N. Apollonio and B. Simeone, The maximum vertex coverage problem on bipartite graphs, Discrete Applied Mathematics, vol.165, p.2013
DOI : 10.1016/j.dam.2013.05.015

H. L. Bodlaender, B. M. Jansen, and S. Kratsch, Cross-composition: A new technique for kernelization lower bounds, STACS, pp.423-434, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00573603

E. Bonnet, B. Escoffier, V. Th, E. Paschos, and . Tourniaire, Multi-parameter Complexity Analysis for Constrained Size Graph Problems: Using Greediness for Parameterization
DOI : 10.1007/978-3-319-03898-8_7

N. Bourgeois, A. Giannakos, G. Lucarelli, I. Milis, V. Th et al., Exact and Approximation Algorithms for Densest k-Subgraph, In WALCOM, pp.114-125, 2013.
DOI : 10.1007/978-3-642-36065-7_12

URL : https://hal.archives-ouvertes.fr/hal-01215976

H. Broersma, P. A. Golovach, and V. Patel, Tight complexity bounds for FPT subgraph problems parameterized by clique-width, Proceedings of the 6th international conference on Parameterized and Exact Computation, pp.207-218, 2012.

L. Cai, Parameterized Complexity of Cardinality Constrained Optimization Problems, The Computer Journal, vol.51, issue.1, pp.102-121, 2008.
DOI : 10.1093/comjnl/bxm086

D. Chen, R. Fleischer, and J. Li, Densest k-Subgraph Approximation on Intersection Graphs, Proceedings of the 8th international conference on Approximation and online algorithms, pp.83-93, 2011.
DOI : 10.1007/978-3-642-18318-8_8

D. G. Corneil and Y. Perl, Clustering and domination in perfect graphs, Discrete Applied Mathematics, vol.9, issue.1, pp.27-39, 1984.
DOI : 10.1016/0166-218X(84)90088-X

U. Feige, G. Kortsarz, and D. Peleg, The Dense k -Subgraph Problem, Algorithmica, vol.29, issue.3, 1999.
DOI : 10.1007/s004530010050

J. Flum and M. Grohe, Parameterized Complexity Theory, 2006.

F. Gavril, The intersection graphs of subtrees in trees are exactly the chordal graphs, Journal of Combinatorial Theory, Series B, vol.16, issue.1, pp.47-56, 1974.
DOI : 10.1016/0095-8956(74)90094-X

M. C. Golumbic, Algorithmic graph theory and perfect graphs, 1980.

G. Joret and A. Vetta, Reducing the rank of a matroid, 1211.
URL : https://hal.archives-ouvertes.fr/hal-01349050

S. Khot, Ruling Out PTAS for Graph Min???Bisection, Dense k???Subgraph, and Bipartite Clique, SIAM Journal on Computing, vol.36, issue.4, pp.1025-1071, 2004.
DOI : 10.1137/S0097539705447037

M. Liazi, I. Milis, and V. Zissimopoulos, A constant approximation algorithm for the densest k-subgraph problem on chordal graphs, Information Processing Letters, vol.108, issue.1, pp.29-32, 2008.
DOI : 10.1016/j.ipl.2008.03.016

T. Nonner, PTAS for densest k-subgraph in interval graphs, Proceedings of the 12th international conference on Algorithms and Data Structures, pp.631-641, 2011.

R. Watrigant, M. Bougeret, and R. Giroudeau, Approximating the Sparsest k-Subgraph in Chordal Graphs, Theory of Computing Systems, vol.108, issue.1
DOI : 10.1007/s00224-014-9568-2

URL : https://hal.archives-ouvertes.fr/lirmm-01283611