
HAL Id: lirmm-00875132
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00875132

Submitted on 21 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parameterized Complexity of the Sparsest k-Subgraph
in Chordal Graphs

Rémi Watrigant, Nicolas Bousquet, Marin Bougeret, Rodolphe Giroudeau

To cite this version:
Rémi Watrigant, Nicolas Bousquet, Marin Bougeret, Rodolphe Giroudeau. Parameterized Complexity
of the Sparsest k-Subgraph in Chordal Graphs. [Research Report] RR-13033, LIRMM. 2013. �lirmm-
00875132�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00875132
https://hal.archives-ouvertes.fr

Parameterized Complexity of the Sparsest k-Subgraph
Problem in Chordal Graphs

Marin Bougeret?, Nicolas Bousquet, Rodolphe Giroudeau?, and Rémi Watrigant?

LIRMM, Université Montpellier 2, France

Abstract. In this paper we study the Sparsest k-Subgraph problem which consists in
finding a subset of k vertices in a graph which induces the minimum number of edges. The
Sparsest k-Subgraph problem is a natural generalization of the Independent Set problem,
and thus is NP-hard (and even W [1]-hard) in general graphs. In this paper we investigate
the parameterized complexity of both Sparsest k-Subgraph and Densest k-Subgraph
in chordal graphs. We first provide simple proofs that Densest k-Subgraph in chordal
graphs is FPT and does not admit a polynomial kernel unless NP ⊆ coNP/poly (both
parameterized by k). More involved proofs will ensure the same behavior for Sparsest k-
Subgraph in the same graph class. We lastly provide an FPT algorithm in interval graphs
for Sparsest k-Subgraph, but parameterized by the number of edges of the solution (a
stronger parameterization than by k).

1 Introduction

Presentation of the problem. Given a simple undirected graph G = (V,E) and an integer k, the
Sparsest k-Subgraph problem asks to find k vertices in G inducing the minimum number of
edges. The decision version asks if there exists a k-subgraph inducing at most C edges. As a
generalization of the classical independent set problem (for C = 0), Sparsest k-Subgraph is
NP-hard in general graphs, as well as W [1]-hard when parameterized by k (as independent set
is W [1]-hard [10]). In addition, there is an obvious XP algorithm for Sparsest k-Subgraph when
parameterized by k, as all subsets of size k can be enumerated in O(nk) time, where n is the number
of vertices in the graph.

Related problems. Several problems closely related to Sparsest k-Subgraph have been extensively
studied in the past decades. Among them, one can mention the maximization version of Sparsest
k-Subgraph, namely the Densest k-Subgraph, for which several results have been obtained
in general or restricted graphs. In [8], the authors showed that Densest k-Subgraph remains
NP-hard in bipartite, comparability and chordal graphs, and is polynomial-time solvable in trees,
cographs, and split graphs. The complexity status of Densest k-Subgraph in interval graphs,
proper interval graphs and planar graphs is left as an open problem, and is still not answered yet.
More recently, [5] improved some of these results by showing that both Densest k-Subgraph
and Sparsest k-Subgraph are polynomial-time solvable in bounded cliquewidth graphs, and [3]
developed exact algorithms for Sparsest k-Subgraph, Densest k-Subgraph and other similar
problems in general graphs parameterized by k and the maximum degree ∆ of the graph. During the
past two decades, a large amount of work has been dedicated to the approximability of Densest

? Work supported by grant ANR 2010 BLAN 021902

2

k-Subgraph in general graphs. So far, the best approximation ratio is O(nδ) for some δ < 1/3
[9], while the only negative result is due to Khot [14] ruling out a PTAS under some complexity
assumptions. Still concerning Densest k-Subgraph but in restricted graph classes, [16] developed
a PTAS in interval graphs, and [7, 15] developed constant approximation algorithms in chordal
graphs. In [17], we recently proved that Sparsest k-Subgraph remainsNP-hard in chordal graphs
and admits a 2-appoximation algorithm. We can also mention the dual version of Sparsest k-
Subgraph, namely the maximum partial vertex cover problem, for which we are looking for
k vertices in the input graph which cover the maximum number of edges. Very recently [1] and [13]
independently proved the NP-hardness of maximum partial vertex cover in bipartite graphs,
which directly transfers to Sparsest k-Subgraph (since finding k vertices covering the maximum
number of edges is equivalent to find (n− k) vertices inducing the minimum number of edges).

More generally, Sparsest k-Subgraph, Densest k-Subgraph and maximum partial ver-
tex cover fall into the family of cardinality constrained optimization problems introduced by Cai
[6]. In its survey, the author proved that these three problems are W [1]-hard in regular graphs, and
gives an XP algorithm for general graphs with a better running time than the trivial algorithm.

As said previously, Sparsest k-Subgraph and Densest k-Subgraph are natural general-
izations of k-independent set and k-clique, and are thus important both from a theoretical
and practical point of view. Our motivation is to study their computational (parameterized) com-
plexity in graph classes where they remains NP-hard whereas k-independent set and k-clique
are polynomial-time solvable, such as the well-known class of perfect graphs and some of its sub-
classes. To that end, we study their parameterized complexity in the class of chordal graphs, an
important subclass of perfect graphs which arises in many practical situations [12]. More precisely,
we prove that both Sparsest k-Subgraph and Densest k-Subgraph in chordal graphs are
fixed-parameter tractable and do not admit a polynomial kernel under some classical complexity
assumptions. As we will see, the results are quite easy to obtain for Densest k-Subgraph, but
require some efforts for Sparsest k-Subgraph.

Organization of the paper. The paper is organized as follows: in the following section (Section 2),
we recall the classical definitions of parameterized complexity and chordal graphs. Our two main
results, namely the FPT algorithm and kernel lower bound for Sparsest k-Subgraph in chordal
graphs, are presented respectively in Sections 4 and 5. Lastly in Section 6, we present an FPT
algorithm for Sparsest k-Subgraph in interval graphs but parameterized by the number of edges
in a solution, a stronger parameter than k (since it is always smaller than

(
k
2

)
. Before all these, we

study as an appetizer the parameterized complexity of Densest k-Subgraph in chordal graphs
in Section 3.

2 Parameterized Algorithms, Chordal Graphs, Interval Graphs

Parameterized algorithms. An interesting way to tackle NP-hard problems is parameterized com-
plexity. A parameterized problem Q is a subset of Σ∗ × N, where the second component is called
the parameter of the instance. A fixed-parameter tractable (FPT for short) problem is a problem
for which there exists an algorithm which, given (x, k) ∈ Σ∗×N, decides whether (x, k) ∈ Q in time
f(k)|x|O(1) for some computable function f . Such an algorithm becomes efficient with an hopefully
small parameter. A kernel is a polynomial algorithm which, given (x, k) ∈ Σ∗ × N, outputs an in-
stance (x′, k′) such that (x, k) ∈ Q⇔ (x′, k′) ∈ Q and |x′|+k′ ≤ f(k) for some computable function
f . The existence of a kernel is equivalent to the existence of an FPT-algorithm. Nevertheless one can

3

ask the function f to be a polynomial. If so, then the kernel is called a polynomial kernel. If a prob-
lem admits a polynomial kernel, then it roughly means that we can, in polynomial time, compress
the initial instance into an instance of size poly(k) which contains all the hardness of the instance.
In order to rule out polynomial kernels, we will use the recent technique of cross-composition [2].

Roughly speaking, a cross-composition is a polynomial reduction from t instances of a (non-
parameterized) problem A to a single instance of a parameterized problem B such that the con-
structed instance is positive iff one of the input instances is positive. In addition, the parameter of
the constructed instance must be of size polynomial in the maximum size of the input instances and
the logarithm of t. It is known that if A is NP-hard and A cross-composes into B, then B cannot ad-
mit a polynomial kernel under some complexity assumptions. For a stronger background concerning
the parameterized complexity, we refer the reader to [10]. Formal definitions of cross-composition
and related notions are available in Appendix A.

Chordal graphs. A graph G = (V,E) is a chordal graph if it does not contain an induced cycle
of length at least four. As said previously, chordal graphs form an important subclass of perfect
graphs. One can also equivalently define chordal graphs in terms of a special tree decomposition.
Indeed, it is known [11] that a graph G = (V,E) is a chordal graph if and only if one can find a
tree T = (X , A) with X ⊆ 2V such that for all v ∈ V , the set of nodes of T containing v, that
is Xv = {X ∈ X : v ∈ X}, induces a (connected) tree, and such that for all u, v ∈ V we have
{u, v} ∈ E if and only if Xu ∩Xv 6= ∅. Moreover, given a chordal graph, this corresponding tree can
be found in polynomial time. From this definition, it is clear that each X ∈ X induces a clique in
G.

Interval Graphs. An interesting subclass of chordal graphs is the class of interval graphs. A graph
G = (V,E) is a interval graph if there exists an interval model of G, i.e. if each vertex v ∈ V can
be mapped to an interval Iv of the real line, such that two intervals overlap if and only if their
corresponding edges are adjacent. It is easy to see that for each interval graphs, there exists a tree
decomposition T = (X , A) such that T is a path.

3 Appetizer: Parameterized Complexity of Densest k-Subgraph in
Chordal Graphs

Theorem 1. Densest k-Subgraph in chordal graphs is FPT and does not admit a polynomial
kernel unless NP ⊆ coNP/poly, both parameterized by k.

Indeed, notice that if the input graph G contains a clique of size k or more (which can be tested
in polynomial time in chordal graphs), then it must be an optimal solution. Otherwise, it implies
that the treewidth of G is upper bounded by k (since the treewidth equals the maximum clique
number in chordal graphs), and we can apply the dynamic programming of [4] over a classical tree
decomposition of G in order to compute an optimal solution in FPT time.
For the kernel lower bound, we can easily construct a cross-composition from itself, by taking
disjoint union of t graphs on n vertices G1, ..., Gt, and adding n2 universal vertices to each graph.

4

4 FPT Algorithm for Sparsest k-Subgraph in Chordal Graphs

Definitions and Notations. Let G = (V,E) be a chordal graph and T = (X , A) be its corre-
sponding tree decomposition as defined in section 2. Recall that for each X ∈ X , X induces a clique
in G.

We denote respectively by L and I the set of leaves and internal nodes of T (we have X = L∪I).
In the following we suppose that T is rooted at an arbitrary node Xr. Let X ∈ X , we denote by
pred(X) the unique predecessor of X in T (by convention pred(Xr) = ∅), and by succ(X) the set
of successors of X in T . For a vertex v ∈ V (resp. a node X ∈ X), we denote by d(v) (resp. d(X))
its degree in G (resp. in T). For a set of vertices U ⊆ V (resp. set of nodes A ⊆ X), we denote by
G[U] (resp. T [A]) the subgraph of G induced by U (resp. the subforest of T induced by A). We say
that a vertex v ∈ V is a lonely1 vertex (resp. almost lonely vertex) if |Xv| = 1 (resp. |Xv| = 2), i.e.
if it appears in only one (resp. two) nodes of T .

First Observations. A maximum independent set can be computed in polynomial time in chordal
graphs (since chordal graphs are perfect). Hence, we first determine if there exists an independent
set of size k. In this case, we return this set which is naturally an optimal solution. Thus, we assume
in the following that the graph G does not contain an independent set of size k.

Notice that we can assume that for every leaf L of the tree we do not have L ⊆ pred(L)
(otherwise we can contract the two nodes). Therefore, for each leaf L of the tree, there is a vertex
x ∈ L such that x /∈ pred(L), i.e. x is a lonely vertex. Since there is no independent set of size k in
G, and since lonely vertices of leaves are pairwise non adjacent, we have the following:

Observation 1 We can assume that |L| < k.

Let us now state a simple property verified by optimal solutions. Let S be a set of k vertices. Assume
that there are vertices x ∈ S and y ∈ V \ S such that Xy (Xx. Then it means that N(y) ⊆ N(x).
Thus, if we replace x by y in the solution, the number of edges in the solution cannot increase. A
set S is closed under inclusion if there is no vertex x in S such that there exists y ∈ V \ S such
that Xy (Xx. So there always exists an optimal solution closed under inclusion.

Idea of the Algorithm. Our goal is to find an optimal solution closed under inclusion. First
note that any optimal solution closed under inclusion must contain a lonely vertex per leaf of T .
Indeed, as each leaf L is not included in pred(L), there exists a lonely vertex x in L. Thus, either
the solution intersects L, and since it is closed by inclusion it contains a lonely vertex, or we can
take a vertex of the solution and replace it by x, which does not create any additional edge (since
no vertex of N(x) = L \ {x} was in the solution).

Our method can be summarized as follows. First, we take a lonely vertex in each leaf and guess
a binary flag w(L) ∈ {0, 1} for each leaf L which indicates whether another vertex of L has to (with
value 1) or does not have to (with value 0) be taken in the solution. The width of such a branching
is bounded according to Observation 1. Then, given a leaf L with w(L) = 1, we first try to add to
the solution the “most interesting” vertex of the leaf (for example a lonely vertex). When this is

1 Notice that every lonely vertex is a so-called ”simplicial vertex” (a vertex whose neighborhood is a clique).
However, if a node of the tree is contained in another node, a simplicial vertex may not be a lonely one.
Since we do not make any supposition on the tree T (we will in particular duplicate nodes during the
algorithm), we will prefer the term ”lonely”.

5

not possible (the neighborhood of the vertices of L can be incomparable if these vertices appear on
incomparable subtrees), we apply some branching rules that re-structure the tree and create new
“interesting vertices”.

Terminology for the Algorithm. The algorithm is a branching algorithm composed of pre-
processing rules (which do not require branching) and branching rules. When a rule is applied, we
assume that previous rules cannot be applied.

During the algorithm, a partial solution S (initialized to ∅) will be constructed, and the input
graph G = (V,E) together with k, T (and thus X , L and I) will be modified. To avoid heavy
notation we will keep these variables to denote the current input, and denote by G0 the original
graph, and by N0 the neighborhood function of G0.

In the following, taking a vertex v ∈ V in the solution means that v is added to S, and v is
removed both from the graph G and the tree T (removing each of its occurrences). Deleting a
vertex means removing the vertex from G and from T . If a leaf of T becomes empty after taking
or deleting a vertex, then simply remove the leaf.

Let F ∈ I be a leaf of T [I] (i.e. a node of T of which all successors are leaves). The node F is
a bad father if there exists a vertex u which appears in at least two leaves of succ(F). So a node
is a bad father if the leaves attached to it are not vertex disjoint. We denote by #BF the number
of bad fathers of the tree. Finally, we denote by #AL (for ”almost leaf”) the number of internal
nodes of T such that at least one successor is a leaf. Notice that #AL,#BF ≤ |L|.

In addition, as said previously, we will put “flags” on some leaves L∗ ⊆ L by introducing a
boolean function w : L∗ → {0, 1}, which indicates whether it intersects the solution (value 1) or
not (value 0). At the beginning of the algorithm we have L∗ = ∅. For a solution S ⊆ V0, we say
that S respects the flags w if for all L ∈ L∗, w(L) = 0 iff S ∩ L = ∅. During the algorithm we
will use the term ”guessing” the value w(L) of L ∈ L. By this, we mean that we try the two
possible choices (consistent with the previous ones), creating at most two distinct executions of the
algorithm. Notice that L∗ will be implicitly updated (i.e. L belongs to L∗ in the next executions if
we have guessed w(L)).
We also add a function g : L∗ → 2S . Roughly speaking, we will modify g during the algorithm
such that g remembers the neighbors of the remaining vertices V in the partial solution S already
constructed. Notice that we introduced g only for the analysis, and more precisely for maintaining
our invariants (see bellow).

Correctness and Time Complexity. As usually in a branching algorithm, we bound the time
complexity by bounding both the depth and the maximum degree of the search tree. More precisely,
we will show that:

– Each rule can be applied in FPT time.
– The branching degree of each branching rule is a function of k.
– Any branching rule strictly decreases (k,#AL,#BF) using the lexicographic order, whose

initial value only depends on the initial value of k (by Observation 1).
– Any pre-processing rule does not increase (k,#AL,#BF) and decreases |V |+ |I|.

Thus, the number of branching steps of the search tree is a function of k only, whereas the number
of steps between two branchings is polynomial in n (recall that |X | is polynomial in n), which leads
to an FPT running time.

Recall that S denotes the partial current solution. Concerning the correctness of the algorithm,
we will say that a rule is safe if it preserves all the following invariants:

6

1. The tree T is still a tree decomposition (as defined in 2) of G, which is an induced subgraph of
G0.

2. If a vertex of the partial solution is adjacent to a ”surviving” vertex v ∈ V , then v must appear
in a leaf where a flag is defined, i.e.:
N0(S) ∩ V ⊆ ⋃L∈L∗ L.

3. The neighborhood of a surviving vertex u in the partial solution is defined by the union of g(L)
for each L in which u appears, i.e. g : L∗ → 2S is such that ∀u ∈ V we have N0(u) ∩ S =⋃
L∈Xu∩L∗ g(L).

In particular, this invariant implies that if there are u, v ∈ V such that Xu ∩L∗ ⊆ Xv ∩L∗ (i.e.
v appears in at least as many labelled leaves as u), then we must have N0(u) ∩ S ⊆ N0(v) ∩ S
(i.e. v is adjacent to at least as many vertices of the solution as u).

4. If there is an optimal solution (closed under inclusion) S∗ ⊆ V such that S ⊆ S∗, and S∗

respects the flags w, then one of the branching will output an optimal solution.

Reduction Rules. Notice that each of the following rules defines a new value for variables k, T ,
S, w and g. However, for the sake of readability we will not mention variables that are not modified.

Pre-Processing Rule 1: useless duplicated node.
If there exists X ∈ X such that X /∈ L∗ and X ⊆ pred(X), then contract X and pred(X) (i.e.

delete X, and connect every Y ∈ succ(X) to pred(X)).

Lemma 1. Pre-Processing Rule 1 is safe.

Proof. The new tree still verifies invariant 1. As X /∈ L∗, ⋃L∈L∗ L remains unchanged, and since
S is also unchanged, invariant 2 is clearly preserved. In the same way, as X /∈ L∗, ⋃L∈Xu∩L∗ g(L)
remains unchanged for any u, and invariant 3 is preserved. Invariant 4 remains true as we do not
modify S nor w.

Let us now check what is decreasing when applying this rule. Notice that this rule may increase
#BF as pred(X) may become a bad father. However, in this case the rule decreases #AL, and
thus (k,#AL,#BF) decreases. Otherwise (if #BF does not increase), either #AL decreases, or
(k,#AL,#BF) remains unchanged and |V |+ |I| decreases. ut

Pre-Processing Rule 2: removing a (almost) lonely vertex.
If there exists L ∈ L∗ such that w(L) = 0, then if L contains a lonely vertex v, delete v. Otherwise,

if L contains an almost lonely vertex v, then delete v.

Lemma 2. Pre-Processing Rule 2 is safe.

Proof. Here again invariant 1 still holds. Then, since we just remove a vertex from the graph and do
not modify the solution, invariant 2 is still true. For the same reason, and since g(L) is not modified
either, invariant 3 holds. Let us prove that invariant 4 is preserved. Consider an optimal solution S∗

closed under inclusion which satisfies S ⊆ S∗ and the flags on the leaves. As w(L) = 0, no vertex of
L is used in S∗, and in particular v /∈ S∗. Thus, vertices of S∗ \ S are still in the remaining graph
and the invariant still holds.
Then, obviously |V |+ |I| decreases while k remains unchanged. The only case in which #BF may
increase is when L = {v} and succ(pred(L)) = L (i.e. L was the unique leaf of pred(L)), and
pred(pred(L)) is an almost leaf). In this case L is deleted and thus pred(L) now becomes a leaf

7

and pred(pred(L)) may become a bad father. However in this case pred(L) and pred(pred(L))
were two almost leaves, and thus the deletion of v (and thus L) decreases #AL, which proves that
(k,#AL,#BF) cannot increase. ut

Branching Rule 1: taking a lonely vertex.
If there exists L ∈ L∗ such that w(L) = 1 and L contains a lonely vertex v, then take v in the

solution and decrease k by one. In addition, add v into g(L), and if L does not become empty, then
guess a new value w(L).

Lemma 3. Branching Rule 1 is safe.

Proof. Here again a vertex is deleted from the graph and thus invariant 1 is still verified. In addition,
neighbors of v in the remaining graph must appear in the leaf L only (since v is lonely), which
receives a flag w(L). Hence invariants 2 holds. Since v has been added to g(L), invariant 3 holds
too. For the last invariant, let us consider S∗ an optimal solution closed under inclusion such that
S ⊆ S∗ and S∗ satisfies the flags of w. Suppose that v /∈ S∗. Let x ∈ L ∩ S∗ (such a vertex must
exist, according to w(L)). Let us prove that N0(v) ∩ S∗ ⊆ N0(x) ∩ S∗ (as this will imply that
replacing x by v in S∗ cannot increase its cost). By invariant 3, it holds that N0(v)∩S ⊆ N0(x)∩S.
By invariant 1 and by definition of the tree T , it holds that N0(v)∩S∗ ∩V ⊆ N0(x)∩S∗ ∩V . Since
S∗ = S ∪ (S∗ ∩ V), the result follows and invariant 4 is true.
Finally, it is clear that k decreases. ut

Remark 1. At this point, since Pre-Processing Rule 1 does not apply, it is clear that every leaf
L ∈ L \ L∗ contains a lonely vertex. The following branching rule aims to process these leaves.

Branching Rule 2: processing leaves with no flag.
If there exists L ∈ L \ L∗, then take a lonely vertex v ∈ L in the solution and decrease k by one.

In addition, add v into g(L), and if L does not become empty, guess a value w(L).

Lemma 4. Branching Rule 2 is safe.

Proof. Using the same arguments as in Branching Rule 1, invariants 1, 2 and 3 hold. Then, let
us consider S∗ an optimal solution closed under inclusion such that S ⊆ S∗ and S∗ satisfies the
flags of w. Suppose that v /∈ S∗. Since L has no flag, two cases may happen: either S∗ ∩ L = ∅ or
S∗ ∩L 6= ∅. In the first case, since invariant 2 implies N0(v)∩ S = ∅, and since v is a lonely vertex,
we have N0(v) ∩ S∗ = ∅. Hence replacing any other vertex of S∗ by v cannot increase its number
of induced edges. Suppose now that S∗ ∩ L 6= ∅, and let x ∈ L ∩ S∗. As in the proof of Branching
Rule 1, let us prove that N0(v) ∩ S∗ ⊆ N0(x) ∩ S∗ (as this will imply that replacing x by v in S∗

cannot increase its cost). By invariant 3, it holds that N0(v) ∩ S ⊆ N0(x) ∩ S. By invariant 1 and
by definition of the tree T , it holds that N0(v)∩S∗ ∩V ⊆ N0(x)∩S∗ ∩V . Since S∗ = S ∪ (S∗ ∩V),
the result follows and invariant 4 is true.
Here again it is clear that k decreases. ut

Remark 2. At this point, notice that L∗ = L, i.e. a flag has been assigned to each leaf. Indeed,
suppose that there exists L ∈ L \ L∗. If L contains a lonely vertex, then Branching Rule 1 must
apply. Otherwise, Pre-Processing Rule 1 must apply. In addition, there is no lonely vertex in the
leaves, as otherwise Branching Rule 1 or Pre-Processing Rule 2 would apply.

8

Branching Rule 3: partitioning leaves of a bad father.
If there exists a bad father F ∈ X , let L′ be the set of leaves in succ(F) and C =

⋃
L∈L′ L be

the set of vertices contained these leaves. Partition C into the equivalence classes C1, ..., Ct of the
following equivalence relation: two vertices u, v ∈ C are equivalent if Xu ∩ L′ = Xv ∩ L′ (i.e. u and
v appear in the same subset of leaves of F). For all i ∈ {1, ..., t}, let Li ⊆ L′ denote the subset
of leaves in which vertices of Ci were before the partitioning. Then, replace the leaves of F by
C1, ..., Ct, and for all i ∈ {1, ..., t}, guess w(Ci) and set g(Ci) =

⋃
L∈Li g(L).

Let us give the intuition of Branching Rule 3. This rule ensures that the set of leaves attached
to a same node are vertex disjoint and that the partition was made in such a way that two vertices
in the same leaf after the application of the rule were in the same subset of leaves before it. Notice
that the remaining Branching Rules can create bad fathers, but decrease k.

Lemma 5. Branching Rule 3 is safe.

Proof. Notice first that by construction #BF decreases, whereas k and #AL remain unchanged.
Let us now check the invariants. Since vertices which appear in a leaf before the transformation

still appear on some leaves, invariant 2 is preserved. By Remark 2, no leaf contains a lonely vertex.
Thus, all vertices of C are contained in F and thus induce a clique. Since we do not modify F ,
no vertex nor edge has been removed from the graph, and invariant 1 still holds. For proving that
invariant 3 still holds, let i ∈ {1, ..., t} and u ∈ Ci. Before the partitioning we had:

N0(u) ∩ S =
⋃

L∈Xu∩L
g(L)

=

(⋃

L∈Xu∩L′
g(L)

)
∪


 ⋃

L∈Xu∩(L\L′)
g(L)




And by definition, we now have
⋃
L∈Xu∩L′ g(L) = g(Ci). Hence, the invariant is preserved.

Let us now turn to invariant 4. Consider a solution S∗ optimal and closed by inclusion satisfying
S ⊆ S∗ and the flags w on the leaves. If we consider the branching where every new leaf Ci receives
the right flag with respect to S∗∩Ci, then the solution S∗ satisfies the assigned flags, and invariant
2 holds. ut

Branching Rule 4: taking a lonely vertex in a father.
If there exists L ∈ L such that pred(L) contains a lonely vertex v, then take v in the solution,

delete k by one, and create a new leaf N adjacent to pred(L) and containing vertices of L \ {v}.
Finally, guess a value for w(N) and set g(N) = {v}.
Lemma 6. Branching Rule 4 is safe.

Proof. First, it is clear that invariant 1 still holds, since we just removed a vertex v from the graph,
and duplicated a node of the tree in a leaf. Then, since we created a leaf N containing all neighbors
of v, and since we assigned a value w(N) for this new leaf, invariant 2 is preserved. Concerning
invariant 3, notice that for all u ∈ pred(L), its neighborhood in the partial solution after the
branching rule (N0(u)∩S) is exactly the union of its neighborhood in the previous partial solution
and {v}. By definition of g(N), and since u now belongs to N , this proves that the invariant is still
true.

9

Let us know prove that invariant 4 still holds. Let S∗ be an optimal solution closed under inclusion
which satisfies S ⊆ S∗ and the already assigned flags w. If S∗ ∩ pred(L) 6= ∅ then the result is
straightforward since v is lonely. Otherwise, there are two cases:

– first case: there exists L ∈ pred(L) such that S∗ ∩ L 6= ∅. In this case, let u ∈ S∗ ∩ L. Since L
does not contain any lonely vertex (see Remark 2), S∗ is actually not closed under inclusion,
which proves that this case is impossible.

– second case: for all L ∈ pred(L) we have S∗ ∩L = ∅. In this case it means that N0(v) ∩ S∗ = ∅
and thus we can replace any other vertex of S∗ by v without increasing its cost.

Finally, it is clear that k decreases. ut

Branching Rule 5: taking an almost lonely vertex in a leaf.
If there exists L ∈ L such that w(L) = 1 and L contains an almost lonely vertex v (thus contained

in L and pred(L)), then take v in the solution, decrease k by one, and create a new leaf N adjacent
to pred(L) and containing vertices of pred(L) \ {v}. If L does not become empty, then guess a new
value w(L). Finally, guess a value w(N), add v into g(L), and set g(N) = {v}.

Lemma 7. Branching Rule 5 is safe.

Proof. Since we just removed a vertex from G and duplicated a node, creating a leaf, invariant 1
still holds. In addition, neighbors of v in the remaining graph must appear in the new leaf N , which
receives a flag w(N). Hence invariant 2 and 3 also hold (notice that we added v into g(L), and
that g(N) has been set to {v}). Concerning invariant 4, let S∗ be an optimal solution closed under
inclusion, such that S ⊆ S∗, and respecting the flags w. Let x ∈ S∗ ∩ L (such a vertex must exist,
according to w(L)), and suppose that v /∈ S∗. By invariant 2 it holds that N0(v) ∩ S ⊆ N0(x) ∩ S.
Since there is no lonely vertex in L (cf Remark 2), it holds that N0(v) ∩ S∗ ∩ V ⊆ N0(v) ∩ S∗ ∩ V .
Since S∗ = S ∪ (S∗ ∩ V), this proves that invariant 4 is preserved.
Finally, k strictly decreases.

End of the Algorithm.

Lemma 8. If no rule can be applied then either G is empty or k = 0.

Proof. Let us first prove that the depth of T is at most 1 (that is, T is a star). Suppose by con-
tradiction that there exists an internal node F of depth at least 1, i.e. at least one leaf is adjacent
to F , and F 6= Xr (and thus pred(F) exists). By Pre-Processing Rule 2 and Branching Rule 5,
no leaf of F has an almost lonely vertex. So every vertex which appears in F and a leaf of F also
appears in pred(F) (since otherwise Branching Rule 3 would apply). In addition, Pre-Processing
Rule 1 ensures that F * pred(F). Then there exists a vertex v in F which is not in pred(F). Hence
v must be a lonely vertex of F and Branching Rule 4 can be applied, a contradiction.

So T is a star rooted on Xr. Since Branching Rule 3 cannot be applied, leaves of Xr are vertex
disjoint. So every vertex which appears in a leaf is a lonely or an almost lonely vertex. Let L be
such a leaf. If w(L) = 0, then Pre-Processing Rule 2 can be applied. Otherwise Branching rule 1
or 5 can be applied as long as Xr has a leaf.

10

Hence G is now reduced to a clique. If k = 0 then we already have the solution and can output
it. If k > 0, then since each vertex is a lonely one, Branching Rule 1 can apply and we can thus
choose arbitrarily any remaining vertex.

Thus, the algorithm ends when the graph is empty or when k = 0. If the graph is empty and
k > 0, then we know that the current branching is not the right one, and then the output does not
provide an optimal solution. In the other cases, we compare the costs of all produced solutions (in
each branching). Since invariant 4 is preserved in all pre-processing and branching rules, one of the
branch of the search tree must provide a solution of optimal cost. Therefore the minimum over all
the possible branchings provides a solution with an optimal cost, which finishes the proof. ut

According to the introduction and all the safeness lemmas, the size of the search tree is a function
of k. Then, let us remark that all rules can be applied in FPT time. This is clear for Pre-Processing
Rules 1 and 2, as well as for Branching Rules 1, 2, 4 and 5. Concerning Branching Rule 3, which
consists in partitioning a subset of leaves, it runs in FPT time as long as |L| is a function of k.
This is obviously the case at the beginning of the algorithm (since |L| < k), and the number of
leaves only increase by one in Branching Rule 4 and 5, and by a function of the previous number
of leaves in Branching Rule 3. Since the branching rules are applied at most f(k) times, we get the
desired result.

Theorem 2. There is an FPT algorithm for Sparsest k-Subgraph in chordal graphs, parame-
terized by k.

However, the running time of the algorithm may be a tower of 2 of height k, since Branching Rule
3 may create 2t new leaves, where t is the number of previous leaves of the node F . Nevertheless,
we can slightly modify the algorithm in order to obtain a O∗(2k

2

) running time2. Indeed, after
the application of this rule, all leaves L such that w(L) = 0 can be gathered into one leaf, since
all these vertices are not in the solution. And since all leaves are vertex disjoint, the number of
leaves L such that w(L) = 1 is at most k (since one vertex of each leaf is in the solution). Hence,
the number of leaves of F after the application of Branching Rule 3 can actually be bounded by
k+ 1. Then, as said previously, the only other branching rules which increase the number of leaves
are Branching Rules 4 and 5, which both add at most one leaf when they are applied. However,
since these branching rules are decreasing k, the maximum number of leaves of a node F before
the application of Branching Rule 3 is 2k. Hence, this rule (which upper bounds the running time

of the algorithm) runs in time O∗(2O(2k2)) (we have at most 22k leaves and we choose at most k
leaves such that w(L) = 1). For sake of readability, the presented algorithm does not contain this
slight modification.

5 Kernel Lower Bound of Sparsest k-Subgraph in Chordal Graphs

Intuition of the proof. The following kernel lower bound is obtained using a cross-composition. It
is an extension of our previous work [17], showing the NP-hardness of Sparsest k-Subgraph
in chordal graphs. Let us first give the intuition of this result, and then explain the modification
we apply which leads to the kernel lower bound. We then explicit the whole construction of the
cross-composition and give a formal proof of the result.

The NP-hardness proof is a reduction from the classical k-clique problem in general graphs
and roughly works as follows. Given an input instance G = (V,E), k ∈ N of k-clique, we first

2 The O∗(.) notation avoids polynomial terms.

11

build a clique A representing the vertices of G. We also represent each edge ej = {u, v} ∈ E by a
gadget Fj , and connect the representative vertices of u and v in A to some vertices of Fj (see the
left of Figure 1). The reduction will force the solution to take in A the representatives of (n − k)
vertices of G (corresponding to the complement of a solution S of size k in G), and also to take the
same number of vertices among each gadget. The key idea is that the cost of a gadget Fj increases
by one if it is adjacent to one of the selected vertices of A. Thus, since the goal is to minimize
the cost, we will try to maximize the number of gadgets adjacent to the representatives of S (i.e.
vertices we did not pick in A), the maximum being reached when S is a clique in G.

To adapt this reduction into a cross-composition, we add an instance selector composed of 2 log t
gadgets adjacent to A (where t is the number of input instances of the cross-composition) which
encodes the binary representation of each instance index. These gadgets have the same structure
as the Fj . For technical reasons, this instance selector has to be duplicated many times, as well as
the clique A which we must duplicate t times in order to encode the vertex set of each instance.
The right of Figure 1 represents the construction in a simplified way. Let us now define formally
the gadgets and state their properties.

Definition of a gadget. Let T ∈ N (we will set the value of T later). The vertex set of each gadget
is composed of three sets of T vertices X,Y and Z, with X = {x1, ..., xT }, Y = {y1, ..., yT } and
Z = {z1, ..., zT }. The set X induces an independent set, the set Z induces a clique, and there is a
(T − 1)-clique on {y2, ..., yT }. In addition, for all i ∈ {1, ..., T}, we connect yi to all vertices of Z
and to xi. The left of Figure 1 summarizes the construction.
In the following cross-composition, we will force the solution to take 2T vertices among each gadget
F . It is easy to see that the sparsest 2T -subgraph of F is composed of the sets X and Z, which
induces

(
T
2

)
edges. In addition, if we forbid the set Z to be in the solution (if the gadget is adjacent

to some picked vertices of A), then the remaining 2T vertices (namely X and Y) induce (
(
T
2

)
+ 1)

edges.
Theorem 3. Sparsest k-Subgraph does not admit a polynomial kernel in chordal graphs unless
NP ⊆ coNP/poly (parameterized by k).

Proof. Let (G1, k1), ..., (Gt, kt) be a sequence of t instances of k-clique, with Gi = (Vi, Ei) for all
i ∈ {1, ..., t}. W.l.o.g. we suppose that t = 2q for some q ∈ N, and define T = n(n−k) and M = n6.

Our polynomial equivalence relation is the following: for 1 ≤ i, j ≤ t, (Gi, ki) is equivalent to
(Gj , kj) if |Vi| = |Vj | = n, |Ei| = |Ej | = m and ki = kj = k. One can verify that this relation is a
polynomial equivalence relation. In what follows we suppose that all instances of the sequence are
in the same equivalence class. The output instance G′ = (V ′, E′), k′, C ′ is defined as follows (see
Figure 1):

– For each i ∈ {1, ..., t} we construct a clique Ai on n2 vertices, where Ai is composed of n
subcliques Ai1, ..., A

i
n. We also add all possible edges between all cliques (Ai)i=1..n. Hence,

A =
⋃t
i=1A

i is a clique of size tn2.
– Since all instances have the same number of edges, we construct m gadgets (Fj)j=1..m, where

each Fj is composed of Xj , Yj and Zj as described previously. For all i ∈ {1, ..., t}, if there is
an edge ej = {u, v} ∈ Ei, then we connect all vertices of Zj to all vertices of Aiu and Aiv. Let
us define F =

⋃m
j=1 Fj the subgraph of all gadgets of the ”edge selector”.

– We add 2qM gadgets (Fαhj)h=1..M
j=1..q and (Fβhj)h=1..M

j=1..q , where all gadgets are isomorphic to the edge

gadgets, and thus composed of Xαhj
, Yαhj and Zαhj (resp. Xβhj

, Yβhj and Zβhj) for all h ∈ {1, ...,M}
and all j ∈ {1, ..., q}. Let i ∈ {1, ..., t}, and consider its binary representation b ∈ {0, 1}q. For

12

X1

Y1

Z1

gadget F1 for e1 = {u, v} ∈ Ei

T

n

n Ai

X1

Y1

Z1

Xm

Ym

Zm

Zα1
1

Fα1
1

Fβ1
1

clique on
tn2 vertices A1 At

k n − k

(
k
2

)
gadgets m −

(
k
2

)
gadgets

T

bin. representation
of i : 1 1 0

2Mq
gadgets

T

F1 Fm

Yα1
1

Xα1
1

ZβM
q

YβM
q

XβM
qFαM

j
FβM

j

Fα1
q

Fβ1
q

Ai
u Ai

v

Ai

1

Fig. 1: Schema of the cross-composition (right) and a detailed gadget (left). Grey rectangles repre-
sent vertices of the solution, supposing that Gi contains a clique of size k. Notice that gadgets of
the bottom have been drawn in the reverse direction (e.g. Xβ1

1
is below Yβ1

1
). Edges of the clique A

have not been drawn for sake of clarity.

all j ∈ {1, ..., q}, if the jth bit of b equals 0, then connect all vertices of Ai to all vertices

of
⋃M
h=1 Zαhj . Otherwise, connect all vertices of Ai to all vertices of

⋃M
h=1 Zβhj . Let us define

B =
⋃M
h=1

⋃q
j=1(Fαhj ∪ Fβhj) the subgraph of all gadgets of the ”instance selector”.

– We set k′ = T + 2Tm+ 4TqM and C ′ =
(
T
2

)
+
(
T
2

)
(m+ 2Mq) + (m−

(
k
2

)
) +Mq.

It is clear that G′, k′ and C ′ can be constructed in time polynomial in
∑t
i=1 |Gi| + ki. Then,

one can verify that G′ is a chordal graph. Indeed, it is known [12] that a graph is chordal if and
only if one can repeatedly find a simplicial vertex (a vertex whose neighborhood is a clique) and
delete it from the graph until it becomes empty. Such an ordering is called a simplicial elimination
order. It is easily seen that for each gadget, X,Y and then Z is a simplicial elimination order (each
gadget is only adjacent to the clique A via its set Z). Finally it remains the clique A which can be
eliminated.

In addition, notice that the parameter k′ is a polynomial in n, k and log t only and thus respect
the definition of a cross-composition. We finally prove that there exists i ∈ {1, ..., t} such that Gi

13

contains a clique K of size k if and only if G′ contains a set K ′ of k′ vertices inducing C ′ edges or
less.

Lemma 9. If there exists i ∈ {1, ..., t} such that Gi contains a k-clique, then G′ contains k′ vertices
inducing at most C ′ edges.

Proof. Suppose that K ⊆ Vi is a clique of size k in Gi. W.l.o.g. suppose that K = {v1, ..., vk}, and
that {{u, v}, u, v ∈ K} = {e1, ..., e(k2)}. Let b ∈ {0, 1}q be the binary representation of i. We build

K ′ as follows (see Figure 1).

– For all j ∈ {1, ...,
(
k
2

)
}, K ′ contains Xj and Zj (2T vertices inducing

(
T
2

)
edges for each gadget

Fj).

– For all j ∈ {
(
k
2

)
+ 1, ...,m}, K ′ contains Xj and Yj . (2T vertices inducing (

(
T
2

)
+ 1) edges for

each gadget Fj).

– For all u /∈ {1, ..., k}, K ′ contains Aiu (T vertices inducing
(
T
2

)
edges).

– For all h ∈ {1, ...,M}, and all j ∈ {1, ..., q}, K ′ contains Xαhj
and Xβhj

. Moreover, if the jth bit

of b equals 1, then K ′ contains Yβhj and Zαhj , otherwise K ′ contains Zβjj
and Yαhj (4T vertices

inducing (2
(
T
2

)
+ 1) edges for each pair of gadgets Fαhj and Fβhj).

One can easily verify that K ′ is a set of k′ vertices inducing C ′ edges. ut
The following lemma terminates the proof.

Lemma 10. If G′ contains k′ vertices inducing at most C ′ edges, then ∃i ∈ {1, ..., t} such that Gi
contains a k-clique.

Proof. Suppose now that K ′ is a set of k′ vertices inducing C ′ edges. For a set S ⊆ V ′, we denote
by tr(S) = S ∩ K ′ the trace of the solution on S. For all v ∈ V ′, let µ(v) = |tr(N(v))| be the
number of neighbors of v belonging to K ′.
Let I = {1, ...,m}∪{αhj }h=1..M

j=1..q ∪{βhj }h=1..M
j=1..q be the set of all indices of gadgets. As in the definition

of the gadgets given above, we define for all γ ∈ I the sets Xγ = {xγ1 , ..., xγT }, Yγ = {yγ1 , ..., yγT } and
Zγ = {zγ1 , ..., zγT }.
We define E0 = {γ ∈ I such that ∀x ∈ tr(A), no vertex of Zγ is adjacent to x}, i.e. E0 represents
the indices of all gadgets Fγ which are not adjacent to vertices of the solution among the clique A.
Then, define E1 = I \ E0, which represents indices of gadgets which are adjacent to at least one
vertex of tr(A).

In the three following Claims (1, 2 and 3), we show that we can restructure the solution inside
each gadget in order to encode a solution for the k-clique instance. To do so, we define the notion
of safe replacement :

Let u ∈ K ′ and v ∈ V ′\K ′. We say that (K ′\{u}) ∪ {v} is a safe replacement if we have
µ(v) ≤ µ(u) if {u, v} /∈ E′ and µ(v) − 1 ≤ µ(u) if {u, v} ∈ E′. It is easily seen that in this case
(K ′\{u}) ∪ {v} does not induce more edges than K ′. For the sake of readability, we will keep the
same notations and update the set K ′ when applying replacements, as well as the sets E0 and E1

when replacing vertices of A (e.g. if there exists γ ∈ E1 such that Fγ is adjacent to a unique vertex
u ∈ tr(A), and if a replacement removes u from the solution, then γ now belongs to E0).

Claim 1 Without loss of generality (and optimality of K ′), we can suppose that for all γ ∈ I we
have Xγ ⊆ K ′.

14

Proof. Let S =
⋃
γ∈I Xγ . Since we have k′ > |S|, we have K ′\S 6= ∅. Suppose that there exists

γ ∈ I and i ∈ {1, ..., T} such that xγi /∈ K ′. Recall that yγi is the only neighbor of xγi . If yγi /∈ K ′,
then we have µ(xγi) = 0 and we can thus safely replace any other vertex of K ′\S by xγi . Now, if
yγi ∈ K ′, then µ(xγi) = 1. Since xγi and yγi are adjacent, (K ′\{yγi })∪{xγi } is a safe replacement. ut

In the following, we suppose that for all γ ∈ I we have Xγ ⊆ K ′.
Claim 2 K ′ can be safely modified such that one of the two following cases must happen (see Figure
2):

– case A1: for all γ ∈ E0 we have tr(Zγ) = Zγ .
– case A2: for all γ ∈ E0 we have tr(Yγ) = ∅.

Proof. Let us first restructure each gadget of E0 separately. For all γ ∈ E0 such that tr(Yγ) 6= ∅ and
tr(Zγ) 6= Zγ , let j0 = max{j ∈ {1, ..., T} : yγj ∈ tr(Yγ)} and let j1 be such that zγj1 /∈ tr(Zγ). Recall
that Claim 1 ensures that xγj0 is in K ′. If j0 6= 1, then µ(yγj0) = y+z+1, where y = |N(yγj0)∩tr(Yγ)|
and z = |N(yγj0) ∩ tr(Zγ)|. On the other side, we have µ(zγj1) ≤ y + z + 1 (more precisely, µ(zγj1) =
y + z + 1 if yγ1 ∈ K ′, and µ(zγj1) = y + z if yγ1 /∈ K ′). Roughly speaking, this switch ensures that
we necessarily “loose” the edge due to the vertex of Xγ and we gain at most one edge due to yγ1 .
Hence µ(zγj1) ≤ µ(yγj0) and (K ′\{yγj0}) ∪ {z

γ
j1
} is a safe replacement. If j0 = 1, then it means that

tr(Yγ) = {yγ1 }. Suppose that there exists j1 such that zγj1 /∈ tr(Zγ). We have µ(yγ1) = z + 1 where
z = |N(yγ1)∩ tr(Zγ)|, and µ(zγj1) = z+ 1. Here again (K ′\{yγ1 })∪{zγj1} is a safe replacement. After
all these replacements, given any γ ∈ E0, tr(Yγ) 6= ∅ implies that tr(Zγ) = Zγ .
Then, we proceed to replacements between gadgets Fγ , γ ∈ E0. If one can find a, b ∈ E0 such
that tr(Ya) 6= ∅ and tr(Zb) 6= Zb, then let j0 be such that yaj0 ∈ tr(Ya) and let j1 be such that

zbj1 /∈ tr(Zb). We have µ(yaj0) ≥ T + 1 and µ(zbj1) ≤ T − 1. Thus, (K ′\{yaj0}) ∪ {zbj1} is a safe
replacement.
These replacements end either when tr(Yγ) = ∅ for all γ ∈ E0 or when tr(Zγ) = Zγ for all γ ∈ E0,
which achieves the proof of Claim 1. ut
Claim 3 K ′ can be safely modified such that one of the two following cases must happen (see Figure
2):

– case B1: for all γ ∈ E1 we have tr(Yγ) = Yγ .
– case B2: for all γ ∈ E1 we have tr(Zγ) = ∅.

Proof. The proof is roughly based on the fact that replacing a vertex of Zγ by a vertex of Yγ permits
to “loose” at least one edge with vertices A and “gain” one edge with a vertex of Xγ . Let us formally
prove Claim 3. Similarly to the proof of Claim 2, we first restructure each gadget of E1 separately:
for all γ ∈ E1 such that tr(Zγ) 6= ∅ and tr(Yγ) 6= Yγ , let j0 = max{j ∈ {1, ..., T} : yγj /∈ K ′} and let
j1 be such that zγj1 ∈ tr(Zγ). Recall that by definition of E1, there exists i, j ∈ {1, ..., n} such that

zγj1 is adjacent to aji . We have µ(zγj1) ≥ y + z + 1, where y = |N(zγj1) ∩ Yγ | and z = |N(zγj1) ∩ Zγ |.
On the other side, we have µ(yγj0) ≤ z + y + 2 (indeed, |N(yej0γ) ∩ Zγ | = z + 1, |N(yγj0) ∩ Yγ | ≤ y
and |N(yγj0)∩Xγ | = 1). Since {yγj0 , z

γ
j1
} ∈ E′, it holds that (K ′\{zj1})∪{yj0} is a safe replacement.

After all these replacements, given any γ ∈ E1, tr(Zγ) 6= ∅ implies that tr(Yγ) = Yγ .
We now proceed to replacements between gadgets Fγ , γ ∈ E1. If one can find a, b ∈ E1 such that
tr(Za) 6= ∅ and tr(Yb) 6= Yb, then let j0 be such that ybj0 /∈ tr(Yb) and let j1 be such that zaj1 ∈ tr(Za).

We have µ(zaj1) ≥ T + 1 and µ(ybj0) ≤ T − 1. Thus (K ′\{zj1}) ∪ {yj1} is a safe replacement.
As previously, the replacements ends either when tr(Yγ) = Yγ for all γ ∈ E1 or when tr(Zγ) = ∅
for all γ ∈ E1. ut

15

γ ∈ E0

Dγ

case A1

γ ∈ E0

Dγ

case A2

γ ∈ E1

Dγcase B1

γ ∈ E1

Dγ

case B2

Xγ

Yγ

Zγ

1

Fig. 2: Schema of different cases. Shaded rectangles represent part of K ′.

We now define for each case and each γ ∈ I the set of vertices Dγ ⊆ Yγ ∪ Zγ that have to be
replaced:

– case A1: for all γ ∈ E0, Dγ = Yγ ∩K ′
– case A2: for all γ ∈ E0, Dγ = Zγ \K ′
– case B1: for all γ ∈ E1, Dγ = Zγ ∩K ′
– case B2: for all γ ∈ E1, Dγ = Yγ \K ′

Notice that if Dγ = ∅ for all γ ∈ E0 (resp. for all γ ∈ E1), then cases A1 and A2 (resp. B1 and B2)
collapse. If such a case happen for all γ ∈ I, we can immediately conclude, as we will see in Claim
5. Now, we will show that if cases A1 and B1 happen (or if Dγ = ∅ for all γ ∈ I), then the solution
must hit the clique A in only one subclique Ai for some i ∈ {1, ..., t}:

Claim 4 If cases A1 and B1 happen (or if Dγ = ∅ for all γ ∈ I), then there exists i ∈ {1, ..., t}
such that tr(A) ⊆ Ai, i.e. the solution K ′ only appears in one clique Ai among A.

Proof. Let ∆ =
∑
γ∈I |Dγ |, and suppose by contradiction that there exists i, j ∈ {1, ..., t} with

i 6= j such that K ′ ∩ Ai 6= ∅ and K ′ ∩ Aj 6= ∅. First, since we are in case A1 and B1, the number
of edges induced by each gadget is at least

(
T
2

)
. Then, let S (resp. S̄) be the number of pairs of

gadgets corresponding to a bit on which the binary representations of i and j is the same (resp.
differ). Recall that S+ S̄ = Mq. Then, since i 6= j, the binary representations of i and j must differ
on at least one bit, which implies S̄ ≥ M . Let us count the number of edges induced by each pair
of gadget, whether they correspond to a bit value shared by the binary representation of i and j or
not.
Let p ∈ {1, ..., q} such that the binary representations of i and j are the same. Then, for all
h ∈ {1, ...,M}, three cases may happen:

– Yαhp ⊆ K ′ and Yβhp ⊆ K ′. In this case the pair of gadgets induces at least 2
(
T
2

)
+ 2 edges.

– Yαhp ⊆ K ′ and Zβhp ⊆ K ′ (or the contrary). In this case the pair of gadgets induces at least

2
(
T
2

)
+ 1 edges.

– Zαhp ⊆ K ′ and Zβhp ⊆ K ′. In this case the pair of gadgets induces at least 2
(
T
2

)
+ T edges, since

either Zαhp or Zβhp is adjacent to at least one vertex of tr(Ai).

Hence, in all three cases the solution in each pair of such gadgets induces at least (2
(
T
2

)
+ 1) edges.

Let us now focus on some p ∈ {1, ..., q} such that the binary representations of i and j differ.
Then, for all h ∈ {1, ...,M}, notice that both Zαhp and Zβhp are adjacent to at least one vertex in

Ai ∪Aj . Here again three cases may happen:

16

– Yαhp ⊆ K ′ and Yβhp ⊆ K ′. In this case the pair of gadgets induces at least 2
(
T
2

)
+ 2 edges.

– Yαhp ⊆ K ′ and Zβhp ⊆ K ′ (or the contrary). In this case the pair of gadgets induces at least

2
(
T
2

)
+ T + 1 edges.

– Zαhp ⊆ K ′ and Zβhp ⊆ K ′. In this case the pair of gadgets induces at least 2
(
T
2

)
+ 2T edges.

Hence, in all three cases the solution in each pair of such gadgets induces at least (2
(
T
2

)
+ 2) edges.

In addition, it is easily seen that the number of edges induced by tr(A) is
(
T
2

)
−
(
∆
2

)
−∆(T −∆),

since it is a clique of size (T −∆). To resume:

– tr(A) induces (
(
T
2

)
−
(
∆
2

)
−∆(T −∆)) edges.

– Each gadget (both from the edge or the instance selector) induces at least
(
T
2

)
edges (there are

(m+ 2Mq) gadgets), and more precisely:
• Each pair of gadgets corresponding to a shared bit value of the binary representation of i

and j induces (
(
T
2

)
+1) edge (i.e. one more than the ”normal” ones). There are S such pairs

of gadgets.
• Each pair of gadgets corresponding to a different bit value of the binary representation of
i and j induces (

(
T
2

)
+ 2) edge (i.e. two more than the ”normal” ones). There are S̄ such

pairs of gadgets.

Thus we have:

E(K ′) ≥
(
T

2

)
−
(
∆

2

)
−∆(T −∆) +

(
T

2

)
(m+ 2Mq) + S + 2S̄

=

(
T

2

)
−
(
∆

2

)
−∆(T −∆) +

(
T

2

)
(m+ 2Mq) +Mq + S̄

≥
(
T

2

)
−
(
∆

2

)
−∆(T −∆) +

(
T

2

)
(m+ 2Mq) +Mq +M

And thus

E(K ′)− C ′ ≥M −m+

(
k

2

)
−
(
∆

2

)
−∆(T −∆)

Since M = n6, we have E(K ′) > C ′ which is impossible. ut
Claim 5 If Dγ = ∅ for all γ ∈ I, then there exists i ∈ {1, ..., t} such that G contains a clique of
size k.

Proof. By construction, we have |tr(A)| = T and |tr(Fγ)| = 2T for all γ ∈ I. Thus, E(tr(A)) =
(
T
2

)

and E(tr(Fγ)) =
(
T
2

)
+ 1 if γ ∈ E1, and E(tr(Fe)) =

(
T
2

)
if γ ∈ E0. Hence, we have E(K ′) ≥(

T
2

)
+
(
T
2

)
(m+ 2Mq) + |E1|.

By Claim 4, there exists i ∈ {1, ..., t} such that tr(A) ⊆ Ai. Thus, there are at most Mq gadgets
among the instance selector which are not adjacent to tr(A), and which can belong to E0. This
implies that there are at least Mq gadgets among the instance selector which must belong to E1. Let
Ee0 = E0∩{1, ...,m} be the restriction of E0 in the edge selector, and similarly Ee1 = {1, ...,m}\Ee0 .
The arguments above show that |Ee1 | ≤ m−

(
k
2

)
, which implies |Ee0 | ≥

(
k
2

)
. In addition, each gadget

j ∈ Ee0 corresponding to the edge ej = {u, v} of Gi is adjacent to the cliques Aiu and Aiv, which must
be such that Aiu∩K ′ = ∅ and Aiv∩K ′ = ∅ by definition of E0. However, since |tr(A)| = |tr(Ai)| = T ,
the number of such cliques is at most n− bTn c = k. This proves that these |Ee0 | edges of G can be
induced by at most k vertices, i.e. Gi contains a clique of size k. ut

17

Let us now combine the four possible cases of Claims 2 and 3:

– Case A1 and B1: let ∆ =
∑
γ∈I |Dγ |, and suppose that ∆ > 0 (otherwise we conclude by Claim

5). Let us count the number of edges induced by such a solution. To do so, we count the number
of edges induced by the solution among vertices of A, and the number of edges covered by the
solution among the gadgets. First, it is clear that |tr(A)| = T−∆, and thus the number of edges
induced by tr(A) is (

(
T
2

)
−
(
∆
2

)
−∆(T −∆)) since A is a clique. In addition, since we are in case

A1 and B1, the trace of the solution in all gadgets (both from the edge or the instance selector)
covers at least

(
T
2

)
edges. More precisely, for each gadget γ ∈ I three cases may happen:

• if Dγ = ∅, then tr(Fγ) covers exactly
(
T
2

)
edges if γ ∈ E0 and exactly

(
T
2

)
edges if γ ∈ E1.

• if Dγ 6= ∅, then:
∗ if γ ∈ E0, then since each vertex of Yγ is connected to all vertices of Zγ and to one

vertex of Xγ , we have that tr(Fγ) covers exactly (
(
T
2

)
+ |Dγ |(T + 1)) edges (see Figure

2).
∗ if γ ∈ E1, then since each vertex of Zγ is connected to all vertices of Yγ , and to at least

one vertex of tr(A), we have that tr(Fγ) covers at least (
(
T
2

)
+ 1 + |Dγ |(T + 1)) edges

(recall that if Dγ the gadgets covers exactly (
(
T
2

)
+ 1) edges).

Summing up to all gadgets, the solution among all gadgets covers (
(
T
2

)
(m + 2Mq) + |E1| +

∆(T + 1)) edges.
We define Ee0 = E0 ∩ {1, ...,m} the restriction of E0 to the edge selector and Eb0 = E0 \Ee0 the
restriction of E0 to the instance selector, as well as the corresponding sets Ee1 = E1 ∩{1, ...,m}
and Eb1 = E1 \ Ee1 .
By Claim 4, there exist i ∈ {1, ..., t} such that tr(A) ⊆ Ai. This implies that |Eb0| = |Eb1| = Mq
(roughly speaking, for each pair of gadgets of the instance selector, only one of the two is
connected to Ai and thus to tr(A), depending on the corresponding bit value). Thus, we have
|E1| = Mq + |Ee1 | = Mq +m− |Ee0 |. Combining all these, we obtain:

E(K ′) ≥
(
T

2

)
−
(
∆

2

)
−∆(T −∆) +

(
T

2

)
(m+ 2Mq) +∆(T + 1) +Mq +m− |Ee0 |

And thus:

E(K ′)− C ′ ≥
(
k

2

)
+∆(T + 1)− |Ee0 | −

(
∆

2

)
−∆(T −∆)

=
∆(∆+ 3)

2
+

(
k

2

)
− |Ee0 |

Thus, since we supposed E(K ′)− C ′ ≤ 0 it implies

|Ee0 | ≥
∆(∆+ 3)

2
+

(
k

2

)
(1)

On the other hand, the number of vertices of Gi inducing all edges of Ee0 is at most k + b∆n c.
Hence we have |Ee0 | ≤

(
k+b∆n c

2

)
. Hence we have:

(
k + b∆n c

2

)
≥ ∆(∆+ 3)

2
+

(
k

2

)

18

If ∆ < n, then b∆n c = 0 and it contradicts the previous inequality. If ∆ ≥ n, then it contradicts
inequality (1) since we have by definition |Ee0 | ≤ m. Hence, we must have ∆ = 0 and the result
follows by Claim 5.

– Case A2 and B2: let ∆0 =
∑
γ∈E0

|Dγ |, ∆1 =
∑
γ∈E1

|Dγ |, and ∆ = ∆0 +∆1, and suppose that
∆ > 0 (otherwise we conclude by Claim 5). Let us notice that for all u ∈ tr(A), µ(u) ≥ T . On
the other hand, for all γ ∈ I such that there exists v ∈ Dγ , we have µ(v) ≤ T (remark that if
γ ∈ E1, then Dγ ⊆ Yγ , and if γ ∈ E0, then v is not adjacent to tr(A) by definition of E0). Thus
(K ′\{u}) ∪ {v} is a safe replacement. Since before this replacement we had tr(A) = T + ∆, it
is clear that we can repeat this replacement (i.e. K ′\{u} ∪ {v} where u ∈ tr(A) and v ∈ Dγ

for some γ ∈ I) ∆ times safely. At this point, the updated value of ∆ is 0, i.e. Dγ = ∅ for all
γ ∈ I. We then conclude by Claim 5.

– Case A2 and B1: if there exists γ ∈ E0 such that there exists u ∈ Dγ , then µ(u) < T . If such a
vertex exists, then either |tr(A)| > T or there exists γ′ ∈ E1 such that there exists v ∈ Dγ′ . In
the first case for all x ∈ tr(A) we have µ(x) ≥ T , and (K ′ \ {x})∪ {u} is a safe replacement. In
the second case we have µ(v) > T and here again (K ′ \ {v}) ∪ {u} is a safe replacement.
After these replacements we must have Dγ = ∅ for all γ ∈ E0, and we can apply the case A1
and B1.

– Case A1 and B2: if there exists γ ∈ E1 such that there exists u ∈ Dγ , then µ(u) < T . If such a
vertex exists, then either |tr(A)| > T or there exists γ′ ∈ E0 such that there exists v ∈ Dγ′ . In
the first case for all x ∈ tr(A) we have µ(x) ≥ T , and (K ′ \ {x})∪ {u} is a safe replacement. In
the second case we have µ(v) > T and here again (K ′ \ {v}) ∪ {u} is a safe replacement.
After these replacements we must have Dγ = ∅ for all γ ∈ E1, and we can apply the case A1
and B1.

ut

6 Dynamic Programming in Interval Graphs for Sparsest k-Subgraph

6.1 Introduction

In this section we provide a dynamic programming for Sparsest k-Subgraph in interval graphs,
leading to an FPT algorithm parameterized by C, the number of edges in the solution. Remark that
the parameterization by C is stronger than the natural parameterization by k, as we always have
C ≤

(
k
2

)
. In addition, for C = 0, we obtain the known polynomial algorithm for Independent Set

in interval graphs. Notice that the complexity (NP-hard versus Polynomial) is still unknown for
Sparsest k-Subgraph in interval graphs. However, similarly to the long-standing open problem
of Densest k-Subgraph in the same graph class [8], we believe that is may be a tough question.

The algorithm works as follows: we first sort intervals according to their right endpoints. Then
we process the graph from the left to the right, and construct all possible connected components
composed of at most k vertices and inducing less than C edges, and make a recursive call at the
right of this constructed connected component. Using swapping arguments, we show that we only
have to enumerate an FPT number of such connected component at each step.

19

6.2 Preliminaries

In the following, we will make no distinction between a vertex and its corresponding interval, as
well as we will make no distinction between edges in the graph and overlaps in the corresponding
interval model.

For the rest of the section, G = (V,E) will denote the input graph of the problem. The associated
interval set will be denoted by I = {I1, ..., In}. Without loss of polynomiality, we suppose that
all endpoints are pairwise distinct. Given I ∈ I, we denote by right(I) ∈ R (resp. left(I) ∈
R) the right (resp. left) endpoint of I. By extension, for any set S ⊆ I, we define left(S) =
arg minI∈S left(I) (resp. right(S) = arg maxI∈S right(I)). Unless otherwise stated, we suppose
that I is sorted according to the right endpoints of the intervals (i.e. for all i ∈ {2, ..., n} we have
right(Ii−1) < right(Ii)). For S ⊆ I and r ≤ |S|, we define the ”r-leftmost intervals of S” as the
r first intervals in an ordering of S (where intervals are sorted according to their right endpoints).
Notice that the 1-leftmost interval will simply be called the leftmost interval. Given a set S ⊆ I,
we denote cost(S) the number of edges in the graph induced by intervals of S.

Given x ∈ R we define I≥x = {I ∈ I : x ≤ left(I)} the set of intervals that are after x, I=x =
{I ∈ I : left(I) < x < right(I)} the set of intervals that cross x, and I≤x = {I ∈ I : right(I) ≤ x}
the set of intervals that are before x.

Let us start with two lemmas that allow us to restructure optimal solutions by ”flushing”
intervals to the left.

Lemma 11. Let S ⊆ I be a solution, and s ∈ R such that left(S) < s < right(S) and S∩I=s = ∅.
Let Ĩ be the leftmost interval of S ∩ I≥s and I∗ be the leftmost interval of I≥s. Then we can swap

Ĩ and I∗ to get a solution S′ = (S\{Ĩ}) ∪ {I∗} such that cost(S′) ≤ cost(S).

Proof. Let us suppose that Ĩ 6= I∗, and let I ∈ S such that I 6= Ĩ , I∗. We will show that if I overlaps
I∗, then it also overlaps Ĩ. Thus, suppose that I overlaps I∗. By definition of Ĩ and S, we have
right(I∗) < right(Ĩ) < right(I), and since I overlaps I∗, we have I ∈ I=right(I∗) and thus I also

overlaps Ĩ (see Figure 3a).

s

Ĩ

I∗

II

I

1

(a)

s s′

Ĩj0

I∗
j0

I
I

I

I

1

(b)

Fig. 3: Different positions of interval I in Lemma 11 (Figure (a)) and Lemma 13 (Figure (b)).
Dashed intervals represent forbidden positions.

Lemma 12. Let S ⊆ I be a solution, Ii1 ∈ S and s ∈ R such that:

20

(i) Ii1 is the leftmost interval of S ∩ I=s
(ii) ∃Ĩ ∈ S ∩ I≥s such that Ĩ overlaps Ii1

Let I∗ be the leftmost interval of I≥s. Then, we can swap I∗ and Ĩ to get a solution S′ = (S\{Ĩ})∪
{I∗} such that cost(S′) ≤ cost(S).

Proof. Let us suppose that Ĩ 6= I∗, otherwise the proof is obvious, and let I ∈ S such that I 6= Ĩ , I∗.
We will show that if I overlaps I∗, then it also overlaps Ĩ. Thus, suppose that I overlaps I∗. If
I ∈ I=s, then by definition of Ii1 , we must have right(Ii1) < right(I), and since s < left(Ĩ) <
right(Ii1), I must overlap Ĩ. Otherwise if I ∈ I≥s, as in the proof of Lemma 11, by definition of Ĩ

we have right(I∗) < right(Ĩ) < right(I), and since I overlaps I∗, we have I ∈ I=right(I∗) and thus

I also overlaps Ĩ.

Lemma 13. Let S ⊆ I be a solution and s, s′ ∈ R with s < s′ and such that ∀I ∈ S we have
right(I) /∈ [s, s′]. Let X̃ = S ∩ I≥s ∩ I=s′ and X∗ be the |X̃|-leftmost intervals of I≥s ∩ I=s′ . Then

we can swap X̃ and X∗ to get a solution S′ = (S\X̃) ∪X∗ such that cost(S∗) ≤ cost(S̃).

Proof. We suppose that X̃ 6= X∗ and that both sets are non empty. Let X̃ = {Ĩ1, ..., Ĩ|X̃|}, and X∗ =

{I∗1 , ..., I∗|X̃|}. We suppose moreover that for all j ∈ {2, ..., |X̃|} we have right(Ĩj−1) < right(Ĩj) and

right(I∗j−1) < right(I∗j) (i.e. X̃ and X∗ are sorted by their right endpoints). Let j0 be the minimum

index such that Ĩj0 6= I∗j0 , and let I ∈ S\(X̃ ∪X∗) (we thus have right(I∗j0) < right(Ĩj0)). We will

show that if I overlaps I∗j0 , then I also overlaps Ĩj0 . To do so, suppose that I overlaps I∗j0 , and let us

distinguish between two cases (see Figure 3b). If s′ < right(I), then since right(I∗j0) < right(Ĩj0),

it is clear that I also overlaps Ĩj0 . Otherwise, if right(I) < s′, then by definition right(I) < s, and
thus I cannot overlap I∗j0 .

6.3 Algorithm

Recall that our objective is to prove that the decision problem ”given an instance (I, k) of Sparsest
k-Subgraph, does Opt(I, k) ≤ cost ?”, is FPT parametrized by cost.

We construct in Algorithm 1 a dynamic programming algorithm that given any next ∈ R, t ≤ k
and C ≤ cost returns a set S of t vertices in I≥next of cost at most C if it was possible, and returns
NO otherwise.

We define Ωnext(C) ⊆ P(I) (where P(I) is the set of all subsets of I) such that for all T ∈
Ωnext(C) we have:

– G[T] is connected
– cost(T) ≤ C
– left(T) = left(I≥next)

Roughly speaking, Ωnext(C) is the set of all connected components of cost at most C that start
immediately after next. Given next and t, the algorithm branches on a subset of Ωnext(C) (namely
Γnext(C)) to find what could be the next optimal connected component, and then invokes a recursive
call.

We prove in Lemma 14 that each T ∈ Ωnext(C) can be restructured into a ”well-structured”
component of smaller cost, and in Lemma 15 that the size of the set of all ”well-structured”
components (Γnext(C)) can be enumerated in FPT time.

21

Algorithm 1 DP (next, t, C)

{F}or the sake of clarity we drop the classical operations related to the ”marking
{t}able” that avoid multiple computations with same arguments
build Γnext(C) (see Definition 1)
if Γnext(C) = ∅ then

return NO
else if ∃T ∈ Γnext(C) with |T | ≥ t then

return t vertices of T
else

return arg minC∈Γnext(C) [cost(T) + cost(DP (right(T), t− |T |, C − cost(T)))]

Let us now show how to restructure a connected component of a given solution. As one could
expect, the idea is to apply the domination rules of Lemmas 11, 12 and 13 that consist in ”flush-
ing” the intervals to the left. Thus, for any connected component T , we define (recursively on s)
restruct(s, T, i) that turns T ∩ I≥s (the part of T which is after s) into a well structured solution
(see Algorithm 2 and Definition 1). Notice that the parameter i and the yi values will be used in
Lemma 15 to show that the output of the algorithm can be encoded in an efficient way.

Definition 1. Given s and T ∈ Ωs(C), we define:

– WSS(T) = restruct(start(T), T, 0) the Well Structured Solution corresponding to T , where
start(T) is defined as the point after the left endpoint of the leftmost interval of T (see Figure 4).

– Γs(C) = {WSS(T), T ∈ Ωs(C)} the set of well structured connected component of cost at most
C that starts just after s.

leftmost interval of T
start(T)

1

Fig. 4: Example of a connected component T and its corresponding start(T)

Remark 3. Notice that at each step of the dynamic programming we branch on Γnext(cost), which is
the set of all restructured connected component T such that left(C) = left(I≥next). By Lemma 11,
we can suppose that for all optimal solution S∗, we have left(S∗∩I≥next) = left(I≥next). Roughly
speaking, we can suppose that for all optimal solution, the connected component that starts after
I≥next contains the leftmost interval of I≥next. As a consequence, the start(T) in Definition 1 forces
Ii1 to be this leftmost interval.

22

Algorithm 2 restruct(s, T, i)

if T ∩ I≥s 6= ∅ then
Ii1 ← leftmost interval of I=s ∩ T
{}Ii1 is always defined, as in the first call s is set to start(T)
if @I ∈ T ∩ I≥s which overlaps Ii1 then
yi ← 0
restruct(right(Ii1), T, i+ 1)

else
{we restructure a first interval using Lemma 12}
Ĩ ← leftmost interval of T ∩ I≥s which overlaps Ii1
I∗ ← leftmost interval of I≥s which overlaps Ii1
T ← (T\{Ĩ}) ∪ {I∗}
{we restructure a set of intervals using Lemma 13}
s′ ← min(right(I∗), right(Ii1))
X̃ ← T ∩ I≥s ∩ I=s′
X∗ ← |X̃|-leftmost intervals of I≥s ∩ I=s′
T ← (T\X̃) ∪X∗
yi ← |X∗|+ 1
restruct(s′, T, i+ 1)

Lemma 14. For any s and any T ∈ Ωs(C) we have

– |WSS(T)| = |T |, i.e. the restructured set has same size
– right(WSS(T)) ≤ right(T)
– cost(WSS(T)) ≤ cost(T).

Proof. The first item is clearly true as we only swap sets of intervals of same size. The second item
is true as all swapping arguments shift intervals to the left. Let us now turn to the last item. Notice
that in the two cases where restruct modifies T , the hypothesis of Lemmas 12 and 13 are verified.
Thus, according to these Lemmas the cost of the solution cannot increase.

Lemma 14 confirms that the dynamic programming algorithm can only branch on Γs(C), avoid-
ing thus branching on Ωs(C). It remains now to prove that the dynamic programming algorithm is
FPT.

Lemma 15. For any s, |Γs(C)| ≤ (
√

2C + 2)C+1.

Proof. Let T ∈ Ωs(C), and WSS(T) the associated restructured solution. The key argument is to
remark thatWSS(T) is entirely determined by the yi values defined in the restruct algorithm. Thus,
to each restructured solution WSS(T) we associate the vector Y (WSS(T)) = (y0, . . . , ylmax). Then,
the dynamic program will enumerate Γs(C) by enumerating the set Y = {Y (WSS(T)), T ∈ Ωs(C)}
of all possible Y vectors.

Notice first that for any i we have yi ≤
√

2C + 2. Indeed, in the two possible cases of the
restructuration (s′ = right(I∗) or s′ = right(Ii1)) the |X∗| intervals all overlap s′, corresponding to
the right endpoint of another interval (I∗ or Ii1). Thus, there is at least a clique of size yi = |X∗|+1
in the solution, whose cost is lower than C.

It remains now to bound lmax, the length of the Y vector.

23

To do that, we show that for any step i ∈ {0, ..., lmax − 1} and corresponding s, we can find
I ∈ I=s and I ′ ∈ I≥s such that I and I ′ overlaps, and such that in the next recursive call (with
parameter s′), either I or I ′ belongs to I≤s′ , avoiding multiple counts of same pairs, and implying
that C ≥ lmax − 1. Let i ∈ {0, ..., lmax − 1}. If yi 6= 0, then by definition of I∗, Ii1 and I∗ are
overlapping. Then, since the next recursive call has parameter s′ = min{right(I∗), right(Ii1)},
either I∗ or Ii1 belongs to I≤s′ . If yi = 0, then s′ = right(Ii1), and as i 6= lmax, we know that there
exists Ii2 ∈ I=s′ implying that Ii2 overlaps Ii1 . Finally, it is clear that Ii1 ∈ I≤s′ .

Theorem 4. Sparsest k-Subgraph can be solved in O(n2 · k3 · cost · (
√

2cost+ 2)cost+1).

Proof. The dynamic programming algorithm has at most n · k · cost different inputs. Given fixed
parameters, it runs in O(|Γs(cost)| · k2n). Indeed, given a Y vector, the corresponding connected
component can be built in O(lmaxn) ⊆ O(n · cost) ⊆ O(k2n) as for any i ≤ lmax it takes O(n) to
find the corresponding yi intervals.

References

1. N. Apollonio and B. Simeone. The maximum vertex coverage problem on bipartite graphs. Discrete
Applied Mathematics, (in press), 2013.

2. H. L. Bodlaender, B. M. P. Jansen, and S. Kratsch. Cross-composition: A new technique for kernelization
lower bounds. In STACS, pages 423–434, 2011.

3. E. Bonnet, B. Escoffier, V. Th. Paschos, and E. Tourniaire. Multi-parameter complexity analysis for
constrained size graph problems: using greediness for parameterization. to appear in IPEC 2013.

4. N. Bourgeois, A. Giannakos, G. Lucarelli, I. Milis, and V. Th. Paschos. Exact and approximation
algorithms for densest k-subgraph. In WALCOM, pages 114–125, 2013.

5. H. Broersma, P. A. Golovach, and V. Patel. Tight complexity bounds for FPT subgraph problems
parameterized by clique-width. In Proceedings of the 6th international conference on Parameterized
and Exact Computation, IPEC’11, pages 207–218, Berlin, Heidelberg, 2012. Springer-Verlag.

6. L. Cai. Parameterized complexity of cardinality constrained optimization problems. Computer Journal,
51(1):102–121, 2008.

7. D. Chen, R. Fleischer, and J. Li. Densest k-subgraph approximation on intersection graphs. In Proceed-
ings of the 8th international conference on Approximation and online algorithms, pages 83–93. Springer,
2011.

8. D.G. Corneil and Y. Perl. Clustering and domination in perfect graphs. Discrete Applied Mathematics,
9(1):27 – 39, 1984.

9. U. Feige, G. Kortsarz, and D. Peleg. The dense k-subgraph problem. Algorithmica, 29:2001, 1999.
10. J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.
11. F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs. Journal of

Combinatorial Theory, Series B, 16(1):47 – 56, 1974.
12. M. C. Golumbic. Algorithmic graph theory and perfect graphs. Academic Press, New York, USA, 1980.
13. G. Joret and A. Vetta. Reducing the rank of a matroid. CoRR, abs/1211.4853, 2012.
14. S. Khot. Ruling out ptas for graph min-bisection, dense k-subgraph, and bipartite clique. SIAM Journal

of Computing, 36:1025–1071, 2004.
15. M. Liazi, I. Milis, and V. Zissimopoulos. A constant approximation algorithm for the densest k-subgraph

problem on chordal graphs. Information Processing Letters, 108(1):29–32, 2008.
16. T. Nonner. PTAS for densest k-subgraph in interval graphs. In Proceedings of the 12th international

conference on Algorithms and Data Structures, pages 631–641. Springer, 2011.
17. R. Watrigant, M. Bougeret, and R. Giroudeau. Approximating the sparsest k-subgraph in chordal

graphs. to appear in WAOA 2013.

24

A Formal Definitions for Kernel Lower Bounds

In order to establish kernel lower bounds, we use the technique of cross-composition of [2]:

Definition 2 (Polynomial equivalence relation [2]). An equivalence relation R on Σ∗ is called
a polynomial equivalence relation if the two following conditions hold:

– There is an algorithm that given two strings x, y ∈ Σ∗, decides whether x and y belong to the
same equivalence class in (|x|+ |y|)O(1) time.

– For any finite set S ⊆ Σ∗, the equivalence relation R partitions the elements of S into at most
(maxx∈S |x|)O(1) classes.

Definition 3 (OR-cross-composition [2]). Let L ⊆ Σ∗ be a set and let Q ⊆ Σ∗ × N be a
parameterized problem. We say that L OR-cross-composes into Q if there is a polynomial equivalence
relation R and an algorithm which, given t strings belonging to the same equivalence class of R,
computes an instance (x∗, k∗) ∈ Σ∗ × N in time polynomial in

∑t
i=1 |xi| such that:

– (x∗, k∗) ∈ Q⇔ xi ∈ L for some 1 ≤ i ≤ t
– k∗ is bounded by a polynomial in maxti=1|xi|+ log t

Theorem 5 ([2]). If some set L ⊆ Σ∗ is NP-hard and L OR-cross-composes into the parameter-
ized problem Q, then there is no polynomial kernel for Q unless NP ⊆ coNP/poly.

