching scenario, input ontologies
are loaded, pre-processed and transformed into internal data structures (Loading/Pre-
Processing/Transforming component). The Matching Quality Estimation module eval-
uates the quality of a given matching strategy by comparing discovered alignments with
the reference alignment. It outputs three evaluation values corresponding to Precision
(Pr), Recall (Re) and F-measure (Fm). In this study, we compute the harmonic means
of precision, recall and F-measures on a set of n tests. These evaluation measures are
used in the OAEI campaign and are given as follows.

H(p) =

∑n
i=1 |Ci|∑n
i=1 |Ai|

; H(r) =

∑n
i=1 |Ci|∑n
i=1 |Ri|

; H(fm) =
2 ∗H(p) ∗H(r)

H(p) +H(r)
.

For the ith test, |Ai| denotes the total number of mappings discovered by a match-
ing system, |Ci| – the number of correct mappings, and |Ri| – the number of reference
mappings provided by a domain expert. In the sequel, all results will be given by con-
sidering F-measures only.

By following this generic architecture, we have developed the YAM++ system2.
Various matching methods inside of the three matcher components and several filtering

2 YAM++ - (not) Yet Another Matcher, published here: http://www2.lirmm.fr/ dngo/.
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methods used in the mapping selection module have been implemented. The system is
described in detail in [17]. Because of the broad scope and diversity of the techniques
employed by YAM++, as well as its excellent results in the OAEI campaigns3, we have
used this system in order to evaluate the different matching strategies based on the
interaction of the matchers. More detail about the setup of the matching and filtering
methods for each matching strategy will be given in each experiment in the succeeding
sections.

Note that required computation times for each technique have not been taken into
account in this study. They could, however, be a useful decision factor when two tech-
niques produce similar results in terms of precision and recall.

3 Terminological Matchers and Mapping Selection
In this evaluation, we focus on terminological matchers and we study their interac-
tion with the mapping selection module. According to a classification found in [3], the
terminological matching approaches are divided into local and global methods. Local
methods focus on the similarity between individual entities, whereas global methods
combine local ones, taking into account the semantic context that these entities belong
to. We are particularly interested in the comparison between local and global methods.

3.1 Methods
We have considered several state-of-the-art local methods as well as advanced global
methods, some of which have been proposed originally for YAM++.

Local Terminology-Based Methods We have implemented more than fifty local meth-
ods used for terminology-based matching [16]. We divide them into three groups based
on the algorithm for computing similarity between strings that they rely on. To econo-
mize space, the following representative methods will be used in this experiment:

Edit distance-based methods. The similarity of two strings is computed based on
the number of edit operations needed to transform one string to another. We have con-
sidered Levenstein and ISUB [21].

Token-based methods. These methods split strings into sets of tokens and then com-
pare tokens by string-based methods. We have considered QGrams and TokLev (using
Levestein to compare tokens).

Hybrid methods. Methods in this group split strings into sets of tokens and then
compare tokens by combining string-based and linguistic-based methods. We have
taken as examples HybLinISUB and HybJCLev. HybLinISUB uses a combination of
ISUB and Lin [11]; HybJCLev relies on the Levenstein and the Jiang-Corath [8] meth-
ods.

Global Terminology-Based Methods In our experiments, we have implemented the
following global methods:

3 In OAEI 2012 YAM++ was first on the Conference, Multifarm, Benchmark and Bio-Medical
track, and second on the Anatomy track.



Opening the Black Box of Ontology Matching 5

Weighted Average with Local Confidence (LC). Each local method is assigned a
local confidence value. These values are used as weights in a weighted average function
to compute the final similarity score between entities. More details can be found in [1].

Harmony-based Adaptive Similarity Aggregation (HADAPT). Here, each local
method is assigned a weight which is computed by the harmony estimation algorithm
[12]. Then, a weighted sum aggregation method is used to produce a final similarity
score between entities.

Machine Learning-Based Approach (ML). This method combines all local meth-
ods and constructs a classification function on the basis of given training data. In a
machine learning setting, the training dataset consists of pairs of entities (seen as train-
ing examples) for which the confidence value of their similarity is known. Based on
these training examples, a classifier learns a function which is able to predict the con-
fidence value of an unseen pair of entities. In that way, the ontology matching task is
transformed into a classification task. After testing the performance of over 15 machine
learning techniques, we have seen that J48 decision tree is the most appropriate one for
the ontology matching task [17]. This is the method that has been used in the following
experiments.

Information Retrieval-Based Approach (IR). This method judges the similarity
between two entities by the amount of overlap of the information content of their labels
[18]. It splits all labels of entities into tokens and calculates the information content
of each token in the whole ontology. Then, IR extends Tversky’s similarity measure
[23] with weight of tokens to compute a similarity score between labels of entities. The
method compares similarity of two labels by using not only the sequence of characters
themselves, but also their information content in an ontology. We will illustrate this idea
by examples in this experiment.

3.2 Matching and Evaluation Strategy

To perform this experiment, we have chosen the Conference dataset from the OAEI
including 21 test cases4. The reason for this choice is that this dataset consists of
moderate-sized real-world ontologies describing the same domain. These ontologies
are highly heterogeneous since they were developed by different people, hence, the
same concept is often labeled differently. We assume that high matching quality of a
system on these tests guarantees similar results of the system when applied to other real
matching scenarios.

The matching evaluation strategy works as follows. For each matching method (in-
cluding local and global ones) in the terminological matching module, we compute a
similarity score for all pairs of entities of the input ontologies. The mapping selec-
tion module then selects candidate mappings according to the filter threshold value. At
each level of this threshold, a H-mean F-measure is computed over all test cases in the
dataset.

4 http://oaei.ontologymatching.org/2012/conference/index.html
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3.3 Results and Discussion

Fig. 2 shows the results of this comparison. As can be seen, almost all local methods
(except for QGrams and ISUB) improve the F-measure when the threshold value of the
filter increases. When the filter threshold increases, it appears that only highly similar
or identical labels are be passed. Therefore, as Fig. 2 shows, local methods closely
converge to results of the Identical method (≈ 0.55) when the filter threshold reaches
0.95 and 0.97. The same trend is observed for HADAPT and LC because they are linear
combinations of local methods.

Fig. 2: Mapping Selection for the Terminological Matcher Module

The experiment shows that the two global methods, ML and IR outperform the other
techniques within the terminological matcher module. Therefore, in what follows, we
will discuss in more detail these two methods.

Performance of ML A machine learning method requires training data on which to
learn a classification function and test data on which to apply this function. To create
training data independent on the Conference dataset on which the evaluation will be per-
formed, we have used data from the OAEI Benchmark 20095 and I3CON6 datasets. We
have constructed 10 different training datasets by using these two sources and we have
trained the decision tree ML method on each of these 10 training sets. At each time, the
learned classification algorithm has been applied to the Conference dataset, providing
10 different results. The result given in Fig. 2 is obtained by taking the average over
these 10 results.

We note that the ML method does not depend on the filter threshold since no can-
didate mapping selection takes place. As it is seen from the figure, ML returns a bet-
ter matching quality than LC, HADAPT and all local methods. For example, the ML
method discovers (cmt.owl#Co-author ≡ conference.owl#Contribution co-author) in
the cmt.owl and conference.owl ontologies, whereas local methods return a low
similarity score between these labels (Levenstein(Co-author,Contribution co-author) =
0.4; QGrams(Co-author,Contribution co-author) = 0.6). This is explained by the fact

5 http://oaei.ontologymatching.org/2009/benchmarks
6 http://www.atl.external.lmco.com/projects/ontology/i3con.html
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that ML does not use arithmetic combination functions like LC and HADAPT, in-
stead, it extracts the combination rules on local methods from training data. ML is
able to find many patterns in the training data similar to the current example (e.g., (net-
workA.rdf#Office ≡ networkB#OfficeSoftware), (russia1#payment ≡ russia2#means
of payment), etc.). However, the ML method strongly depends on the training data.

With different training data, different machine learning models will be generated and,
therefore different matching results will be produced. For instance, with some training
data, ML can discover (cmt.owl#Co-author≡ conference.owl#Contribution co-author),
but not with other. Moreover, for a given training data this mapping is discovered by
ML, but (cmt.owl#Document ≡ conference.owl#Conference document) is not, even
though the latter seems similar to the former. To address this problem, we have de-
signed the IR method, which is discussed in the sequel.

Performance of IR The IR method proposed in YAM++ [18] outperforms all other
methods in the experiment. We analyze this fact by giving an example with two entities:
cmt.owl#Co-author and conference.owl#Contribution co-author. After splitting
and normalizing the labels, we have the following two sets of tokens: {coauthor}
and {coauthor, contribution}. Token coauthor appears in each input ontol-
ogy only once, whereas token contribution appears 10 times among 60 concepts
in the conference.owl ontology. Therefore, the information content of the token
contribution is lower than that of token coauthor. In particular, the normalized
tf-idf weights of each token inside the input ontologies are equal: {wcoauthor = 1.0},
{wcoauthor = 1.0, wcontribution = 0.34}. The two sets of tokens share only the to-
ken coauthor, hence the similarity computed by Tversky’s method is 1.0+1.0

1.0+1.0+0.34 =
0.855. Similarly, we have the similarity between (Document,Conference docu-
ment) equaling 0.91. In this pair, the token conference appears 15 times in the
conference.owl ontology. Therefore, this token brings little information for this
ontology and, consequently, this pair of entities represents a likely match.

It is difficult to give a clear indication which of these two best performing meth-
ods to use – ML or IR. Clearly, in the absence of training data, the choice will go for
IR. Even in the presence of training data, the IR method appears to be more suitable
because it reaches an overall higher performance than ML for low values of the map-
ping selection threshold. However, an advantage of the ML method is that it does not
depend on the setting of a filter threshold. Both methods can be combined within the
architecture of an ontology matching tool.

4 Structural Matchers and Mapping Selection
In this evaluation, we are interested in the behavior of structural similarity methods with
respect to the mapping selection module.

4.1 Methods
The following standard structural matching methods have been considered within this
study: ANCESTORS (two entities are similar if all or most of their ancestor entities
are already similar), DESCENDANTS (two entities are similar if all or most of their
descendant entities are already similar), LEAVES (two entities are similar if all or most
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of their leaf entities are already similar [2]), ADJACENTS (two entities are similar
if all or most of their adjacent entities (parents, children, siblings, domains, ranges)
are already similar), ASCOPATH (two entities are similar if all or most of entities in
the paths from the root to the entities in question are already similar [10]). DSIPATH
(Descendant’s Similarity Inheritance) (two entities are similar if the total contribution
of entities in the paths from the root to them is higher than a specific threshold [22]), and
SSC (Sibling’s Similarity Contribution) (two entities are similar if the total contribution
of their sibling entities is higher than a specific threshold [22]).

Additionally, we have considered the SP (Similarity Propagation) method. This
method is proposed in the system YAM++ as an extension of the well-known similarity
flooding algorithm [15]. The basic idea of the method is as follows. Assume that the
entities A1 and A2 in one ontology are related by a directed relation P and the entities
B1 and B2 in another ontology are related by the same directed relation. Then, if we
discover that (A1, B1) is a match, the SP method would imply that (A2, B2) is a match,
too. The similarity values between the two pairs are propagated to each other at each
iteration of algorithm. The approach is described in detail in [19].

4.2 Matching and Evaluation Strategy

To perform this experiment, we have used the Benchmark 2011 dataset from the OAEI
campaign including 103 test cases. These datasets are acquired by taking an original
ontology and altering the names of some of its entities by using random strings (no
variation by naming convention or synonym words). The entities whose labels have not
been altered are kept as in the original ontology. Therefore, a matching scenario which
takes as an input the original and the altered ontologies is appropriate for evaluating
the performance of structural methods. As an input to these structural methods, we use
the alignment produced by an identical metric (defined as one which returns a correct
mapping only for identical strings), since the non-altered string names are identical
in both ontologies. An additional characteristics of this dataset is that in some tests,
not only the names of entities are altered but also the ontology structure by flattening,
extension and other structure modifying operations.

The matching and evaluation strategy used in the experiment is given as follows.
Only three modules will be used: a terminological matcher, a structure-based matcher
and a mapping selection module.

The terminology-based matcher provides input mappings to the structural matcher.
They are provided by the identical metric, denoted by INIT MAPPINGS.

Each structure-based matcher corresponding to each of the selected structural mea-
sures above produces a similarity matrix for all pairs of entities from the two input
ontologies.

In the mapping selection module, we vary the threshold (0.01 – 0.9) to filter out the
mappings discovered by this matcher. The mappings obtained by the structural matcher
are combined with mappings obtained by the terminological matcher to produce the set
of candidate mappings. Then, a greedy selection method [14] is used to extract the final
alignment.
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4.3 Results and Discussion

As can be seen from Fig. 3, when the threshold varies from 0.6 to 0.9, the structural
methods converge to the INIT-MAPPINGS line where H-mean Fmeasure = 0.68 (4463
correct mappings, 27 incorrect mappings, 4342 unfound). This means that the struc-
tural methods did not discover additional correct mappings or they discovered correct
mappings, which already exist in the init mappings. This is natural, because most of the
structural methods compute similarity between two entities based on the overlap of their
structural patterns (i.e., adjacent, ancestor, etc.) by using, for instance, the Jaccard mea-
sure. Therefore, the higher the filter threshold, the lower the possibility of discovering
new mappings.

Fig. 3: Mapping Selection for Structural Methods

We note that the corresponding matching qualities of the structural methods differ
significantly when the filter threshold is set to small values. We will consider methods
that perform poorly and such that perform well.

For threshold values between 0.01 and 0.09, ASCOPATH and ANCESTORS dis-
cover many incorrect mappings. For example, when the threshold is equal to 0.01,
ACSOPATH discovers 90 (= 4733 − 4643) additional correct mappings but 453 (=
480 − 27) incorrect mappings in comparison to the init mappings. This can be ex-
plained as follows. After observing the ontologies in the Benchmark 2011 dataset, we
see that the maximum depth and also maximum number of ancestors of an entity in the
ontology hierarchy is 5. Assume that two entities have only one common entity among
their ancestors. Then their similarity score is equal to 1/10 = 0.1 at least. If two entities
do not have any common entities, then their similarity is equal to 0. Therefore, with a
threshold in the range of 0.01 to 0.09, any pair of entities having at least one common
ancestor will be considered as a match. Since sibling entities have the same ancestors
and paths to these ancestors, they will have the same structural patterns. Therefore,
many pairs of entities will have the same similarity scores. Moreover, one entity may
have many descendant entities so many pairs of entities can be coupled, consequently,
many incorrect mappings will be produced.

In contrast, other methods such as DESCENDANTS, LEAVES, DSIPATH and SSC
provide better results with small thresholds than the methods discussed above. They dis-
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cover more additional correct mappings and, consequently, improve the overall quality
of the matching. For example, with a threshold equal to 0.01, DESCENDANTS discov-
ers 494 (= 5137− 4643) additional correct mappings and 175 (= 202− 27) incorrect
mappings in comparison to the init mappings. Similarly to the ASCOPATH and AN-
CESTORS methods, with low threshold filter, many pairs of entities are passed. How-
ever, these methods clearly distinguish the structural patterns of entities. For instance,
in DESCENDANTS and LEAVES, different entities have different sets of leaves / de-
scendants; in DSIPATH and SSC, they use different contribution percentage of entities
according to how much one entity is important to another [22]. Therefore, by running
greedy selection, which always selects the pair of entities having high similarity score
with 1:1 cardinality, most of the selected mappings are correct.

Performance of SP The similarity propagation (SP) method that we propose differs
from the other structural methods discussed above in several aspects. Note that the simi-
larity scores produced by SP are not absolute but relative values due to the normalization
process at the end of each running iteration. SP propagates similarity values from one
pair of entities to another, hence, if two entities have a similarity score higher than 0,
then they are considered as similar to a certain degree. Thus, with a low threshold filter,
SP discovers more correct mappings than with a high threshold value. Moreover, the
similarity score of a pair of entities depends not only on their current status but also on
the status of other related (neighboring) pairs. The more neighbors with high similarity
a pair of entities has, the likelier that they are matched. For example, when the threshold
is set to 0.01, SP discovers 1298 (= 5941−4643) additional correct mappings and 247
(= 274 − 27) incorrect ones in comparison with the init mappings. Therefore, SP dis-
tinguishes well correct and incorrect mappings by ranking the similarity scores which
is the main reason why this method outperforms the other local structural methods dis-
cussed above when the filter threshold is low.

5 Impact of Noisy Input on Structural Matchers
In this experiment, we evaluate the behavior of different structural matchers when we
add noise into the mappings that these methods take as an input from a terminological
matcher. Here, we call ”noise” a pair of dissimilar entities labeled as similar by the ter-
minological matcher. Indeed, in real matching scenarios, a terminological method rarely
produces 100% precision, consequently, it rarely provides input mappings without noise
to the structural methods. We will study the impact of this noise on the mappings dis-
covered by several structural methods with the aim to outline the most stable among
these methods with respect to the presence of noise.

5.1 Methods and Evaluation Strategy

For these experiments, we have used the Benchmark 2011 dataset from the OAEI cam-
paign. The reasons for this choice given in Section 4 are valid here, as well, since we
are dealing with structural methods.

At terminological level, we use the identical metric. To produce noise, we add a
number of random incorrect mappings, which correspond to N% of the size of the
original init mappings, with N ∈ {0, 10, .., 100}.



Opening the Black Box of Ontology Matching 11

At structural level, the matcher takes input mappings from the terminological matcher.
According to the experiments in Section 4, we select the best threshold filter for each
structural method. For example, θSP = 0.01, θDESCENDANTS = 0.01, θADJACENTS

= 0.07, etc.
At each iteration, we count the total number of correct mappings and the total num-

ber of incorrect mappings that a structure method produces over all 103 test cases con-
tained in the Benchmark 2011 dataset.

Fig. 4: Impact of input noise on structural matchers.

5.2 Results and Discussion

Fig. 4 shows the total number of correct and incorrect mappings produced by the struc-
tural methods at each time when noisy data are added to the input. When noisy data
are added, the number of correct mappings discovered by all the methods decreases.
Regarding the number of incorrect mappings, it increases for all methods, except for
DSIPATH and SSC. Note that DSIPATH and SSC differ from the other local structural
methods in terms of the interaction between the entities in an ontology. For example,
the similarity of two entities computed by DSIPATH strongly depends on the similarity
provided by input mappings and decreasingly depends on the similarity of their parents,
grandparents, etc. Consider two entities of two input ontologies. If noise appears at the
same level in their paths to the root, their similarity will be impacted by this noise, other-
wise, it will not. Therefore, the impact of noise in discovering further mappings depends
on the position of the entities in the hierarchies of the input ontologies. Because noise
is generated randomly, its impact is hard to predict for these methods. Other structural
methods use set operations (i.e., intersection, union) with no hierarchical consideration
for the elements. When noise appears in the set of ancestors or descendants of two en-
tities, the noise will directly propagate errors to them. Therefore, as seen in Fig. 4, the
number of incorrect mappings increases in almost all structural methods of this type.

This experiment shows the dominance of similarity propagation (SP) over other
structural methods in terms of stability. When noisy data reaches 100%, SP still dis-
covers 913 additional correct mappings in comparison to the init mappings. Note that
the maximum number of correct mappings discovered by the other methods is only
612 mappings with no noise added. Moreover, from 0% to 100% of the noisy data, SP
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produces only 57 (321 − 274) additional incorrect mappings. In contrast, for example,
the LEAVES method produces 481 (553 − 72). This is explained by the fact that SP
takes into account all kinds of semantic relations of entities such as concept-concept,
concept-property and property-property, which reduces the impact of noise.

6 Interaction of Terminological Matchers with Structural and
Semantic Matchers

In this evaluation, we are going to study the impact of the quality of the input map-
pings provided by several terminological methods on the matching quality of structural
and semantic matchers. More precisely, we are interested in discovering which are the
terminological methods that provide best performance of the structural and semantic
matchers for a given mapping selection threshold.

6.1 Methods and Evaluation Strategy

To carry out this experiment, we have used the Conference dataset from the OAEI
campaign, which is a real world dataset from the domain of scientific publishing. Our
evaluation strategy is described as follows.

At terminological level, we have used three different methods to produce initial
mappings. The choice of these matchers has been motivated by the study described in
Section 3 and the results shown in Fig. 2. We have chosen QGrams representing token-
based methods and ISUB representing edit-based methods because they show different
behaviors when the terminology-based filter threshold changes as compared to the other
methods. In addition, we have included IR, representing global methods, which is the
best performing among these methods.

At structural level, we have considered SP which takes input from the terminolog-
ical matchers and performs similarity propagation. This choice is justified by the fact
that this method has shown to perform best in the experiments in Section 4.

At semantic level, we use the global diagnosis optimization method proposed in
[13] which refines input terminological mappings in order to remove inconsistent ones.

We have studied the performance of each of the terminological methods when used
alone and when used as an input for the structural and the semantic methods, respec-
tively. At each iteration, the matching quality is evaluated by comparing the discovered
alignment to a reference alignment.
6.2 Results and Discussion

Fig. 5 shows the performance of the terminological methods used alone and in com-
bination with a structural matcher (SP) again as a function of the mapping selection
threshold. Fig. 6 shows the behavior of the same terminological methods, this time
taken as an input by a semantic matcher. The first observation is that the structural and
the semantic methods combined with terminological matchers have similar behaviors,
therefore the following analysis will encompass both.

Globally, the combined methods outperform the single terminological methods.
Similarly to the previous experiments, the overall performance increases by increas-
ing the threshold value. Quite straightforwardly, the quality of the combined methods
increases simultaneously with the quality of the single terminological methods.
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Fig. 5: Interaction of terminological methods with a structural matcher (SP) w.r.t. dif-
ferent values of the mapping selection filters.

Further, we notice that the methods based on QGrams tend to be more stable over
the variations of the filter threshold and provide high quality results already at low filter
values. This is explained by the fact that the QGrams measure is based on Jaccard sim-
ilarity computation and as soon as the threshold value reaches 0.6, the matcher already
accounts for two third of the overlapping tokens. The methods based on ISUB have a
different behavior – they have an almost linear growth of the performance as a func-
tion of the filter threshold, reaching higher values of the F-measure than the ones of the
QGrams methods for thresholds above 0.9, both for structural and semantic approaches.

We explain that by the fact that at a certain level of the threshold value, the number
of incorrect mappings is always higher than the number of correct mappings, especially
due to the 1:1 cardinality. Therefore, when the threshold value increases, the number
of removed incorrect mappings will get higher than the number of removed correct
mappings. Thus, the overall quality increases. However, after surpassing the threshold
of 0.95 the quality decreases again. This is due to the fact that when the threshold is
that high, only identical or nearly identical strings are passed (i.e. the overall number of
passed entities decreases).

Finally, we note that the mapping selection component is a very important inter-
mediate level between the terminology matchers and the structural or semantic ones in
order to select output of each matching component. Indeed, the quality of the produced
alignments is much worse if no mapping selection is performed. In the experiments, the
role of mapping selection is shown by varying the value of the filter threshold.

As a general conclusion, we outline the fact that both the structural and the semantic
matchers boost the performance of both local and global terminological methods, but
perform best by taking input from the global IR method.
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Fig. 6: Interaction of terminological methods with a semantic matcher (SM) w.r.t. dif-
ferent values of the mapping selection filters.

7 Conclusion
In this empirical study, we have presented an analysis of the interaction between the
components of an ontology matching system, seen as a chain in which the resulting
mapping of a given module is the input to another. We have used evaluation data from
the OAEI campaign. In the first place, we were interested in the impact of the mapping
selection module on the performance of terminological and structural methods reveal-
ing the advantage of using global methods vs. local ones. Further, we have carried an
extensive study on the flaw of the performance of a structural method in the presence
of noisy input coming from a terminological method. Finally, we have analyzed the be-
havior of a structural and a semantic matcher with respect to different inputs taken from
different terminological methods at different values of the mapping selection filter.

The results of this study are oriented towards researchers and practitioners and are
meant to serve as a guide in the design and the use of a matching tool. Our outcomes
provide a support on the choice of matchers and the effects that can be expected in
their selection and combination. The ultimate goal has been to give the user control and
understanding of the mechanism behind an ontology matching system.
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