
HAL Id: lirmm-00867279
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00867279v2

Submitted on 24 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A simple and fast online power series multiplication and
its analysis

Romain Lebreton, Éric Schost

To cite this version:
Romain Lebreton, Éric Schost. A simple and fast online power series multiplication and its anal-
ysis. Journal of Symbolic Computation, 2016, 72, pp.231-251. �10.1016/j.jsc.2015.03.001�. �lirmm-
00867279v2�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00867279v2
https://hal.archives-ouvertes.fr

A simple and fast online power series
multiplication and its analysis�

Romain Lebreton

LIRMM
UMR 5506 CNRS

Université Montpellier II
Montpellier, France

Email: lebreton@lirmm.fr

Éric Schost

Computer Science Department
Western University
London, Ontario

Canada

Email: eschost@uwo.ca

Abstract

This paper focuses on online (or relaxed) algorithms for the multiplication of power series over
a �eld and their complexity analysis. We propose a new online algorithm for the multiplication
using middle and short products of polynomials as building blocks, and we give the �rst precise
analysis of the arithmetic complexity of various online multiplications. Our algorithm is faster
than Fischer and Stockmeyer's by a constant factor; this is con�rmed by experimental results.

Keywords: Online algorithm, relaxed algorithm, multiplication of power series, arithmetic
complexity

1 Introduction

Let A be a commutative ring with unity, and let x be an indeterminate over A
(the commutativity hypothesis may not be required but greatly simpli�es the setting
of this paper). Given two power series a =

P
i>0 ai x

i and b=
P

i>0 bi x
i in A[[x]], we

are interested in computing the coe�cients ci of the product c= a b under the following
constraint: we cannot use the coe�cients ai or bi before we have computed c0; :::; ci¡1.
This condition is useful to model situations where the inputs a; b and the output c are
related by a feedback loop, i.e. where c0; :::; ci¡1 are needed in order to determine ai and
bi (see the discussion below).

Previous work. Algorithms that satisfy such a constraint were introduced by Fischer
and Stockmeyer in (Fischer and Stockmeyer, 1974); following that reference, we will
call them online (the notion of an online algorithm extends beyond this question of
power series multiplication, see for instance (Hennie, 1966)). Still following Fischer and
Stockmeyer, we will also consider half-line multiplication, where one of the arguments,
say b, is assumed to be known in advance at arbitrary precision; in other words, the only
constraint for such algorithms is that we cannot use the coe�cient ai before we have
computed c0; :::; ci¡1.

�. This work has been partly supported by the ANR grant HPAC (ANR-11-BS02-013), NSERC and
the CRC program.

1

It seems that few applications of online power series multiplication were given at the
time (Fischer and Stockmeyer, 1974) was written. Recently, van der Hoeven rediscovered
Fischer and Stockmeyer's half-line and online multiplication algorithms, which he respec-
tively called semi-relaxed and relaxed (van der Hoeven, 1997; van der Hoeven, 2002). In
addition, as alluded to above, he showed that online multiplication is the key to com-
puting power series solutions of large families of di�erential equations or of more general
functional equations; this result was extended in (Berthomieu and Lebreton, 2012) to
further families of linear and polynomial equations, showing the fundamental importance
of online multiplication.

We complete this brief review of online multiplication by mentioning its adaptation to
real numbers in (Schröder, 1997) and its extension to the multiplication of p-adic integers
in (Berthomieu et al., 2011).

The results of the papers (Fischer and Stockmeyer, 1974; Schröder, 1997;
van der Hoeven, 1997; van der Hoeven, 2002; Berthomieu et al., 2011) can be summa-
rized by saying that online multiplication is slower than �classical� multiplication by
at most a logarithmic factor. More precisely, let us denote by M(n) a function such
that polynomials of degree at most n ¡ 1 in A[x] can be multiplied in M(n) ring oper-
ations in A. For instance, using the naive algorithm gives M(n) = O(n2), Karatsuba's
algorithm gives M(n) =O(nlog2(3)) and Fast Fourier Transform (FFT) techniques allow
us to take M(n) quasi-linear: in the presence of roots of unity in A of orders 2` for
any ` > 0, FFT gives M(n) = 9 � 2` ` + O(2`) with ` = dlog2(n)e (hence the behavior
of a �staircase� function, see (von zur Gathen and Gerhard, 2003, Chapter 8.2)).

Then, the results in (Fischer and Stockmeyer, 1974) and (van der Hoeven, 1997;
van der Hoeven, 2002) show that half-line multiplication to precision n, i.e. with input
and output modulo xn, can be done in time

H(n)=O

 X
k=0

blog2(n)c
n

2k
M(2k)

!

and that online multiplication to precision n can be done in time O(n) = O(H(n)). In
all cases, if M(n)/n is increasing, H(n) is O(M(n) log(n)), since all terms in the sum are
bounded from above by M(n); for naive or Karatsuba's multiplication, H(n) is actually
O(M(n)). The algorithm introduced by van der Hoeven in (van der Hoeven, 2003) for
half-line multiplication improves on the one reported above by a constant factor.

Recent progress has been made on online multiplication (van der Hoeven, 2007;
van der Hoeven, 2014): these papers give an online algorithm that multiplies power series
on a wide range of rings in time M(n) log(n)o(1), which improves on the costs given here.
However, this algorithm is signi�cantly more complex; we believe that there is still an
interest in developing simpler and reasonably fast algorithms, such as the one given here.

Our contribution. In this paper, we introduce a simple and fast algorithm for online mul-
tiplication, based on the ideas from (van der Hoeven, 2003). We compare it to previous
algorithms by giving the �rst precise analysis of the arithmetic complexity of the various
online and half-line multiplication algorithms mentioned up to now. For this complexity
measure, our algorithm is faster than Fischer and Stockmeyer's by a constant factor; this
is con�rmed by experimental results. This paper is based on the PhD. thesis (Lebreton,

2

2012). To the best of our knowledge, the complexity estimates of Tables 1 and 2 are
published for the �rst time.

Polynomial multiplication algorithms. For the rest of this paper, we will consider the
arithmetic cost of our algorithms, that is the number of additions and multiplications
in A they perform. The algorithms in this paper rely on two variants of polynomial
multiplication, called middle and short products. In order to describe them, we introduce
the following notation, used in all that follows: if a=

P
i ai x

i is in A[x] or A[[x]], and
n;m are integers with m>n, then we write

an:::m= an+ an+1 x+ ���+ am¡1xm¡n¡1;

so that an:::m has degree less than m¡n. If a; b2A[x], we denote respectively by amod b
and adiv b the remainder and quotient of the Euclidean division of a by b.

Let a; b 2 A[x] with b of degree less than n. Then, the middle product MP(a; b; n)
of a and b is de�ned as the part cn¡1:::2n¡1 of the product c := a b, so that deg(MP(a;
b; n)) < n. Naively, the middle product is computed via the full multiplication c :=
(a b mod x2n¡1) div xn¡1, which is done in time 2 M(n) + O(n), but this is not
optimal. Indeed, the middle product is closely related to the transposed multiplication
(Bostan et al., 2003; Hanrot et al., 2004); precisely, it is a transposed multiplication,
up to the reversal of polynomial b; we deduce using for instance a general theorem in
(Bürgisser et al., 1997), or the algorithms in (Bostan et al., 2003; Hanrot et al., 2004),
that the arithmetic cost MP of the middle product MP(a; b; n) satis�es

MP(n)=M(n)+O(n):

Let now a; b 2 A[x] be both of degree less than n. The low short product , or just
short product , of a and b is denoted by SP(a; b; n) := (a b)mod xn. Its variant, the
high short product of a and b is denoted by HP(a; b; n) := (a b) div xn¡1. The two
operations are closely related since HP(a; b; n) = revn(SP(revn(a); revn(b); n)) where
revn(a) :=xn¡1 a(1/x) denotes the reversal of length n of the polynomial a of degree less
than n. Therefore, these two short products have the same arithmetic cost.

We denote by SP(n) the arithmetic cost of the short product at precision n, and by
CSP a constant such that SP(n)6 CSPM(n) +O(n) holds for all n 2N�. Of course, we
can always assume CSP61, but the actual cost of the short product is hard to pin down:
although the size of the output is halved, we seldom gain a factor 2 in the cost.

As always, it is easy to adapt the naive multiplication algorithm to compute only
the �rst terms; in this case, we gain a factor two in the cost, i.e. we can take CSP =
1/ 2. The paper (Mulders, 2000) published the �rst approach for having CSP < 1 for
the cost function M(n) = nlog2(3), which is an approximation of the cost of Karat-
suba's multiplication, giving CSP= 0.81; however, taking for M(n) the exact arithmetic
cost of Karatsuba's multiplication, the best known upper bound remains CSP = 1
(Hanrot and Zimmermann, 2004). For an hybrid multiplication algorithm that uses the
naive algorithm for small values and switches to Karatsuba's method for larger values,
the situation is better: for a threshold n0 = 32, the bound SP�(n) 6 0.57 M�(n) is
proved in (Hanrot and Zimmermann, 2004) for multiplicative complexity; it is beyond
the scope of this paper to prove that this bound remains valid for arithmetic com-
plexity (for the implementation of (Hanrot and Zimmermann, 2004), SP(n) 6 0.6M(n)
is a realistic practical bound).

3

half-line - HFS half-line with middle product - HvdH

naive HFS(n)6 2M(n) +O(n log(n)) HvdH(n)6 1.5M(n)+O(n log(n)) *

Karatsuba HFS(n)6 3M(n) +O(n log(n)) HvdH(n)6 2M(n)+O(n log(n)) *
FFT HFS(n)� 1

2
9n log2(n)2 HvdH(n)� 1

4
9n log2(n)2 *

Table 1. Complexity of half-line multiplication

online - OFS online with short/middle products - OLS

naive OFS(n)6M(n+1)+O(n log(n)) OLS(n)6M(n+1)+O(n log(n))

Karatsuba OFS(n)6 2.5M(n+1)+O(n log(n)) OLS(n)6 3CSP +2

2
M(n+1)+O(n log(n))

FFT OFS(n)� 9n log2(n)2 OLS(n)� 1

2
9n log2(n)2

Table 2. Complexity of online multiplication

No improvement is known for the short product based on FFT multiplication. This
does not matter for our purposes since the overall contribution of short products will
turn out to be negligible when we use FFT multiplication.

Our complexity results. Table 1 gives bounds on the arithmetic complexity of half-line
multiplication algorithms depending on the algorithm we use to multiply truncated power
series (naive, Karatsuba or FFT). We will often use the notation f(n)6 g(n)+O(h(n))
in our complexity statements for functions f ; g;h:N!N� such that there existsD2R>0

such that for all n2N, f(n)6 g(n)+Dh(n).
Table 1 sums up the results of Corollary 14 and Proposition 10 (the asterisk in

some cells point to Remark 2). The half-line multiplication algorithm which appears
in (Fischer and Stockmeyer, 1974) gives the costs of the �rst column; we give an overview
of this algorithm in Section 2.1. The second column corresponds to the half-line algo-
rithm using middle product presented in (van der Hoeven, 2003), which can be found
in Section 2.2.

Remark in particular that the cost of half-line algorithms using FFT polynomial mul-
tiplication involves the function 9 n log2(n), which is a smoothed version of the �staircase�
cost function of the FFT mentioned above.

Table 2 describes online algorithms. The �rst column of Table 2 corresponds to the
online multiplication algorithm of (Fischer and Stockmeyer, 1974; van der Hoeven, 1997;
Berthomieu et al., 2011), which is presented in Section 2.3. Our contribution, the online
multiplication using middle and short products, gives the results of the second column
and is presented in Section 2.4. These complexity results are proved in Propositions 15,
16 and 10.

The factor before M(n+1) appearing for OLS with Karatsuba's algorithm lies between
1.75 for CSP = 0.5 and 2.5 for CSP = 1. In practice, if we expect a behavior close to
CSP = 0.6 as in (Hanrot and Zimmermann, 2004), we obtain a bound
OLS(n) 6 1.9 M(n + 1) + O(n log(n)). In all cases, note that the bounds for our new
algorithm OLS match, or compare favorably to those for OFS.

Remark 1. It was remarked in (van der Hoeven, 1997; van der Hoeven, 2002) that Karat-
suba's multiplication could be rewritten directly as an online algorithm, thus leading to

4

an online algorithm using exactly the same number of operations. However, this algo-
rithm is often not practical: the rewriting induces
(log(n)) function calls at each step,
which makes it poorly suited to most practical implementations (see (van der Hoeven,
2002, Section 4.2.1)). For these reasons, we will not study this algorithm.

Remark 2. When the required precision n is known in advance, it is possible to adapt
the online multiplication algorithms to this speci�c precision and thus lower the bounds
given in Tables 1 and 2. The only known bounds are the ones stated without proof in
(van der Hoeven, 2003); if n is known in advance, they are claimed to be HvdH(n)� 1

2
M(n)

for naive multiplication, HvdH(n)�M(n) for Karatsuba and HvdH(n)� 1

2
M(n) log(n) for

FFT.

Remark 3. We expect that our complexity results extend to online multiplication of
p-adic integers. In this case, one has to handle carries, but we believe that the resulting
extra cost should be only O(n log(n)).

2 Description of the algorithms

In this section, we present our main algorithms for half-line and online multiplication;
we postpone the detailed complexity analysis to the next sections.

In all cases, we will use the following notational device. To compute a product of
the form a b, either half-line or online, we will start from a �core� routine which takes as
input a and b, as well as an extra input c2A[x] and a parameter i2N: the polynomial
c stores the current state of the multiplication and the integer i indicates at which step
we are. Suppose that Algo is such an algorithm, with input in A[x]3�N and output in
A[x]; then, the main multiplication pattern is given in algorithm LoopAlgo.

Algorithm LoopAlgo

Input: a; b2A[x] and n2N
Output: c2A[x]

1. c=0

2. for i from 1 to n

a. c= Algo(a; b; c; i)

3. return c

To state correctness, we will use the following properties (HL) and (OL), which
express that LoopAlgo is a half-line, respectively online, multiplication algorithm. The
half-line property reads as follows:

Property (HL). For any n2N and any a; b2A[x], the result c2A[x] of the computa-
tion LoopAlgo(a; b; n) satis�es c= a b modulo xn. Moreover, during the computation, the
algorithm reads at most the coe�cients a0; :::; an¡1 of the input a.

The property for online algorithms is in a similar vein:

5

Property (OL). Algorithm Algo must satisfy Property (HL) and, additionally, reads
at most the coe�cients b0; :::; bn¡1 of the input b.

For all algorithms below, we �rst give a recursive version of the algorithm, which is
easy to describe and applies when the target precision n has a special form, such as n=2k

or n=2k¡1. Though these recursive versions won't be used afterwards, we feel that the
reader may bene�t from them as another point of view on the algorithms. For instance,
we know from experience that some online algorithms are closely related to recursive
divide-and-conquer algorithms; we hope that this presentation can help shed some light
on this relation.

After the recursive presentation, we give the iterative form of the algorithms, obtained
by �serializing� the recursion tree of the recursive algorithm (using iterative algorithms
is necessary to �t in our framework of LoopAlgo so that we can check properties (HL) or
(OL)).

Finally, we introduce three auxiliary complexity functions N!N, de�ned as

M(1)(n) :=
X
k=0

blog2(n)c

M(2k)

M(2)(n) :=
X
k=0

blog2(n)c j
n

2k

k
M(2k)

M(3)(n) :=
X
k=0

blog2(n)c �
n

2k+1
+
1
2

�
M(2k):

2.1 Fischer and Stockmeyer's half-line algorithm

The �rst half-line multiplication algorithm was introduced by Fischer and Stockmeyer
(Fischer and Stockmeyer, 1974), and rediscovered by van der Hoeven (van der Hoeven,
1997; van der Hoeven, 2002), up to a slight change in the recursion pattern.

We �rst give the recursive version of van der Hoeven's variant. In its recursive form, the
algorithm computes a b, with deg(a)<n and deg(b)<n¡ 1, half-line in a, with n being
a power of two. De�ne a0= amod xn/2 and a1= a div xn/2, as well as b0= bmod xn/2¡1

and b1= bdivxn/2¡1. Note that a and b are not split the same way. Then, compute the
following:

1. d0 := a0 b0 (recursive half-line multiplication)

2. d0 := d0+ a0 b1x
n/2¡1 (o�-line multiplication)

3. d0 := d0+ a1 b0x
n/2 (recursive half-line multiplication)

4. d0 := d0+ a1 b1x
n¡1 (o�-line multiplication)

One can verify that the half-line constraints are maintained throughout this process. This
recursive algorithm computes the full multiplication a b at step n=2k. However, we will
see that the property (HL) only guarantees that our product is correct modulo xn at
other steps. Algorithm Halfline_FS below gives the iterative version of this algorithm;
a is the online argument, and �2(n) denotes the 2-adic valuation of integer n.

6

Algorithm Halfline_FS

Input: a; b; c2A[x] and i2N
Output: c2A[x]

1. for k from 0 to �2(i)

a. c= c+ ai¡2k:::i b2k¡1:::2k+1¡1 x
i¡1

2. return c

The diagram in Figure 1 shows the multiplications done when calling the iterative algo-
rithm LoopHalfline_FS. The coe�cients a0; a1; ::: of a are placed in abscissa and the
coe�cients b0; b1; ::: of b in ordinate. Each unit square corresponds to a product between
corresponding coe�cients of a and b, i.e. the unit square whose left-bottom corner is
at coordinates (i; j) stands for ai bj. Each larger square corresponds to a product of
polynomials; an s� s square whose left-bottom corner is at coordinates (i; j) stands for
ai:::i+s bj:::j+s. The number inside the square indicates at which step i of LoopHalfline_FS
this computation is done in the iterative algorithm.

a

b

1 2 3 4 5 6 7

2 4 6

4

a0 a1 a2 :::
b0

b1

b2

���

Fig. 1. Fischer-Stockmeyer's half-line multiplication

We can check on Figure 1 that for all n 2 N, all the coe�cients of the productP
i=0
n¡1P

j=0
i aj bi¡j x

i=(a �b)modxn are computed before or at step n. We can also check
that the algorithm is half-line in a since at step i, we use at most the coe�cients a0; :::;
ai¡1 of a, so Algorithm Halfline_FS satis�es Property (HL). However the operand b is
o�-line because, for example, the algorithm reads the coe�cients b0; :::; b6 of b at step 4.

We will denote by HFS(n) the arithmetic complexity of algorithm LoopHalfline_FS with
input precision n, i.e. to compute the product modulo xn.

Proposition 4. The following holds:

HFS(n) =M(2)(n)+O(n log(n)):

PROOF. We do at each step a product of polynomials of degree 0 which each costs
M(1), hence n such products to reach precision n. Additionally, we do every other step,
starting from step 2, a product of polynomials of degree 1, which each costs M(2) for a
total of bn/2cM(2); generally, we do bn/2kc products in degree 2k¡ 1. Altogether, this
accounts for the �rst term M(2)(n)=

P
k=0
blog2(n)c � n

2k

�
M(2k) in the formula (note that the

upper bound in the sum is the last value of k for which bn/2kc is nonzero).

7

Keeping an exact count of all additions necessary to compute c is not necessary: at
worst, each product with input size 2k incurs 2k+1 scalar additions to add its output to
c. The total is thus at most

P
k=0
blog2(n)c � n

2k

�
2k+16P k=0

blog2(n)c 2 n, which isO(n log(n)). �

2.2 van der Hoeven's half-line algorithm

Another half-line algorithm was introduced by van der Hoeven in (van der Hoeven,
2003). Whereas algorithm Halfline_FS used plain multiplication as a basic tool, this
new algorithm uses middle products. As before, this algorithm is half-line with respect
to the input a.

First, we give the recursive version; in this case, we have both deg(a)<n and deg(b)<
n, for n of the form n=2k¡1. This time, we de�ne a0=amodx(n¡1)/2, a1=adivx(n+1)/2

and b0 = b mod x(n¡1)/2, so that all these polynomials have degree less than 2k¡1 ¡ 1;
de�ne as well a0? = a mod x(n+1)/2. The algorithm does not compute the product a b,
but rather the short product a bmod xn at steps n of the form n=2k¡ 1. It proceeds as
follows:

1. d0 := a0 b0mod x(n¡1)/2 (recursive half-line short product)

2. d0 := d0+MP
�
a0
?; b;

(n+1)

2

�
x(n¡1)/2 (o�-line middle product)

3. d0 := d0+
¡
a1 b0mod x(n¡1)/2

�
x(n+1)/2 (recursive half-line short product)

Again, one can check that the half-line constraints are maintained for the recursive calls.
Since we compute only one middle product, whose size and cost are roughly those

of one of the two multiplications done in the previous Subsection 2.1, we expect this
algorithm to be faster than the previous one. To make this precise, we will analyze the
iterative version LoopHalfline_vdH of this algorithm, where subroutine Halfline_vdH looks
as follows; the mechanism of this algorithm is sketched in Figure 2.

Algorithm Halfline_vdH

Input: a; b; c2A[x] and i2N
Output: c2A[x]

1. Let m := �2(i)

2. c= c+MP(ai¡2m:::i; b0:::2m+1¡1; 2
m) xi¡1

3. return c

One easily sees that Algorithm Halfline_vdH satis�es Property (HL), but the input
argument b is o�-line because (for example) at step 2, the algorithm reads b0; b1; b2.

We will denote by HvdH(n) the arithmetic complexity of the half-line multiplication
algorithm LoopHalfLine_vdH, with target precision n.

Proposition 5. The following holds:

HvdH(n)=M(3)(n)+O(n log(n)):

PROOF. We claim that the cost of polynomial multiplications is given byX
k=0

blog2(n)c �
n+2k

2k+1

�
MP(2k): (1)

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14
a

b

Fig. 2. van der Hoeven's half-line multiplication with middle product

Indeed, as we can see on Figure 2, for any integer k, we do a middle product of degree 2k

every 2k+1th step, starting from step 2k. We saw before that MP(2k) =M(2k) +O(2k);
applying this to formula (1) shows that the cost of polynomial multiplications is

X
k=0

blog2(n)c �
n+2k

2k+1

�
M(2k)+O(n log(n)) =M(3)(n)+O(n log(n)):

We must also take into account the additions of polynomials. Reasoning as in the proof
of Proposition 4, we see that the extra cost is O(n log(n)). �

2.3 Fischer and Stockmeyer's online algorithm

We continue with the online multiplication algorithm due to Fischer and Stockmeyer,
which is built upon their half-line algorithm. We �rst give the recursive version of this
algorithm, for a and b of degree less than n, with n of the form 2k¡ 1. To compute a b,
online in a and b, de�ne a0= amod x(n¡1)/2 and a1=adivx(n¡1)/2, and de�ne similarly
b0 and b1. Then, compute the following:

1. d0 := a0 b0 (recursive online multiplication)

2. d0 := d0+ a0 b1x
(n¡1)/2 (half-line multiplication)

-. d0 := d0+ a1 b0x
(n¡1)/2 (half-line multiplication)

3. d0 := d0+ a1 b1x
n¡1 (o�-line multiplication)

One can verify that the online constraints are maintained throughout this process, pro-
vided the two half-line products are done �in parallel�.

Algorithm Online_FS below gives the iterative version of this algorithm, that applies
to any n; as before, �2(n) denotes the 2-adic valuation of the integer n; Figure 3 sums up
the computation made at each step by the iterative algorithm LoopOnline_FS and shows
that it satis�es Property (OL).

9

Algorithm Online_FS

Input: a; b; c2A[x] and i2N
Output: c2A[x]

1. for k from 0 to �2(i+1)

a. c= c+ ai¡2k:::i b2k¡1:::2k+1¡1 x
i¡1

b. if (i+1=2k+1)

return c

c. c= c+ a2k¡1:::2k+1¡1 bi¡2k:::i x
i¡1

2. return c

1 2 3 4 5 6

2

3
3 5

4

5
5

7 8 9 10

7 9

76

7

8

9

7

9

10

a

b

Fig. 3. Fischer and Stockmeyer's online multiplication

We denote byOFS(n) the arithmetic cost induced by all operations done up to precision n.

Proposition 6. The following holds:

OFS(n)= 2M(2)(n+1)¡ 3M(1)(n+1)+M(2`)+O(n log(n)):

PROOF. For any k>0, we do one product in degree 2k¡1 at step 2k+1¡1, then two such
products every 2kth step. The total number of such products with target precision n is�

n¡ (2k¡ 1)
2k

�
+

�
n¡ (2k+1¡ 1)

2k

�
=2

�
n+1

2k

�
¡ 3;

provided (n+1)/2k> 2. This accounts forX
k=0

blog2(n+1)c¡1 �
2

�
n+1

2k

�
¡ 3
�
M(2k):

Summing from 0 to `0 = blog2(n + 1)c instead of from 0 to `0 ¡ 1, we can rewrite this
contribution as 2M(2)(n+1)¡ 3M(1)(n+1)+M(2`).

As in the previous propositions, accounting for all polynomial additions induces the
extra O(n log(n)) term. �

10

2.4 A new online algorithm

The algorithm in the previous subsection relied on Fischer-Stockmeyer's half-line algo-
rithm to derive an online algorithm. In this subsection, we show how using van der
Hoeven's half-line product algorithm of Section 2.2 leads to a new online multiplication
algorithm.

As before, we start by giving the recursive version of the algorithm, which takes as
input a and b of degrees less than n, with this time n of the form 2k ¡ 2; the output is
the short product (a b)mod xn. We de�ne now a0= amod x(n¡2)/2, a0?= amod xn/2 and
a1= a div xn/2, and similarly for b0, b0? and b1, and compute the following:

1. d0 := a0 b0mod x(n¡2)/2 (recursive online multiplication)

2. d0 := d0+HP(a0?; b0?; n/2) x(n¡2)/2 (o�-line high product)

3. d0 := d0+
¡
a0 b1mod xn/2

�
xn/2 (half-line short product)

-. d0 := d0+
¡
a1 b0mod xn/2

�
xn/2 (half-line short product)

This gives us the following iterative algorithm, that is online with respect to inputs a
and b.

Algorithm Online_LS

Input: a; b; c2A[x] and i2N
Output: c2A[x]

1. m= �2(i+1)

2. if (i+1=2m)

a. c= c+HP(a0:::i; b0:::i; i)xi¡1

b. return c

3. c= c+MP(ai¡2m:::i; b0:::2m+1¡1) x
i¡1

4. c= c+MP(bi¡2m:::i; a0:::2m+1¡1) x
i¡1

5. return c

Figure 4 sums up the computations of the iterative algorithm LoopOnline_LS and shows
that it satis�es Property (OL). Similarly to what we did in the previous sections, we
denote by OLS(n) the cost of this algorithm with target precision n.

Proposition 7. The following holds:

OLS(n)6 (CSP¡ 2)M(1)(n+1)+2M(3)(n+1)+O(n log(n)):

PROOF. Let `0 := blog2(n+1)c. Depending on the step, our algorithm performs either
one short product or two middle products. At steps 2k ¡ 1 where 1 6 k 6 `0, one
high short product is performed, for a total cost of

P
k=1
`0 SP(2k ¡ 1). Since SP(n) 6

CSPM(n) +O(n), this cost is less than CSPM(1)(n+1)+O(n log(n)).

11

1 2 4 8 10

2

4

8

10

3

6

9

9

6

5

5
7

11

11

a

b

Fig. 4. Online multiplication with middle and short products

Then two middle products in size 2k are done every 2k+1 steps, starting from step
3 � 2k¡ 1, leading to a sum of terms of the form

X
k=0

`0¡1 �
n+2k+1¡ (3�2k¡ 1)

2k+1

�
MP(2k)=

X
k=0

`0¡1 �
n+1

2k+1
¡ 1
2

�
MP(2k):

Summing from 0 to `0 instead of from 0 to `0 ¡ 1, and using the relation MP(2k) =
M(2k)+O(2k), these middle products cost 2

¡
M(3)(n+1)¡M(1)(n+1)

�
+O(n log(n)).

As usual, the extra additions add up to a O(n log(n)) term. �

Remark 8. Even though there is no e�cient short FFT multiplication algorithm, we can
compute the high short product of Step 2 e�ciently. Indeed, if a; b are polynomials of
length n and c=a b, the FFT algorithm can compute c0:::n+cn:::2n¡1=(a b)mod (xn¡1)
using nth roots of unity. Since the part c0:::n was already computed by previous steps,
we can access to cn:::2n¡1. This computation takes about half the time of the FFT
multiplication a b which uses 2 nth roots of unity. However, we will see that for FFT
multiplication, the contribution of these short products is in any case negligible.

3 Quasi-linear multiplication algorithms

We have expressed the complexity of all four online algorithms in terms of the auxiliary
functions M(1);M(2) and M(3). In this section and Section 4, we give asymptotically tight
bounds on these auxiliary functions. Since their behaviors vary when M corresponds to
a super-linear, resp. a quasi-linear function, we separate these two cases and start with
the case of quasi-linear functions.

In this section, we work under the following hypothesis.

Hypothesis (QL). There exists K 2R>0 and (i; j)2N2 such that

M(2k)�K 2k ki log2(k)j:

12

This hypothesis is veri�ed by the fast Fourier transform algorithm which satis�esM(2k)=
9 � 2k k + O(2k) under the condition that there exists enough 2kth roots of unity
(see (von zur Gathen and Gerhard, 2003, Chapter 8.2)). Another suitable algorithm is
the Truncated Fourier Transform because its cost coincides with the one of the FFT on
powers of two (van der Hoeven, 2004). However, the Schönhage-Strassen multiplication
algorithm does not �t in, as the ratio M(2k)/(2k k log2(k)) has no limit at in�nity.

Lemma 9. If M satis�es hypothesis (QL) and `= blog2(n)c, then

M(1)(n) = O(M(n));
M(2)(n) � 1

(i+1)
n

2`
M(2`) log2(n);

M(3)(n) � 1
2 (i+1)

n

2`
M(2`) log2(n):

PROOF. From hypothesis (QL), we get M(1)(n)�
P

k=0
blog2(n)c K 2k ki (log2 k)j. BecauseP

k=0
` K 2k ki (log2 k)j 6 2 (K 2` `i (log2 `)j)� 2M(2`), we deduce our �rst point. Also,

one has

M(2)(n)=
X
k=0

`

bn/2kcM(2k) =
X
k=0

`

(n/2k)M(2k) +O
¡
M(1)(n)

�
:

Conclude using the following equivalents when n tends to in�nityX
k=0

`

(n/2k)M(2k) � K
X
k=0

`

(n/2k) 2k ki log2
j(k)

� Kn

 X
k=0

`

ki log2
j(k)

!
� Kn

�
`i+1

i+1
log2

j(`)

�
:

Finally, we deal with M(3):

M(3)(n)=
X
k=0

`
n

2k+1
M(2k)+O

¡
M(1)(n)

�
� 1

2 (i+1)

n

2`
M(2`) log2(2`): �

Proposition 10. If M satis�es hypothesis (QL) and `= blog2(n)c, then

HFS(n) �
1
2
n

2`
M(2`) log2(n);

HvdH(n) �
1
4
n

2`
M(2`) log2(n);

OFS(n) �
n

2`
M(2`) log2(n);

OLS(n) �
1
2
n

2`
M(2`) log2(n):

PROOF. We use Lemma 9 and Proposition 12 for HFS, HvdH and OFS. For OLS, we need to
go back to Proposition 7 to deduce OLS(n)=2M(3)(n+1)+O

¡
M(1)(n)

�
and our result. �

13

Taking M(2`)=9 �2` `+O(2`), the previous proposition gives the third row of Tables 1
and 2 after a quick simpli�cation. We remark that the cost n

2`
M(2`) is a smoothed version

of M(n), especially for the �staircase� cost function of the FFT. Indeed, the expression
n

2`
M(2`) log2(2`) is equivalent to K n log2(n)i log2(log(n))j under Hypothesis (QL).

The equivalent simpli�es further to an actual M(n) log2(n) for the Truncated Fourier
Transform algorithms or for quasi-linear evaluation interpolation schemes at n points.

4 Super-linear multiplication algorithms

Similarly to Section 3, we study the behavior of the auxiliary functions M(1);M(2) and
M(3), but in the case of a super-linear multiplication cost function M.

Our objective is to give bounds that relate as closely as possible to practice. We
choose not to assume the classical superlinearity hypothesis (M(n)/n increasing), since
this would not be satis�ed for the exact operation count of Karatsuba's algorithm (this
assumption would be satis�ed if we used the upper bound M(n) = c nlog2(3), for some
suitable c, but since we want precise estimates, we need to be more subtle).

4.1 Assumptions

In this section, we will work under the following assumption.

Hypothesis (SL). The arithmetic cost function M satis�es

1. M(2n)= cM(n)+ an+ b with a; b2Z, c2]2;+1[and

2. M(2n+1)¡M(2n)>M(3)¡M(2) for n> 1.
As we will see, this framework includes both naive and Karatsuba's algorithms. However,
it does not include Toom-Cook algorithms, or the variant of Karatsuba's algorithm that
reverts to the naive one for small values of n.

Naive multiplication. The naive algorithm has M(n) = n2 + (n ¡ 1)2 = 2 n2 ¡ 2 n + 1.
Using this expression, it is straightforward to verify that it satis�es hypothesis (SL), with
M(2n) = 4M(n) + 4n¡ 3.

Karatsuba's algorithm. Counting all operations, Karatsuba's algorithm can be imple-
mented using K(n) operations, where K(1) = 1 and K satis�es the following recurrence
relation:

K(n) = 2K(dn/2e)+K(bn/2c)+ 4n¡ 4:

The �rst two terms in the right-hand side require no justi�cation, but we may say a few
words about the linear term 4 n ¡ 4. For instance, for n= 2m, writing a = a0+ xm a1
and b= b0+ xm b1, we do 2m additions prior to the recursive calls to compute a0+ a1
and b0 + b1, 6 m ¡ 3 additions and subtractions after the recursive call to compute
(a0+ a1) (b0+ b1)¡ a0 b0¡ a1 b1 and m¡ 1 additions to add that term to the result, for
a total of 8m¡ 4=4n¡ 4. The case n=2m+1 is similar.

In particular, we have K(1)=1;K(2)=7 and K(3)=23. For even inputs, this becomes
K(2 n) = 3K(n) + 8 n¡ 4, which shows that the �rst part of our assumption is satis�ed
with c=3; a=8 and b=¡4.

14

To prove the second item of (SL), we show by induction that for n > 1, K(n + 1) ¡
K(n)>K(2)¡K(1). Indeed, the case n=1 is clear, and the inductive step follows from
the equalities

K(n+1)¡K(n)=
�
2 (K(n/2+1)¡K(n/2))+4 if n even
K((n¡ 1)/2+1)¡K((n¡ 1)/2)+4 if n odd:

As claimed, we deduce that

K(2n+1)¡K(2n)= 2 (K(n+1)¡K(n))+ 4> 2 (K(2)¡K(1))+ 4=K(3)¡K(2):

Remark that it is possible to save bn / 2c ¡ 1 redundant additions, see for instance
Exercise 1.9 in (Brent and Zimmermann, 2011). This improved algorithm still satis�es
our assumptions, but our implementation does not use it.

4.2 Complexity analysis

In the following lemmas, we use assumption (SL) to prove upper bounds on functions
M(1), M(2) and M(3). To this e�ect, let us de�ne the constants

a0 :=
a

c¡ 2 ; b0 :=
b

c¡ 1 and e := ja0j+ jb0j;

as well as the function d(�) :=M(�)+ a0�+ b0, for � in N.

Lemma 11. Assumption (SL) implies that jM(2k �)¡d(�) ckj6e 2k � holds for �2N�.

PROOF. It su�ces to unroll the recurrence k times, and sum the geometric progressions:

M(2k�) = cM(2k¡1�) + a 2k¡1�+ b

= ckM(�)+ a � (2k¡1+2k¡2 c+ ���+ ck¡1) + b (1+ ���+ ck¡1)

= ckM(�)+
a � (ck¡ 2k)

c¡ 2 +
b (ck¡ 1)
c¡ 1

= ck
�
M(�)+

a �
c¡ 2 +

b
c¡ 1

�
¡ a 2k�
c¡ 2 ¡

b
c¡ 1 :

The conclusion follows immediately. �

Remark in particular that the former lemma implies that jM(2k)¡ d(1) ckj=O(2k).
In particular, because M is non-negative, we deduce that d(1)> 0.

Lemma 12. Let n be in N, with base-2 expansion given by n =
P

i=0
` ni 2

i, where
` := blog2(n)c. Then, under assumption (SL), we have

M(1)(n) =
c

c¡ 1 M(2
`) +O(n)

M(2)(n) =
c

c¡ 2
X
i=0

`

niM(2i)+O(n log(n))

M(3)(n) =
c¡ 1
c¡ 2

X
i=0

`

niM(2i)+O(n log(n)):

15

PROOF. In all that follows, we write for simplicity d :=d(1). We start withM(1), applying
the previous lemma to each summand:

M(1)(n) =
X
k=0

`

M(2k)=
X
k=0

`

d ck+O
 X
k=0

`

2k

!
=
�

c
c¡ 1 d c

`
�
+O(n)

=
�

c
c¡ 1 M(2

`)+O(n)
�
+O(n)

Next, one has

M(2)(n) =
X
k=0

` j
n

2k

k
M(2k)=

X
k=0

` X
i=k

`

ni 2
i¡kM(2k)

=
X
k=0

` X
i=k

`

ni 2
i¡k d ck+O

 X
k=0

` X
i=k

`

ni 2
i¡k 2k

!

=
X
i=0

`

ni d 2i
X
k=0

i �
c

2

�
k
+O

 X
i=0

`

ni 2i (i+1)

!

=

 X
i=0

`

ni d 2
i (c/2)

i+1¡ 1
(c/2)¡ 1

!
+O(n log(n))

=

(c/2)

(c/2)¡ 1

"X
i=0

`

ni d c
i

#
+O(n)

!
+O(n log(n))

=
c

c¡ 2

"X
i=0

`

niM(2i)+O(n)
#
+O(n log(n))

Finally, we have the inequalities

M(3)(n) =
X
k=0

` ��
n

2(k+1)

�
+nk

�
M(2k)=

X
k=0

` X
i=k+1

`

ni 2
i¡(k+1)M(2k)

=
X
k=0

` X
i=k+1

`

ni 2
i¡(k+1) d ck+O(n log(n))

=

 X
i=1

`

ni 2
i¡1 d

(c/2)i¡ 1
(c/2)¡ 1

!
+O(n log(n))

=

(1/2)

(c/2)¡ 1

"X
i=0

`

ni d c
i

#
+O(n)

!
+O(n log(n))

=
1

c¡ 2

"X
i=0

`

niM(2i) +O(n)
#
+O(n log(n))

�

The following inequality will allow us to control terms that appear in the estimates
for M(2)(n) and M(3)(n) given above. For this, we introduce the notation C :=

d(3)¡ d(2)
d(1)

.

Lemma 13. Let n be in N, with base-2 expansion given by n =
P

i=0
` ni 2

i, where

16

` := blog2(n)c. Then, under assumption (SL), we have

M(2`)+C
X
i=0

`¡1

niM(2i)6M(n)+O(n log(n)):

In particular, if C > 1, we have

X
i=0

`

niM(2i)6M(n)+O(n log(n)):

PROOF. The proof proceeds in three steps.
1. First, we prove that the inequality d(2 n + 1) ¡ d(2 n) > d(3) ¡ d(2) holds for

any n> 1. Indeed, we have that d(2 n+ 1)¡ d(2 n) =M(2 n+ 1)¡M(2 n) + a0, so the
assumption M(2n+1)¡M(2n)>M(3)¡M(2) establishes our claim.

2. Next, we establish that for all k 2N and m> 1, we have

M(2k+1m)+CM(2k)6M(2k+1m+2k)+ e0 2k+1m; (2)

for some e0 that does not depend on k or m. Indeed, Lemma 11 implies the inequalities

M(2k+1m)+CM(2k) 6 ck (d(2m)+Cd(1))+ e 2k (2m+C)

ck d(2m+1) 6 M(2k (2m+1))+ e 2k (2m+1):

On the other hand, inequality (2) implies that d(2m)+C d(1)6d(2m+1), and our claim
follows by taking (for instance) e0= e (C +5)/2.

3. We can now prove the lemma. Take n in N, with base-2 digits n0; :::; n`. Applying
inequality (2) with k= `¡ 1 and m=1 yields

M(2`)+Cn`¡1M(2`¡1)6M(2`+n`¡12
`¡1)+ e0 2`6M(2`+n`¡12

`¡1)+ e0n0;

with n0=2 n. Adding the term C n`¡2M(2`¡2) and applying the same inequality (2) with
k= `¡ 2 and m=2+n`¡1, so that we still have 2k+1m6n0, we get

M(2`)+
X
i=`¡2

`¡1

CniM(2i) 6 M(2`+n`¡12
`¡1)+Cn`¡2M(2`¡2)+ e0n0

6 M(2`+n`¡12`¡1+n`¡2 2`¡2)+ e0 (2n0):

We can continue in this manner until we get M(2`) +C
P

i=0
`¡1 niM(2i)6M(n) + e0 ` n0,

which proves the lemma. �

Corollary 14. Under assumption (SL) and if C > 1, one has

HFS(n)6
c

c¡ 2 M(n)+O(n log(n)) and HvdH(n)6
c¡ 1
c¡ 2 M(n) +O(n log(n))

and these bound are asymptotically optimal since

HFS(2
m)� c

c¡ 2 M(2
m) and HvdH(2

m)� c¡ 1
c¡ 2 M(2

m):

17

PROOF. We deal only with HFS since HvdH is handled similarly. Using Proposition 12,
then Lemma 12 for equality (3) and Lemma 13 for the inequality (4), we have for all n2N,

HFS(n) =
c

c¡ 2
X
i=0

`

niM(2i) +O(n log(n)) (3)

6 c
c¡ 2 M(n) +O(n log(n)): (4)

When n=2m, one has

HFS(2
m)=

c
c¡ 2 M(2

m)+O(n log(n))� c
c¡ 2M(2

m): �

Proposition 15. Under assumption (SL) and if C > 2 c (c¡ 1)
c+2

, one has

OFS(n)6 c+2
(c¡ 2) (c¡ 1) M(n+1)+O(n log(n))

and this bound is asymptotically optimal, since

OFS(2m¡ 1)�
c+2

(c¡ 2) (c¡ 1) M(2
m):

PROOF. Let ` := blog2(n+1)c and n+1=
P

i=0
` ni 2

i be the base-2 expansion of n+1.
Then, using Proposition 12 and Lemma 12, one deduces

OFS(n) = 2

c

c¡ 2
X
i=0

`

niM(2i)+O(n log(n))

!
¡ 3
�

c
c¡ 1 M(2

`)+O(n)
�
+M(2`)

=

�
2 c
c¡ 2 ¡

3 c
c¡ 1 +1

�
M(2`)+

2 � c
c¡ 2

X
i=0

`¡1

niM(2i)+O(n log(n))

= C1M(2`)+C2
X
i=0

`¡1

niM(2i)+O(n log(n))

with C1 =
c+2

(c¡ 2) (c¡ 1) and C2 =
2 � c
c¡ 2 . Provided that C2 /C1 6 C, we can then use

Lemma 13 to deduce that OFS(n)6C1M(n+1)+O(n log(n)). For n+1=2m, all ni are
zero for i < `, so one has

OFS(2
m¡ 1) = C1M(2m) +O(n log(n))�C1M(2m):

�

Proposition 16. Under assumption (SL) and if C > 2 (c¡ 1)2

c (c¡ 2)CSP +2
, one has

OLS(n)6
c (c¡ 2)CSP+2

(c¡ 2) (c¡ 1) M(n+1)+O(n log(n))

and these bounds are asymptotically optimal provided that SP(2k¡ 1)�CSPM(2k):

OLS(2
m¡ 1)�m!1

c (c¡ 2)CSP+2
(c¡ 2) (c¡ 1) M(2m):

18

PROOF. Let ` := blog2(n+1)c and n+1=
P

i=0
` ni 2i be the base-2 expansion of n+1.

Using Proposition 12 and Lemma 12, we deduce

OLS(n) 6 (CSP¡ 2)
�

c
c¡ 1 M(2

`)
�
+2

c¡ 1
c¡ 2

X
i=0

`

niM(2i)

!
+O(n log(n))

= C1
0M(2`) +C2

0
X
i=0

`¡1

niM(2i) +O(n log(n))

with C1
0 =

c (c¡ 2)CSP +2

(c¡ 2) (c¡ 1) and C2
0 =

2 (c¡ 1)
c¡ 2 . Provided that C20 /C10 6 C, we can then use

Lemma 13 to deduce that OLS(n)6C10M(n+1)+O(n log(n)). For n+1=2m, all ni are
zero for i < `, so one has

OLS(2m¡ 1)=C1
0M(2m)+O(n log(n))�C10M(2m)

under the condition that CSP is optimal in the sense SP(2k¡ 1)�CSPM(2k). �

Let us now verify that the naive and Karatsuba's multiplication algorithms satisfy the
hypotheses of Corollary 14 and Propositions 15 and 16. Proposition 15 requires

C > 2 c (c¡ 1)
c+2

=

�
4 if c=4

12/5 if c=3
;

whereas Propositions 16 is veri�ed whenever

C > 2 (c¡ 1)2
c (c¡ 2)/2+2

=

�
3 if c=4

16/7 if c=3
;

since CSP> 1/2.

Naive multiplication. Since M(n) � 2 n2 and M(2k �) � d(�) 4k using Lemma 11, we

get d(�) = 2 �2 and C =
d(3)¡ d(2)

d(1)
= 5. Therefore the naive multiplication satis�es the

hypotheses of Corollary 14 and Propositions 15 and 16. This gives us the �rst row of
Tables 1 and 2.

Karatsuba's algorithm. Recall that K(2 n) = 3K(n) + 8 n¡ 4, which implies a0=8 and

b0 = ¡2. Since d(�) =M(�) + a0 � + b0, we get C =
d(3)¡ d(2)

d(1)
=

45¡ 13
7

=
32
7
. Therefore

Karatsuba's multiplication satis�es the hypotheses of Corollary 14 and Propositions 15
and 16, from which we deduce the second row of Tables 1 and 2.

5 Implementation and timings

We give timings of the https://github.com/romainlebreton/OnlineMultiplication mul-
tiplication algorithms for the case of power series Fp[[x]] with the 29-bit prime number
p = 268435459. Computations were done on one core of an Intel Core i7 running at
3.6 GHz with 8Gb of RAM running a 64-bit Linux. Our implementation is available
at https://github.com/romainlebreton/OnlineMultiplication . It uses the polyno-
mial multiplication of NTL 6.0.0 (Shoup et al., 1990). The threshold between the naive
and Karatsuba's multiplications is at degree 16 and the one between Karatsuba's and
FFT multiplications at degree 600. Our middle product implementation is based on the
implementation described in (Bostan et al., 2003).

19

In Figure 5, we plot the timings in milliseconds of the multiplication of polynomials
and of several online multiplication algorithms on power series depending on the precision
in abscissa. The name M stands for NTL's multiplication, the name HvdH stands for the
half-line multiplication using middle product of Section 2.2, the name OLS stands for the
online multiplication using middle (and short) product of Section 2.4, and so on.

Online algorithms are always slower than o�-line algorithms since they have an addi-
tional constraint. However, we will see that online algorithms are faster in very small
precisions: this is because we compare online algorithms that compute short products
a bmod xn at each step (and occasionally more, such as the full product for OFS and OLS
when n=2`) and an o�-line algorithm that always computes the full product a b.

We now draw the ratio of the timings of all online algorithms compared to NTL's
o�-line multiplication. We give three �gures depending on which o�-line multiplication
algorithm is used. We start with the naive algorithm used in precisions 16n< 16.

For these small precisions, the ratio of timings does not follow our theoretical analysis.
We reckon that cache e�ects or other low-level hardware speci�cities have a non-negligible
e�ect on our timings. Still, we can notice from this �gure that the variants using middle
product always improve the online algorithms.

Let us turn to intermediate precisions corresponding to Karatsuba's algorithm. NTL
implements the variant of Karatsuba's algorithm using the naive variant in small degrees
for plain multiplication and we coded an odd/even decomposition for short product.
Although Proposition 16 does not deal with this hybrid multiplication algorithm, we
believe that the results for �pure� Karatsuba's multiplication could apply in this case for
n large enough and yield bounds OFS62.5M(n), HFS63M(n) and HvdH62M(n), omitting
terms in O(n). Concerning our algorithm, the short product has a ratio CSP = 0.6 in
practice so we would expect OLS6 1.9M(n).

This plot con�rms the theoretical bounds for Karatsuba's multiplication, except on a
few points for HvdH. Once again, the variants using middle product always improve online
algorithms by a constant factor.

Finally for precision corresponding to the FFT algorithm, the ratio grows with the
precision. Figure 8 shows the logarithmic growth of the ratio for precisions n=2`. Note
that NTL uses the 3-primes FFT algorithm on our �eld Fp since it was lacking 2`th roots
of unity (see (von zur Gathen and Gerhard, 2003, Chapter 8.3)). This algorithm still
matches Hypothesis (QL) in the range of degrees we consider and our analysis applies.

We can improve this analysis by plotting T(n)/(n/2`M(2`) log2(n)), where T denotes
one of the functions HFS, ... that we are considering, expecting to observe constant ratios
(in theory, this ratio should tend to 1 for OFS, 1/2 for HFS and OLS, and 1/4 for HvdH).
This is done in Figure 9, where we observe a good agreement with theory.

In conclusion, we can see that the use of middle product always improves the perfor-
mance of both the online and half-line multiplication algorithms. We save up to a factor
2, which is attained for the FFT multiplication.

Acknowledgments

We are grateful to P. Zimmermann and the anonymous reviewers for their thorough
proofreadings and helpful comments.

20

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600 700 800 900 1000

T
im

in
g

s
in

 m
il

li
se

co
n

d
s

Precision

 OFS
 HFS
 OLS

 HvdH
 M

Fig. 5. Timings of di�erent multiplication algorithms

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 2 4 6 8 10 12 14 16

R
at

io
 o

f
ti

m
in

g
s

Precision

OFS / M
HFS / M
OLS / M

HvdH / M

Fig. 6. Ratio of timings of di�erent online products w.r.t. naive polynomial multipli-
cation

0.5

1

1.5

2

2.5

3

3.5

4

0 100 200 300 400 500 600

R
at

io
 o

f
ti

m
in

g
s

Precision

OFS / M
HFS / M
OLS / M

HvdH / M

Fig. 7. Ratio of timings of di�erent online products w.r.t. �hybrid� Karatsuba's multi-
plication

21

2

4

6

8

10

12

14

16

2
10

2
11

2
12

2
13

2
14

2
15

2
16

2
17

2
18

R
at

io
 o

f
ti

m
in

g
s

Precision

OFS / M
HFS / M
OLS / M

HvdH / M

Fig. 8. Ratio of timings of online products w.r.t. FFT multiplication on precisions N=2`

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2
10

2
11

2
12

2
13

2
14

2
15

2
16

2
17

2
18

C
o
n
st

an
t

in
 t

h
e

eq
u
iv

al
en

t

Precision

 OFS
 HFS
 OLS

 HvdH

Fig. 9. Estimation of the constants in the equivalences of online product costs using FFT

22

References

Berthomieu, J., Lebreton, R., 2012. Relaxed p-adic Hensel lifting for algebraic systems.
In: Proceedings of ISSAC'12. ACM Press, pp. 59�66.

Berthomieu, J., van der Hoeven, J., Lecerf, G., 2011. Relaxed algorithms for p-adic
numbers. J. Théor. Nombres Bordeaux 23 (3), 541�577.

Bostan, A., Lecerf, G., Schost, É., 2003. Tellegen's principle into practice. In: Proceedings
of ISSAC'03. ACM Press, pp. 37�44.

Brent, R., Zimmermann, P., 2011. Modern computer arithmetic. Vol. 18 of Cambridge
Monographs on Applied and Computational Mathematics. Cambridge University
Press, Cambridge.

Bürgisser, P., Clausen, M., Shokrollahi, M. A., 1997. Algebraic complexity theory. Vol.
315 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences]. Springer-Verlag, Berlin, with the collaboration of Thomas
Lickteig.

Fischer, M. J., Stockmeyer, L. J., 1974. Fast on-line integer multiplication. J. Comput.
System Sci. 9, 317�331.

Hanrot, G., Quercia, M., Zimmermann, P., 2004. The middle product algorithm. I. Appl.
Algebra Engrg. Comm. Comput. 14 (6), 415�438.

Hanrot, G., Zimmermann, P., 2004. A long note on Mulders' short product. J. Symbolic
Comput. 37 (3), 391�401.

Hennie, F. C., 1966. On-line Turing machine computations. Electronic Computers, IEEE
Transactions on EC-15 (1), 35 �44.

Lebreton, R., 2012. Contributions to relaxed algorithms and polynomial system solving.
Ph.D. thesis, École Polytechnique.

Mulders, T., 2000. On short multiplications and divisions. Appl. Algebra Engrg. Comm.
Comput. 11 (1), 69�88.

Schröder, M., 1997. Fast online multiplication of real numbers. In: STACS 97 (Lübeck).
Vol. 1200 of Lecture Notes in Comput. Sci. Springer, Berlin, pp. 81�92.

Shoup, V., et al., 1990. NTL: a library for doing number theory. Version 6.0.0. Available
from http://www.shoup.net/ntl/.

van der Hoeven, J., 1997. Lazy multiplication of formal power series. In: ISSAC '97.
Maui, Hawaii, pp. 17�20.

van der Hoeven, J., 2002. Relax, but don't be too lazy. J. Symb. Comput. 34 (6), 479�
542.

van der Hoeven, J., 2003. Relaxed multiplication using the middle product. In: Proceed-
ings of the 2003 International Symposium on Symbolic and Algebraic Computation.
ACM, New York, pp. 143�147 (electronic).

van der Hoeven, J., July 4�7 2004. The truncated Fourier transform and applications.
In: Gutierrez, J. (Ed.), Proc. ISSAC 2004. Univ. of Cantabria, Santander, Spain, pp.
290�296.

van der Hoeven, J., 2007. New algorithms for relaxed multiplication. J. Symbolic
Comput. 42 (8), 792�802.

van der Hoeven, J., 2014. Faster relaxed multiplication. In: Proc. ISSAC 2014. To appear.
von zur Gathen, J., Gerhard, J., 2003. Modern Computer Algebra, 2nd Edition. Cam-
bridge University Press, Cambridge.

23

	1 Introduction
	Previous work.
	Our contribution.
	Polynomial multiplication algorithms.
	Our complexity results.

	2 Description of the algorithms
	2.1 Fischer and Stockmeyer's half-line algorithm
	2.2 van der Hoeven's half-line algorithm
	2.3 Fischer and Stockmeyer's online algorithm
	2.4 A new online algorithm

	3 Quasi-linear multiplication algorithms
	4 Super-linear multiplication algorithms
	4.1 Assumptions
	Naive multiplication.
	Karatsuba's algorithm.

	4.2 Complexity analysis
	Naive multiplication.
	Karatsuba's algorithm.

	5 Implementation and timings
	Acknowledgments
	References

