O. Villa, D. G. Chavarría-miranda, V. Gurumoorthi, A. Márquez, and S. Krishnamoorthy, Effects of floating-point nonassociativity on numerical computations on massively multithreaded systems, CUG 2009 Proceedings, pp.1-11, 2009.

Y. He and C. H. Ding, Using accurate arithmetics to improve numerical reproducibility and stability in parallel applications, The Journal of Supercomputing, vol.18, issue.3, pp.259-277, 2001.
DOI : 10.1023/A:1008153532043

M. A. Cleveland, T. A. Brunner, N. A. Gentile, and J. A. Keasler, Obtaining identical results with double precision global accuracy on different numbers of processors in parallel particle Monte Carlo simulations, Journal of Computational Physics, vol.251, issue.0, pp.251223-236, 2013.
DOI : 10.1016/j.jcp.2013.05.041

M. Taufer, O. Padron, . Ph, S. Saponaro, and . Patel, Improving numerical reproducibility and stability in large-scale numerical simulations on GPUs, 2010 IEEE International Symposium on Parallel & Distributed Processing (IPDPS), pp.1-9, 2010.
DOI : 10.1109/IPDPS.2010.5470481

R. W. Robey, J. M. Robey, and R. Aulwes, In search of numerical consistency in parallel programming, Parallel Computing, vol.37, issue.4-5, pp.217-229, 2011.
DOI : 10.1016/j.parco.2011.02.009

V. Stodden, D. H. Bailey, J. Borwein, R. J. Leveque, W. Rider et al., Setting the default to reproducible: Reproducibility in computational and experimental mathematics, 2013.

J. Muller, N. Brisebarre, F. De-dinechin, C. Jeannerod, V. Lefèvre et al., Handbook of Floating-Point Arithmetic, 2010.
DOI : 10.1007/978-0-8176-4705-6

URL : https://hal.archives-ouvertes.fr/ensl-00379167

N. Revol, . Ph, and . Théveny, Numerical Reproducibility and Parallel Computations: Issues for Interval Algorithms, ARIC -Inria Grenoble Rhône-Alpes / LIP, 2013.
DOI : 10.1109/TC.2014.2322593

URL : https://hal.archives-ouvertes.fr/hal-00916931

D. H. Bailey, R. Barrio, and J. M. Borwein, High-precision computation: Mathematical physics and dynamics, Applied Mathematics and Computation, vol.218, issue.20, pp.10106-10121, 2012.
DOI : 10.1016/j.amc.2012.03.087

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

N. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, 2002.
DOI : 10.1137/1.9780898718027

J. H. Wilkinson, Rounding Errors in Algebraic Processes Notes on Applied Science No. 32, Her Majesty's Stationery Office, 1963.

J. H. Wilkinson, The Algebraic Eigenvalue Problem, 1965.

W. Kahan, Lecture notes on the status of IEEE Standard 754 for binary floating-point arithmetic, 1996.

C. Jeannerod, N. Louvet, and J. Muller, Further analysis of Kahan???s algorithm for the accurate computation of $2\times 2$ determinants, Mathematics of Computation, vol.82, issue.284, pp.2245-2264, 2013.
DOI : 10.1090/S0025-5718-2013-02679-8

A. Neumaier, Interval Methods for Systems of Equations, 1990.
DOI : 10.1017/CBO9780511526473

W. Tucker, Validated Numerics: A Short Introduction to Rigorous Computations, 2011.

J. Stolfi and L. H. De-figueiredo, Self-validated numerical methods and applications, Monograph for 21st Brazilian Mathematics Colloquium, 1997.

L. H. De-figueiredo and J. Stolfi, Affine Arithmetic: Concepts and Applications, Numerical Algorithms, vol.37, issue.1-4, pp.147-158, 2004.
DOI : 10.1023/B:NUMA.0000049462.70970.b6

K. Makino and . M. Berz, Taylor models and other validated functional inclusion methods, International Journal of Pure and Applied Mathematics, vol.4, issue.4, pp.379-456, 2003.

W. Hofschuster and W. Krämer, FI LIB -A fast interval library (Version 1.2) in ANSI-C, 2005.

S. M. Rump, Fast interval matrix multiplication, Numerical Algorithms, vol.89, issue.1, pp.1-34, 2012.
DOI : 10.1007/s11075-011-9524-z

H. Calandra, R. Dolbeau, P. Fortin, J. Lamotte, and I. Said, Forward seismic modeling on AMD Accelerated Processing Unit, Rice Oil & Gas HPC Workshop, 2013.

J. Vignes, A stochastic arithmetic for reliable scientific computation, Mathematics and Computers in Simulation, vol.35, issue.3, pp.233-261, 1993.
DOI : 10.1016/0378-4754(93)90003-D

J. Chesneaux and J. Vignes, Les fondements de l'arithmétique stochastique, C. R. Acad. Sci. Paris Sér. I Math, vol.315, pp.1435-1440, 1992.

F. Jézéquel and J. Chesneaux, CADNA: a library for estimating round-off error propagation, Computer Physics Communications, vol.178, issue.12, pp.933-955, 2008.
DOI : 10.1016/j.cpc.2008.02.003

S. Montan and C. Denis, Numerical verification of industrial numerical codes, In ESAIM, vol.35, pp.107-113, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00765536

F. Jézéquel and J. Lamotte, Numerical validation of Slater integrals computation on GPU, 14th International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics, pp.78-79, 2010.