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Abstract

This paper focus on online (or relaxed ) algorithms for the multiplication of power series over
a field and their analysis. We propose a new online algorithm for the multiplication using middle
and short products of polynomials as building blocks, and we give the first precise analysis of
the arithmetic complexity of various online multiplications. Our algorithm is faster than Fischer
and Stockmeyer’s by a constant factor; this is confirmed by our experimental results.
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1 Introduction

Let A be a commutative ring with unity, and let x be an indeterminate over A.
Given two power series a=

∑

i>0 ai x
i and b=

∑

i>0 bi x
i in A[[x]], we are interested in

computing the coefficients ci of the product c = a b under the following constraint: we
cannot use the coefficients ai or bi before we have computed c0,
 , ci−1. This condition
is useful to model situations where the inputs a, b and the output c are related by a
feedback loop, i.e. where c0,
 , ci−1 are needed in order to determine ai and bi (see the
discussion below).

1 Previous work. Algorithms that satisfy such a constraint were introduced by Fischer
and Stockmeyer in (Fischer and Stockmeyer, 1974); following that reference, we will
call them online (the notion of an online algorithm extends beyond this question of
power series multiplication, see for instance (Hennie, 1966)). Still following Fischer and
Stockmeyer, we will also consider half-line multiplication, where one of the arguments,
say b, is assumed to be known in advance at arbitrary precision; in other words, the only
constraint for such algorithms is that we cannot use the coefficient ai before we have
computed c0,
 , ci−1.

∗. This work has been partly supported by the ANR grant HPAC (ANR-11-BS02-013), NSERC and
the CRC program.
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It seems that few applications of online power series multiplication were given at the
time (Fischer and Stockmeyer, 1974) was written. Recently, van der Hoeven rediscov-
ered Fischer and Stockmeyer’s half-line and online multiplications algorithms, which he
respectively called semi-relaxed and relaxed (Hoeven, 1997; Hoeven, 2002). In addition,
as alluded to above, he showed that online multiplication is the key to computing power
series solutions of large families of differential equations or of more general functional
equations; this result was extended in (Berthomieu and Lebreton, 2012) to further fam-
ilies of linear and polynomial equations, showing the fundamental importance of online
multiplication.

We complete this brief review of online multiplication by mentioning its adaptation to
real numbers in (Schröder, 1997) and its extension to the multiplication of p-adic integers
in (Berthomieu et al., 2011).

The results of the papers (Fischer and Stockmeyer, 1974; Schröder, 1997; Hoeven,
1997; Hoeven, 2002; Berthomieu et al., 2011) can be summarized by saying that online
multiplication is slower than “classical” multiplication by at most a logarithmic factor.
More precisely, let us denote by M(n) a function such that polynomials of degree at most
n−1 inA[x] can be multiplied inM(n) base ring operations. For instance, using the naive
algorithm gives M(n)=O(n2), Karatsuba’s algorithm gives M(n)=O

(

nlog2(3)
)

and Fast
Fourier Transform (FFT) techniques allow us to take M(n) quasi-linear: in the presence
of roots of unity in A of orders 2ℓ for any ℓ> 0, FFT gives M(n) = 9 · 2ℓ ℓ+O(2ℓ) with
ℓ= ⌈log2 (n)⌉ (hence the behavior of a “staircase” function).

Then, the results in (Fischer and Stockmeyer, 1974) and (Hoeven, 1997; Hoeven, 2002)
show that half-line multiplication to precision n, i.e. with input and output modulo xn,
can be done in time

H(n)=O

(

∑

k=0

⌊log2(n)⌋
n

2k
M(2k)

)

and that online multiplication to precision n can be done in time O(n) = O(H(n)). In
all cases, if M(n)/n is increasing, H(n) is O(M(n) log (n)), since all terms in the sum are
bounded from above by M(n); for naive or Karatsuba’s multiplication, H(n) is actually
O(M(n)). The algorithm introduced by van der Hoeven in (Hoeven, 2003) for half-line
multiplication improves on the one reported above by a constant factor.

2 Our contribution. In this paper, we introduce a simple and fast algorithm for online
multiplication, based on the ideas from (Hoeven, 2003). We compare it to previous
algorithms by giving the first precise analysis of the arithmetic complexity of the various
online and half-line multiplication algorithms mentioned up to now. For this complexity
measure, our algorithm is faster than Fischer and Stockmeyer’s by a constant factor; this
is confirmed by our experimental results.
2.1 Polynomial multiplication algorithms. For the rest of this paper, we will con-
sider the arithmetic cost of our algorithms, that is the number of basic additions and
multiplications in A they perform. The algorithms in this paper rely on two variants of
polynomial multiplication, called middle and short products. In order to describe them,
we introduce the following notation, used in all that follows: if a=

∑

i
ai x

i is in A[x] or
A[[x]], and n,m are integers with m>n, then we write

an
m= an+ an+1x+� + am−1x
m−n−1,
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so that an
m has degree less than m−n.
Let a, b ∈ A[x] with b of degree less than n. Then, the middle product MP(a,

b, n) of a and b is defined as the part cn−1
 2n−1 of the product c 8 a b, so that
deg (MP(a, b, n)) < n. Naively, the middle product is computed via the full mul-
tiplication c8 (a b mod x2n−1) div xn−1, which is done in time 2M(n) +O(n), but this
not optimal. Indeed, the middle product is closely related to the transposed multiplica-

tion (Bostan et al., 2003; Hanrot et al., 2004); precisely, it is a transposed multiplication,
up to the reversal of polynomial b; we deduce using for instance a general theorem
in (Bürgisser et al., 1997), or the algorithms in (Bostan et al., 2003; Hanrot et al., 2004),
that the arithmetic cost MP of the middle product MP(a, b, n) satisfies

MP(n)=M(n)+O(n).

Let now a, b ∈ A[x] be both of degree less than n. The low short product , or just
short product , of a and b is denoted by SP(a, b, n) 8 (a b)mod xn. Its variant, the
high short product of a and b is denoted by HP(a, b, n) 8 (a b) div xn−1. The two
operations are closely related since HP(a, b, n) = rev2n−1(SP(revn(a), revn(b), n)) where
revn(a)8 xn−1 a(1/x) denotes the reversal of length n of the polynomial a of degree less
than n. Therefore, these two short products have the same arithmetic cost.

We denote by SP(n) the arithmetic cost of the short product at precision n, and by
CSP a constant such that SP(n)6 CSP M(n) +O(n) holds for all n ∈N∗. Of course, we
can always assume CSP6 1, but the actual cost of the short product is hard to pin down:
although the size of the output is halved, we seldomly gain a factor 2 in the cost.

As always, it is easy to adapt the naive multiplication algorithm to compute only
the first terms; in this case, we gain a factor two in the cost, i.e. we can take CSP=1/2.
The paper (Mulders, 2000) published the first approach for having CSP < 1 for the
cost function M(n) = nlog2(3), which is an approximation of the cost of Karatsuba’s
multiplication, giving CSP= 0.81; however, taking for M(n) the exact arithmetic cost of
Karatsuba’s, the best known upper bound remains CSP= 1 (Hanrot and Zimmermann,
2004). For an hybrid multiplication algorithm that uses the naive algorithm for small
values and switches to Karatsuba’s method for larger values, the situation is better:
for a threshold n0 = 32, the bound SP∗(n) 6 0.57 M∗(n) is proved for multiplicative
complexity; it is beyond the scope of this paper to prove that this bound remains valid
for arithmetic complexity (for the implementation of (Hanrot and Zimmermann, 2004),
SP(n)6 0.6M(n) is a realistic practical bound).

No improvement is known for the short product based on FFT multiplication. However
the FFT algorithm is designed to compute the result of the multiplication modulo xn−1
instead of modulo xn when n is a power of 2. More precisely, let a, b ∈A[x] with b of
degree less than n and c8 a b their product. Then c0
 n+ cn
 2n−1= cmod (xn− 1) can
be computed within the number of arithmetic complexity of FFT multiplication in degree
n/2 when n is a power of 2. In any case, as will appear below, the overall contribution
of short products will turn out to be negligible when we use FFT multiplication.

3 Our complexity results. Table 1 gives bounds on the arithmetic complexity of half-
line multiplication algorithms depending on the algorithm we use to multiply truncated
power series (naive, Karatsuba or FFT). In all the paper, we will often use the notation
f(n)6 g(n) +O(h(n)) in our complexity statements for functions f , g, h:N→N∗ such
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that there exists D ∈R>0
+ such that for all n∈N, f(n)6 g(n)+Dh(n).

The half-line multiplication algorithm which appears in (Fischer and Stockmeyer,
1974) gives the costs of the first column; we give an overview of this algorithm in Sec-
tion 2.1. The second column corresponds to the half-line algorithm using middle product
presented in (Hoeven, 2003), which can be found in Section 2.2. Table 1 sums up the
results of Corollary 14 and Proposition 18.

half-line - HFS half-line with middle product - HvdH

naive HFS(n)6 2M(n)+O(n log (n)) HvdH(n)6 1.5M(n) +O(n log (n))

Karatsuba HFS(n)6 3M(n)+O(n log (n)) HvdH(n)6 2M(n)+O(n log (n))

FFT HFS(n)∼
1

2
9n log2 (n)2 HvdH(n)∼

1

4
9n log2 (n)2

Table 1. Complexity of half-line multiplication

Remark in particular that the cost of half-line algorithms using FFT polynomial mul-
tiplication involves the function 9 n log2 (n), which is a smoothed version of the “staircase”
cost function of the FFT mentioned above.

Table 2 describes online algorithms. The first column of Table 2 corresponds to
the online multiplication algorithm of (Fischer and Stockmeyer, 1974; Hoeven, 1997;
Berthomieu et al., 2011), which is presented in Section 2.3. Our contribution, the online
multiplication using middle and short products, gives the results of the second column
and is presented in Section 2.4. These complexity results are proved in Propositions 15,
16 and 18.

online - OFS online with short and middle products - OLS

naive OFS(n)6M(n+1)+O(n log (n)) OLS(n)6M(n+1)+O(n log (n))

Karatsuba OFS(n)6 2.5M(n+1)+O(n log (n)) OLS(n)6
( 3

2
CSP+1

)

M(n+1)+O(n log (n))

FFT OFS(n)∼ 9n log2 (n)2 OLS(n)∼
1

2
9n log2 (n)2

Table 2. Complexity of online multiplication

The factor before M(n+1) appearing for OLS with Karatsuba’s algorithm lies between
1.75 for CSP = 0.5 and 2.5 for CSP = 1. In practice, if we expect a behavior close to
CSP= 0.6 as in (Hanrot and Zimmermann, 2004), we obtain a bound OLS(n)6 1.9M(n+
1)+O(n log (n)).

In all cases, note that the bounds for our new algorithm OLS match, or compare
favorably to those for OFS.

Remark 1. Recent progress has been made on online multiplication (Hoeven, 2007;
Hoeven, 2012): these papers give an online algorithm that multiplies power series on
a wide range of rings in time M(n) log (n)o(1), which improves on the costs given here.
However, this algorithm is significantly more complex; we believe that there is still an
interest in developing simpler and reasonably fast algorithms, such as the one given here.

4
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Remark 2. It was remarked in (Hoeven, 1997; Hoeven, 2002) that Karatsuba’s multi-
plication could be rewritten directly as an online algorithm, thus leading to a online
algorithm with exactly the same numbers of operations. However, this algorithm is often
not practical: the rewriting induces Ω(log (n)) function calls at each step, which makes
it poorly suited to most practical implementations. For these reasons, we will not study
this algorithm.

Remark 3. When the required precision n is known in advance, it is possible to adapt
the online multiplication algorithms to this specific precision and thus lower the bounds
given in Tables 1 and 2 (see e.g. (Hoeven, 2002; Hoeven, 2003)).

Remark 4. We expect that our complexity results extend to online multiplication of p-
adic integers Zp. In this case, one has to handle carries, but we believe that the resulting
extra cost should be only O(n log (n)).

2 Description of the algorithms

In this section, we present our main algorithms for half-line and online multiplication;
we postpone the detailed complexity analysis to the next section.

In all cases, we will use the following notational device. To compute a product of the
form a b, either half-line or online, we will start from a “core” routine which takes as input
a and b, as well as an extra input c∈A[x] and a parameter i∈N: the polynomial c stores
the current state of the multiplication and the integer i indicates at which step we are.
Suppose that Algo is such an algorithm, with input inA[x]3×N and output inA[x]; then,
the main multiplication algorithm LoopAlgo will be the iterative process given as follows:

Algorithm LoopAlgo

Input: a, b∈A[x] and n∈N

Output: c∈A[x]

1. c=0

2. for i from 1 to n

a. c= Algo(a, b, c, i)

3. return c

To state correctness, we will use the following properties (HL) and (OL), which express
that LoopAlgo is a half-line, respectively online, multiplication algorithm. The half-line
property reads as follows:

Property (HL). For any n∈N and any a, b∈A[x], the result c∈A[x] of the computa-

tion LoopAlgo(a, b, n) satisfies c= a b modulo xn. Moreover, during the computation, the

algorithm reads at most the coefficients a0,
 , an−1 of the input a.

The property for online algorithms is in a similar vein:

5
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Property (OL). Algorithm Algo must satisfy Property (HL) and, additionally, read at

most the coefficients b0,
 , bn−1 of the input b.

For all algorithms below, we first give a recursive version of the algorithm, which is easy
to describe and applies when the target precision n has a special the form, such as n=2k

or n=2k−1. Then, we give the iterative form of the algorithms, obtained by “serializing”
the recursion tree of the recursive algorithm (using iterative algorithms is necessary to
fit in our framework of LoopAlgo so that we can check properties (HL) or (OL)).

2.1 Fischer and Stockmeyer’s half-line algorithm

The first half-line multiplication algorithm was introduced in
(Fischer and Stockmeyer, 1974) by Fischer and Stockmeyer, and rediscovered by van der
Hoeven in (Hoeven, 1997; Hoeven, 2002), up to a slight change in the recursion pattern.

We first give the recursive version of van der Hoeven’s variant. In its recursive form,
the algorithm computes a b, with deg (a)<n and deg (b)<n− 1, half-line in a, n being
a power of two. Define a0= amod xn/2 and a1= a div xn/2, as well as b0= bmod xn/2−1

and b1= b div xn/2−1. Then, compute the following:

1. d08 a0 b0 (recursive half-line multiplication)

2. d08 d0+ a0 b1x
n/2−1 (off-line multiplication)

3. d08 d0+ a1 b0x
n/2 (recursive half-line multiplication)

4. d08 d0+ a1 b1x
n−1 (off-line multiplication)

One can verify the half-line constraints are maintained throughout this process. This
recursive algorithm computes the full multiplication a b at step n=2k. However, we will
see that the property (HL) only guarantees that our product is correct modulo n at other
steps.

Algorithm Halfline_FS below gives the iterative version of this algorithm; a is the
online argument, and ν2(n) denotes the 2-adic valuation of integer n.

Algorithm Halfline_FS

Input: a, b, c∈A[x] and i∈N

Output: c∈A[x]

1. for k from 0 to ν2(i)

a. c= c+ ai−2k
 i b2k−1
 2k+1−1 x
i−1

2. return c

The diagram in Figure 1 shows the multiplications done when calling the iterative algo-
rithm LoopHalfline_FS. The coefficients a0, a1, 
 of a are placed in abscissa and the
coefficients b0, b1,
 of b in ordinate. Each unit square corresponds to a product between
corresponding coefficients of a and b, i.e. the unit square whose left-bottom corner is
at coordinates (i, j) stands for ai bj. Each larger square corresponds to a product of
polynomials; an s× s square whose left-bottom corner is at coordinates (i, j) stands for
ai
 i+s bj
 j+s. The number inside the square indicates at which step i of LoopAlgo this
computation is done in the iterative algorithm.

6
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a

b

1 2 3 4 5 6 7

2 4 6

4

a0 a1 a2 


b0

b1

b2



Fig. 1. Fischer-Stockmeyer’s half-line multiplication

We can check on Figure 1 that for all n ∈ N, all the coefficients of the product
∑

i=0
n−1∑

j=0
i

aj bi−j x
i=(a ·b)modxn are computed before or at step n. We can also check

that the algorithm is half-line in a since at step i, we use at most the coefficients a0,
 ,

ai−1 of a, so Algorithm Halfline_FS satisfies Property (HL). However the operand b is
off-line because, for example, the algorithm reads the coefficients b0,
 , b6 of b at step 4.

We will denote by HFS(n) the arithmetic complexity of algorithm LoopHalfline_FS with
input precision n, i.e. with input given modulo xn.

Proposition 5. The following holds:

HFS(n) =
∑

k=0

⌊log2(n)⌋ ⌊
n

2k

⌋

M(2k) +O(n log (n)).

PROOF. We do at each step a product of polynomials of degree 0 which each costs
M(1), hence n such products to reach precision n. Additionally, we do every other step,
starting from step 2, a product of polynomials of degree 1, which each costs M(2) for a
total of ⌊n/2⌋M(2); generally, we do ⌊n/2k⌋ products in degree 2k − 1. Altogether, this
accounts for the first term in the formula (note that the upper bound in the sum is the
last value of k for which ⌊n/2k⌋is nonzero).

Keeping an exact count of all additions necessary to compute c is not necessary: at
worst, each product with input size 2k incurs 2k+1 scalar additions to add its output to
c. If we write ℓ8 ⌊log2 (n)⌋, the total is thus at most

∑

k=0

⌊log2(n)⌋ ⌊
n

2k

⌋

2k+16
∑

k=0

ℓ

2n,

which is O(n log (n)). �

2.2 van der Hoeven’s half-line algorithm

Another half-line algorithm was introduced by van der Hoeven in (Hoeven, 2003).
Whereas algorithm Halfline_FS used plain multiplication as a basic tool, this new
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algorithm uses middle products. As before, this algorithm is half-line with respect to the
input a.

First, we give the recursive version; in this case, we have both deg (a) < n and
deg (b) < n, for n of the form n = 2k − 1. This time, we define a0 = a mod x(n−1)/2,
a1=adivx(n+1)/2 and b0= bmodx(n−1)/2, so that all these polynomials have degree less
than 2k−1− 1; define as well a0⋆= amod x(n+1)/2. The algorithm does not compute the
product a b, but rather a bmodxn at steps n of the form n=2k−1. It proceeds as follows:

1. d08 a0 b0modx(n−1)/2 (recursive half-line multiplication)

2. d08 d0+MP
(

a0
⋆, b,

(n+1)

2

)

x(n−1)/2 (off-line middle product)

3. d08 d0+
(

a1 b0mod x(n−1)/2
)

x(n+1)/2 (recursive half-line multiplication)

Again, one can check that the half-line constraints are maintained for the recursive calls.
Since we compute only one middle product, whose size and cost are roughly those

of one of the two multiplications done in the previous Subsection 2.1, we expect this
algorithm to be faster than the previous one. To make this precise, we will analyze the
iterative version LoopHalfline_vdH of this algorithm, where subroutine Halfline_vdH looks
as follows:

Algorithm Halfline_vdH

Input: a, b, c∈A[x] and i∈N

Output: c∈A[x]

1. Let m8 ν2(i)

2. c= c+MP(ai−2m
 i, b0
 2m+1−1, 2
m) xi−1

3. return c

The mechanism of this algorithm is sketched in Figure 2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
a

b

Fig. 2. van der Hoeven’s half-line multiplication with middle product
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One easily sees that Algorithm Halfline_vdH satisfies Property (HL), but the input
argument b is off-line because (for example) at step 2, the algorithm reads b0, b1, b2.

We will denote by HvdH(n) the arithmetic complexity of the half-line multiplication
algorithm LoopHalfLine_vdH, with target precision n.

Proposition 6. The following holds:

HvdH(n)=
∑

k=0

⌊log2(n)⌋ ⌊
n

2k+1
+

1

2

⌋

M(2k)+O(n log (n)).

PROOF. We claim that the cost of polynomial multiplications is given by

∑

k=0

⌊log2(n)⌋ ⌊
n+2k

2k+1

⌋

MP(2k).

Indeed, as we can see on Figure 2, for any integer k, we do a middle product of degree
2k every 2k+1th step, starting from step 2k. We saw before that in size 2k, the difference
in cost between a middle product and a regular product is linear in 2k; applying this to
the above formula shows that the cost of polynomial multiplications is

∑

k=0

⌊log2(n)⌋ ⌊
n+2k

2k+1

⌋

M(2k)+O(n log (n)).

We must also take into account the additions of polynomials. Reasoning as in the proof
of Proposition 5, we see that the extra cost is O(n log (n)). �

2.3 Fischer and Stockmeyer’s online algorithm

We continue with the online multiplication algorithm due to Fischer and Stockmeyer,
which is built upon their half-line algorithm. We first give the recursive version of this
algorithm, for a and b of degree less than n, with n of the form 2k − 1. To compute a b,
online in a and b, define a0=amodx(n−1)/2 and a1=adivx(n−1)/2, and define similarly
b0 and b1. Then, compute the following:

1. d08 a0 b0 (recursive online multiplication)

2. d08 d0+ a0 b1x
(n−1)/2 (half-line multiplication)

-. d08 d0+ a1 b0x
(n−1)/2 (half-line multiplication)

3. d08 d0+ a1 b1x
n−1 (off-line multiplication)

One can verify the online constraints are maintained throughout this process, provided
the two half-line product are done “in parallel”. Algorithm Online_FS below gives the
iterative version of this algorithm, that applies to any n; as before, ν2(n) denotes the 2-
adic valuation of integer n.

9
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Algorithm Online_FS

Input: a, b, c∈A[x] and i∈N

Output: c∈A[x]

1. for k from 0 to ν2(i+1)

a. c= c+ ai−2k
 i b2k−1
 2k+1−1 x
i−1

b. if (i+1=2k+1)

return c

c. c= c+ a2k−1
 2k+1−1 bi−2k
 i x
i−1

2. return c

The following diagram sums up the computation made at each step by the iterative
algorithm LoopOnline_FS and shows that it satisfies Property (OL).

1 2 3 4 5 6

2

3
3 5

4

5
5

7 8 9 10

7 9

76

7

8

9

7

9

10

a

b

Fig. 3. Fischer and Stockmeyer’s online multiplication

We denote by OFS(n) the arithmetic cost induced by all operations done up to precision
n.

Proposition 7. The following holds:

OFS(n)=
∑

k=0

⌊log2(n+1)⌋−1 (

2

⌊

n+1

2k

⌋

− 3

)

M(2k)+O(n log (n)).

PROOF. For any k>0, we do one product in degree 2k−1 at step 2k+1−1, then two such
products every 2kth step. The total number of such products with target precision n is

⌊

n− (2k− 1)

2k

⌋

+

⌊

n− (2k+1− 1)

2k

⌋

=2

⌊

n+1

2k

⌋

− 3,

provided (n + 1)/2k > 2. This accounts for the first term in the above formula; as in
the previous propositions, accounting for all polynomial additions induces the extra
O(n log (n)) term. �
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2.4 A new online algorithm

The algorithm in the previous subsection relied on Fischer-Stockmeyer’s half-line algo-
rithm to derive an online algorithm. In this subsection, we show how using van der
Hoeven’s half-line short product algorithm leads to a new online multiplication algorithm.

As before, we start by giving the recursive version of the algorithm, which takes as
input a and b of degrees less than n, with this time n of the form 2k − 2; the output is
(a b)modxn. We define now a0=amodx(n−2)/2, a0⋆=amodxn/2 and a1=adivxn/2, and
similarly for b0, b0⋆ and b1, and compute the following:

1. d08 a0 b0modx(n−2)/2 (recursive online multiplication)

2. d08 d0+HP(a0⋆, b0⋆, n/2) x(n−2)/2 (off-line high product)

3. d08 d0+
(

a0 b1mod xn/2
)

xn/2 (half-line short product)

-. d08 d0+
(

a1 b0mod xn/2
)

xn/2 (half-line short product)

This gives us the following iterative algorithm, that is online with respect to inputs a

and b.

Algorithm Online_LS

Input: a, b, c∈A[x] and i∈N

Output: c∈A[x]

1. m= ν2(i+1)

2. if (i+1=2m)

a. c= c+HP(a0
 i, b0
 i, i)x
i−1

b. return c

3. c= c+MP(ai−2m
 i, b0
 2m+1−1) x
i−1

4. c= c+MP(bi−2m
 i, a0
 2m+1−1) x
i−1

5. return c

1 2 4 8 10

2

4

8

10

3

6

9

9

6

5

5
7

11

11

a

b

Fig. 4. Online multiplication with middle and short products
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Figure 4 sums up the computations of the iterative algorithm LoopOnline_LS and shows
that it satisfies Property (OL). Similarly to what we did in the previous sections, we
denote by OLS(n) the cost of this algorithm with target precision n.

Proposition 8. The following holds:

OLS(n) =
∑

k=1

⌊log2(n+1)⌋

SP(2k − 1) + 2

(

∑

k=0

⌊log2(n+1)⌋−1 ⌊
n+1

2k+1
−

1

2

⌋

M(2k)

)

+

O(n log (n)).

PROOF. The first term describe the short product in size 2k− 1 that takes place at step
2k − 1. The second term comes from the fact that two middle products in size 2k are
done every 2k+1 steps, starting from step 3 ·2k−1, leading to a sum of terms of the form

⌊

n+2k+1− (3·2k− 1)

2k+1

⌋

=

⌊

n+1

2k+1
−

1

2

⌋

.

As usual, the extra additions add up to a O(n log (n)) term. �

Remark 9. Even though there is no efficient short FFT multiplication algorithm, we can
compute the short product of Step 2 efficiently. Indeed, we noticed in Section 1 that we
can adapt the FFT multiplication to compute c0
 n+ cn
 2n−1 where c= a b and a, b are
polynomials of length n. Since the part c0
 n was already computed by previous steps,
we can access to cn
 2n−1 in half the time of a multiplication. However, we will see that
for FFT multiplication, the contribution of these short products is in any case negligible.

3 Complexity analysis

We introduce three auxiliary complexity functions N→N, defined as

M
(1)(n) 8

∑

k=0

⌊log2(n)⌋

M(2k)

M
(2)(n) 8

∑

k=0

⌊log2(n)⌋
⌊

n

2k

⌋

M(2k)

M
(3)(n) 8

∑

k=0

⌊log2(n)⌋ ⌊
n

2k+1
+

1

2

⌋

M(2k).

The cost of the previous algorithms can all be expressed using these functions.

Proposition 10. Up to a term in O(n log (n)),

HFS(n) = M
(2)(n),

HvdH(n) = M
(3)(n),

OFS(n) = 2M(2)(n+1)− 3M(1)(n+1)+M(2ℓ), with ℓ= ⌊log2 (n+1)⌋

12
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OLS(n) 6 (CSP− 2)M(1)(n+1)+2M(3)(n+1).

PROOF. This is trivial for HFS and HvdH using Propositions 5 and 6. Propositions 7 and 8
give us the formulas on OFS and OLS by summing from 0 to ℓ= ⌊log2 (n+ 1)⌋ instead of
from 0 to ℓ− 1 and using SP(n)6CSPM(n)+O(n). �

In this section, we give bounds on these auxiliary functions. Since their behavior varies
when M corresponds to a super-linear, resp. a quasi-linear function, we separate these
two cases and start with the case of superlinear functions.

Our objective is to give bounds that relate as closely as possible to practice. We
choose not to assume that M(n)/n is increasing, since this would not be satisfied for the
exact operation count of Karatsuba’s algorithm (this assumption would be satisfied if we
used the upper bound M(n) = c nlog2(3), for some suitable c, but since we want precise
estimates, we need to be more subtle).

3.1 Super-linear multiplication algorithms

In this subsection, we will make the following assumption.

Hypothesis (SL). The arithmetic cost function M satisfies M(2 n) = cM(n) + a n+ b

with a, b∈Z, c∈ ]2; +∞[ and M(2n+1)−M(2n)>M(3)−M(2) for n> 1.

As we will see below, this framework includes both naive and Karatsuba’s algorithms,
but it does not include Toom-Cook algorithms, nor the variant of Karatsuba’s algorithm
that revert to the naive one for small values of n.

In the following lemmas, we use assumption (SL) to prove upper bounds on functions
M

(1)(n), M(2)(n) and M
(3)(n). To this effect, define the constants

a′
8

a

c− 2
, b′8

b

c− 1
and e8 |a′|+ |b′|,

as well as the function d(λ)8 M(λ)+ a′λ+ b′, for λ in N.

Lemma 11. Assumption (SL) implies that |M(2k λ)−d(λ) ck|6e 2k λ holds for λ∈N∗.

PROOF. It suffices to unroll the recurrence k times, and sum the geometric progressions:

M(2kλ) = cM(2k−1λ) + a 2k−1λ+ b

= ckM(λ)+ a λ (2k−1+� + ck−1)+ b (1+� + ck−1)

= ckM(λ)+
a λ (ck − 2k)

c− 2
+

b (ck− 1)

c− 1

= ck
(

M(λ)+
a λ

c− 2
+

b

c− 1

)

−
a 2kλ

c− 2
−

b

c− 1
.

The conclusion follows immediately. �

Remark in particular that the former lemma implies that |M(2k)− d(1) ck|=O(2k).
In particular, because M is non-negative, we deduce that d(1)> 0.

13
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Lemma 12. Let n be in N, with base-2 expansion given by n =
∑

i=0
ℓ

ni 2i, where

ℓ8 ⌊log2 (n)⌋. Then, under assumption (SL), we have

M
(1)(n) =

c

c− 1
M(2ℓ) +O(n)

M
(2)(n) =

c

c− 2

∑

i=0

ℓ

niM(2i)+O(n log (n))

M
(3)(n) =

c− 1

c− 2

∑

i=0

ℓ

niM(2i)+O(n log (n)).

PROOF. In all that follows, we write for simplicity d 8 d(1) and M
(4)(n) =

∑

i=0
ℓ

niM(2i). We start with M
(1), applying the previous lemma to each summand:

∣

∣

∣
M

(1)(n)−
c

c− 1
M(2ℓ)

∣

∣

∣
=

∣

∣

∣

∣

∣

∑

k=0

ℓ

M(2k)−
c

c− 1
M(2ℓ)

∣

∣

∣

∣

∣

6

∣

∣

∣

∣

∣

∑

k=0

ℓ

d ck −
c

c− 1
M(2ℓ)

∣

∣

∣

∣

∣

+
∑

k=0

ℓ

e 2k

6

∣

∣

∣

c

c− 1
d cℓ−

c

c− 1
M(2ℓ)

∣

∣

∣
+

d

c− 1
+ e (2ℓ+1− 1)

6
c

c− 1
e 2ℓ+

d

c− 1
+ e (2ℓ+1− 1),

which amounts to O(n). Next, one has

∣

∣

∣M
(2)(n)−

c

c− 2
M

(4)(n)
∣

∣

∣ =

∣

∣

∣

∣

∣

∑

k=0

ℓ
⌊

n

2k

⌋

M(2k)−
c

c− 2
M

(4)(n)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

k=0

ℓ
∑

i=k

ℓ

ni 2
i−kM(2k)−

c

c− 2
M

(4)(n)

∣

∣

∣

∣

∣

6

∣

∣

∣

∣

∣

∑

k=0

ℓ
∑

i=k

ℓ

ni 2i−k d ck −
c

c− 2
M

(4)(n)

∣

∣

∣

∣

∣

+

∑

k=0

ℓ
∑

i=k

ℓ

ni 2
i−k (e 2k)

=

∣

∣

∣

∣

∣

∑

i=0

ℓ

ni 2i d
(c/2)i+1− 1

(c/2)− 1
−

c

c− 2
M

(4)(n)

∣

∣

∣

∣

∣

+

O(n log (n))

6

∣

∣

∣

∣

∣

(c/2)

(c/2)− 1

∑

i=0

ℓ

ni d c
i−

c

c− 2
M

(4)(n)

∣

∣

∣

∣

∣

+O(n log (n))

6 O(n log (n)).

Finally, we have the inequalities
∣

∣

∣

∣

M
(3)(n)−

c− 1

c− 2
M

(4)(n)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

k=0

ℓ (⌊

n

2(k+1)

⌋

+nk

)

M(2k)−
c− 1

c− 2
M

(4)(n)

∣

∣

∣

∣

∣

14
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6

∣

∣

∣

∣

∣

∑

k=0

ℓ
∑

i=k+1

ℓ

ni 2i−(k+1) d ck −
1

c− 2
M

(4)(n)

∣

∣

∣

∣

∣

+

∑

k=0

ℓ
∑

i=k+1

ℓ

ni 2
i−(k+1) e 2k

=

∣

∣

∣

∣

∣

∑

i=1

ℓ

ni 2i−1 d
(c/2)i− 1

(c/2)− 1
−

1

c− 2
M

(4)(n)

∣

∣

∣

∣

∣

+

O(n log (n))

6

∣

∣

∣

∣

∣

(1/2)

(c/2)− 1

∑

i=0

ℓ

ni d c
i−

1

c− 2
M

(4)(n)

∣

∣

∣

∣

∣

+O(n log (n))

6 O(n log (n)).

�

The following inequality will allow us to control terms that appear in the estimates

for M(2)(n) and M
(3)(n) given above. We introduce the notation C8

d(3)− d(2)

d(1)
.

Lemma 13. Let n be in N, with base-2 expansion given by n =
∑

i=0
ℓ

ni 2
i, where

ℓ8 ⌊log2 (n)⌋. Then, under assumption (SL), we have

M(2ℓ)+C
∑

i=0

ℓ−1

niM(2i)6M(n)+O(n log (n)).

In particular, if C > 1, we have

∑

i=0

ℓ

niM(2i)6M(n)+O(n log (n)).

PROOF. The proof proceeds in three steps. First, we prove that the inequality d(2n+
1)− d(2 n)> d(3)− d(2) holds for any n> 1. Indeed, we have that d(2 n+1)− d(2 n) =
M(2 n + 1) − M(2 n) + a′, so the assumption M(2 n + 1) − M(2 n) > M(3) − M(2)
establishes our claim. Next, we establish that for all k ∈N and m> 1, we have

M(2k+1m)+CM(2k)6M(2k+1m+2k)+ e′ 2k+1m,

for some e′ that does not depend on k or m. Indeed, Lemma 11 implies the inequalities

M(2k+1m)+CM(2k) 6 ck (d(2m)+Cd(1)) + e 2k (2m+C)

ck d(2m+1) 6 M(2k (2m+1))+ e 2k (2m+1).

On the other hand, the inequality in the first paragraph implies that d(2m) +C d(1)6
d(2m+1), and our claim follows by taking (for instance) e′= e (C +5)/2.

We can now prove the lemma. Take n in N, with base-2 coefficients n0,
 ,nℓ. Applying
the above inequality with k= ℓ− 1 and m=1 yields

M(2ℓ)+Cnℓ−1M(2ℓ−1)6M(2ℓ+nℓ−12
ℓ−1)+ e′ 2ℓ6M(2ℓ+nℓ−12

ℓ−1)+ e′n′,
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with n′ = 2 n. Adding the term C nℓ−2 M(2ℓ−2) and applying the same inequality with
k= ℓ− 2 and m=2+nℓ−1, so that we still have 2k+1m6n′, we get

M(2ℓ)+
∑

i=ℓ−2

ℓ−1

CniM(2i) 6 M(2ℓ+nℓ−12ℓ−1)+Cnℓ−2M(2ℓ−2)+ e′n′

6 M(2ℓ+nℓ−12
ℓ−1+nℓ−2 2

ℓ−2)+ e′ (2n′).

We can continue in this manner until we get M(2ℓ) +C
∑

i=0
ℓ−1

niM(2i)6M(n) + e′ ℓ n′,
which proves the lemma. �

Corollary 14. Under assumption (SL) and if C > 1, one has

HFS(n)6
c

c− 2
M(n)+O(n log (n)) and HvdH(n)6

c− 1

c− 2
M(n)+O(n log (n))

and these bound are asymptotically optimal since

HFS(2
m)∼

c

c− 2
M(2m) and HvdH(2

m)∼
c− 1

c− 2
M(2m).

PROOF. We deal with HFS(n) first. Using Proposition 10, then Lemma 12 for the equality
below and Lemma 13 for the following inequality, we have that for all n∈N,

HFS(n) =
c

c− 2

∑

i=0

ℓ

niM(2i) +O(n log (n))

6
c

c− 2
M(n) +O(n log (n)).

When n=2m, one has

HFS(2
m)=

c

c− 2
M(2m)+O(n log (n))∼

c

c− 2
M(2m).

The case of HvdH is handled similarly. �

Proposition 15. Under assumption (SL) and if C >
2 c (c− 1)

c+2
, one has

OFS(n)6
c+2

(c− 2) (c− 1)
M(n+1)+O(n log (n))

and this bound is asymptotically optimal, since

OFS(2
m− 1)∼

c+2

(c− 2) (c− 1)
M(2m).

PROOF. Let ℓ8 ⌊log2 (n+1)⌋ and n+1=
∑

i=0
ℓ

ni 2
i be the base-2 expansion of n+1.

Then, using Proposition 10 and Lemma 12, one deduces

OFS(n) = 2

(

c

c− 2

∑

i=0

ℓ

niM(2i)+O(n log (n))

)

− 3
(

c

c− 1
M(2ℓ)+O(n)

)

+M(2ℓ)

=

(

2 c

c− 2
−

3 c

c− 1
+ 1

)

M(2ℓ)+
2 · c

c− 2

∑

i=0

ℓ−1

niM(2i)+O(n log (n))

16
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= C1M(2ℓ)+C2

∑

i=0

ℓ−1

niM(2i)+O(n log (n))

with C1=
c+2

(c− 2) (c− 1)
and C2=

2 · c

c− 2
. Provided that

C2

C1
6

d(3)− d(2)

d(1)
=C,

we can then use Lemma 13 to deduce that OFS(n) 6 C1 M(n + 1) + O(n log (n)). For
n+1=2m, all ni are zero for i < ℓ, so one has

OFS(2
m− 1) = C1M(2m) +O(n log (n))∼C1M(2m).

�

Proposition 16. Under assumption (SL) and if C >
2 (c− 1)2

c (c− 2)CSP +2
, one has

OLS(n)6
c (c− 2)CSP+2

(c− 2) (c− 1)
M(n+1)+O(n log (n))

and these bounds are asymptotically optimal provided that SP(2k − 1)∼CSPM(2k):

OLS(2m− 1)∼m→∞
c (c− 2)CSP+2

(c− 2) (c− 1)
M(2m).

PROOF. Let ℓ8 ⌊log2 (n+1)⌋ and n+1=
∑

i=0
ℓ

ni 2i be the base-2 expansion of n+1.
Using Proposition 10 and Lemma 12, we deduce

OLS(n) 6 (CSP− 2)
(

c

c− 1
M(2ℓ)

)

+2

(

c− 1

c− 2

∑

i=0

ℓ

niM(2i)

)

+O(n log (n))

= C1
′
M(2ℓ) +C2

′
∑

i=0

ℓ−1

niM(2i) +O(n log (n))

with C1
′ =

c (c− 2)CSP +2

(c− 2) (c− 1)
and C2

′ =
2 (c− 1)

c− 2
. Provided that

C2
′

C1
′ 6

d(3)− d(2)

d(1)
=C,

we can then use Lemma 13 to deduce that OLS(n) 6 C1
′
M(n + 1) + O(n log (n)). For

n+1=2m, all ni are zero for i < ℓ, so one has

OLS(2
m− 1)=C1

′
M(2m)+O(n log (n))∼C1

′
M(2m)

under the condition that CSP is optimal in the sense SP(2k − 1)∼CSPM(2k). �

Let us now verify that the naive and Karatsuba’s multiplication algorithms satisfy the

17
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hypotheses of Corollary 14 and Propositions 15 and 16. Proposition 15 requires

C >
2 c (c− 1)

c+2
=

{

4 if c=4
12/5 if c=3

,

whereas Propositions 16 is verified whenever

C >
2 (c− 1)2

c (c− 2)/2+2
=

{

3 if c=4
16/7 if c=3

,

since CSP> 1/2.

4 Naive multiplication. The naive algorithm has M(n)=n2+(n−1)2=2 n2− 2 n+1.
Using this expression, it is straightforward to verify that it satisfies hypothesis (SL),
with M(2 n)=4M(n)+4 n−3. Since M(n)∼2 n2 and M(2k λ)∼d(λ) 4k using Lemma 11,

we get C =
d(3)− d(2)

d(1)
= limk→∞

M(3 · 2k)−M(2 · 2k)

M(2k)
=5. Therefore the naive multiplication

satisfies the hypotheses of Corollary 14 and Propositions 15 and 16. This gives us the
first row of Tables 1 and 2.

5 Karatsuba’s algorithm. Counting all operations, Karatsuba’s algorithm can be
implemented using K(n) operations, where K(1) = 1 and K satisfies the following recur-
rence relation:

K(n) = 2K(⌈n/2⌉)+K(⌊n/2⌋) + 4n− 4.

The first two terms in the right-hand side require no justification, but we may say a few
words about the linear term 4 n − 4. For instance, for n= 2m, writing a = a0 + xm a1
and b= b0 + xm b1, we do 2m additions prior to the recursive calls to compute a0 + a1
and b0 + b1, 6 m − 3 additions and subtractions after the recursive call to compute
(a0+ a1) (b0+ b1)− a0 b0− a1 b1 and m− 1 additions to add that term to the result, for
a total of 8m− 4= 4n− 4. The case n=2m+1 is similar.

In particular, we have K(1)=1,K(2)=7 and K(3)=23. For even inputs, this becomes
K(2 n) = 3 K(n) + 8 n − 4, which show that the first part of our assumption is satisfied

and that a′= 8, b′=−2. Since d(λ) =M(λ) + a′ λ+ b′, we get C =
d(3)− d(2)

d(1)
=

45− 13

7
=

32

7
. Therefore Karatsuba’s multiplication satisfies the hypotheses of Corollary 14 and

Propositions 15 and 16, from which we deduce the second row of Tables 1 and 2.
To prove the second item of (SL), we show by induction that for n > 1, K(n + 1) −

K(n)>K(2)−K(1). Indeed, the case n=1 is clear, and the inductive step follows from
the equalities

K(n+1)−K(n)=

{

2 (K(n/2+1)−K(n/2))+ 4 if n even
K((n− 1)/2+1)−K((n− 1)/2)+4 if n odd.

As claimed, we deduce that

K(2n+1)−K(2n)= 2 (K(n+1)−K(n))+ 4> 2 (K(2)−K(1))+ 4=K(3)−K(2).

Remark that it is possible to save ⌊n/2⌋ − 1 redundant additions, see for instance
Exercise 1.9 in (Brent and Zimmermann, 2011). This improved algorithm still satisfies

18
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our assumptions, but our implementation does not use it.

3.2 Quasi-linear multiplication algorithms

Our previous analysis is not valid for quasi-optimal multiplication algorithms. In this
section, we work under the following hypothesis.

Hypothesis (QL). There exists K ∈R>0 and (i, j)∈N2 such that

M(2k)∼K 2k ki log2 (k)j.

This hypothesis is verified by the fast Fourier transform algorithm which satisfiesM(2k)=

9 · 2k k + O(2k) under the condition that there exists enough 2kth roots of unity
(see (Gathen and Gerhard, 2003)). Another suitable algorithm is the Truncated Fourier
Transform because its cost coincides with the one of the FFT on powers of two (Hoeven,
2004). However, the Schönhage-Strassen multiplication algorithm does not fit in, as the
ratio M(2k)/(2k k log2 (k)) has no limit at infinity.

Lemma 17. If M satisfies hypothesis (QL), then it verifies the following relations

M
(1)(n) = O(M(n)),

M
(2)(n) ∼

1

(i+1)

n

2ℓ
M(2ℓ) log2 (n),

M
(3)(n) ∼

1

2 (i+1)

n

2ℓ
M(2ℓ) log2 (n).

PROOF. From hypothesis (QL), we get M(1)(n)∼
∑

k=0
⌊log2(n)⌋ K 2k ki (log2 k)j. Because

∑

k=0
ℓ

K 2k ki (log2k)j6 2 (K 2ℓ ℓi (log2 ℓ)j)= 2M(n) where ℓ= ⌊log2 (n)⌋, we deduce our
first point. Also, one has

M
(2)(n)=

∑

k=0

ℓ

⌊n/2k⌋M(2k) =
∑

k=0

ℓ

(n/2k)M(2k)+O
(

M
(1)(n)

)

.

For the second point, notice that M(2)(n)−
∑

k=0
ℓ

(n/2k)M(2k) is a big-O of M(1)(n) and
so of M(n) too. Conclude using the following equivalents for n tends to infinity

∑

k=0

ℓ

(n/2k)M(2k) ∼ K
∑

k=0

ℓ

(n/2k) 2k ki log2
j (k)

∼ Kn

(

∑

k=0

ℓ

ki log2
j (k)

)

∼ Kn

(

ℓi+1

i+1
log2

j (ℓ)

)

.

Finally, we deal with M
(3):

M
(3)(n)=

∑

k=0

ℓ
n

2k+1
M(2k)+O

(

M
(1)(n)

)

∼
1

2 (i+1)

n

2ℓ
M(2ℓ) log2 (2ℓ). �
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Proposition 18. Whenever M(2k)∼K 2k k log2 (k)j with j ∈N,K ∈R>0, one has

HFS(n) ∼
1

2

n

2ℓ
M(2ℓ) log2 (n),

HvdH(n) ∼
1

4

n

2ℓ
M(2ℓ) log2 (n),

OFS(n) ∼
n

2ℓ
M(2ℓ) log2 (n),

OLS(n) ∼
1

2

n

2ℓ
M(2ℓ) log2 (n),

where ℓ= ⌊log2 (n)⌋.

PROOF. We use Lemma 17 and Proposition 10 for HFS, HvdH and OFS. For OLS, we need to
go back to Proposition 8 to deduce OLS(n)=2M(3)(n+1)+O

(

M
(1)(n)

)

and our result. �

Taking M(2ℓ)=9 ·2ℓ ℓ+O(2ℓ), the previous proposition gives the third row of Tables 1
and 2 after a quick simplification. In particular, we remark that the cost n

2ℓ
M(2ℓ) is

a smoothed version of M(n), especially for the “staircase” cost function of the FFT.
Indeed, the expression n

2ℓ
M(2ℓ) log2 (2ℓ) is equivalent to K n log2 (n)i log2 (log (n))j

under Hypothesis (QL). The equivalent simplifies further to an actual M(n) log2 (n) for
the Truncated Fourier Transform algorithms or for quasi-linear evaluation interpolation
schemes at n points.

4 Implementation and timings

We give timings of the different multiplication algorithms for the case of power series
Fp[[x]] with the 29-bit prime number p=268435459. Computations were done on one core
of an Intel Core i7 running at 3.6 GHz with 8Gb of RAM running a 64-bit Linux. Our
implementation uses the polynomial multiplication of NTL 6.0.0 (Shoup et al., 1990).
The threshold between the naive and Karatsuba’s multiplications is at degree 16 and the
one between Karatsuba’s and FFT multiplications at degree 600. Our middle product
implementation is based on the implementation described in (Bostan et al., 2003).

In Figure 5, we plot the timings in milliseconds of the multiplication of polynomials
and of several online multiplication algorithms on power series depending on the precision
in abscissa. The name M stands for NTL’s multiplication, the name HvdH stands for the
half-line multiplication using middle product of Section 2.2, the name OLS stands for the
online multiplication using middle (and short) product of Section 2.4, and so on.
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Fig. 5. Timings of different multiplication algorithms

Online algorithms are always slower than off-line algorithms since they have an addi-
tional constraint. However, we will see that online algorithms are faster in very small
precisions: this is because we compare online algorithms that compute short products
a bmodxn at each step (and occasionally more, such as the full product for OFS and OLS

when n=2ℓ) and an off-line algorithm that always compute the full product a b.
We now draw the ratio of the timings of all online algorithms compared to NTL’s

off-line multiplication. We give three figures depending on which off-line multiplication
algorithm is used. We start with the naive algorithm used in precisions 16n< 16.
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Fig. 6. Ratio of timings of different online products w.r.t. naive polynomial multipli-
cation
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For these small precisions, the ratio of timings do not follow our theoretical analysis.
We reckon that cache effects or other low-level hardware specificities have a non-negligible
effect on our timings. Still, we can notice from this figure that the variants using middle
product always improve the online algorithms.

Let us turn to intermediate precisions corresponding to Karatsuba’s algorithm. NTL
implements the variant of Karatsuba’s algorithm using the naive variant in small degrees
for plain multiplication and we coded an odd/even decomposition for short product.
Although Proposition 16 does not deal with this hybrid multiplication algorithm, we
believe that the results for “pure” Karatsuba’s multiplication could apply in this case for
n large enough and yield bounds OFS62.5M(n), HFS63M(n) and HvdH62M(n), omitting
terms in O(n). Concerning our algorithm, the short product has a ratio CSP = 0.6 in
practice so we would expect OLS6 1.9M(n).
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Fig. 7. Ratio of timings of different online products w.r.t. “hybrid” Karatsuba’s multi-
plication

This plot confirms the theoretical bounds for Karatsuba’s multiplication, except on a
few points for HvdH. Once again, the variants using middle product always improve online
algorithms by a constant factor.

Finally for precision corresponding to FFT algorithm, the ratio grows with the preci-
sion. Figure 8 shows the logarithmic growth of the ratio for precisions n=2ℓ. Note that
NTL uses the 3-primes FFT algorithm on our field Fp since it was lacking 2ℓth roots
of unity (see (Gathen and Gerhard, 2003, Chapter 8.3)). This algorithm still matches
Hypothesis (QL) in the range of degrees we consider and our analysis applies.

We can improve this analysis by plotting T(n)/(n/2ℓM(2ℓ) log2 (n)), where T denotes
of the functions HFS, ... that we are considering, expecting to observe constant ratios (in
theory, this ratio should tend to 1 for OFS, 1/2 for HFS and OLS, and 1/4 for HvdH). This
is done in Figure 9, where we observe a good agreement with theory.

In conclusion, we can see that the use of middle product always improves the perfor-
mance of both the online and half-line multiplication algorithms. We save up to a factor
2, which is attained for the FFT multiplication.
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ℓ
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