
HAL Id: lirmm-00879527
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00879527v1

Submitted on 4 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data Partitioning for Minimizing Transferred Data in
MapReduce

Miguel Liroz-Gistau, Reza Akbarinia, Divyakant Agrawal, Esther Pacitti,
Patrick Valduriez

To cite this version:
Miguel Liroz-Gistau, Reza Akbarinia, Divyakant Agrawal, Esther Pacitti, Patrick Valduriez. Data
Partitioning for Minimizing Transferred Data in MapReduce. Globe, Aug 2013, Prague, Czech Re-
public. pp.1-12, �10.1007/978-3-642-40053-7_1�. �lirmm-00879527�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00879527v1
https://hal.archives-ouvertes.fr

Data Partitioning for Minimizing Transferred

Data in MapReduce

Miguel Liroz-Gistau1, Reza Akbarinia1, Divyakant Agrawal2, Esther Pacitti3,
and Patrick Valduriez1

1 INRIA & LIRMM, Montpellier, France
{Miguel.Liroz Gistau, Reza.Akbarinia, Patrick.Valduriez}@inria.fr

2 University of California, Santa Barbara
agrawal@cs.ucsb.edu

3 University Montpellier 2, INRIA & LIRMM, Montpellier, France
Esther.Pacitti@lirmm.fr

Abstract. Reducing data transfer in MapReduce’s shuffle phase is very
important because it increases data locality of reduce tasks, and thus
decreases the overhead of job executions. In the literature, several op-
timizations have been proposed to reduce data transfer between map-
pers and reducers. Nevertheless, all these approaches are limited by how
intermediate key-value pairs are distributed over map outputs. In this
paper, we address the problem of high data transfers in MapReduce,
and propose a technique that repartitions tuples of the input datasets,
and thereby optimizes the distribution of key-values over mappers, and
increases the data locality in reduce tasks. Our approach captures the
relationships between input tuples and intermediate keys by monitoring
the execution of a set of MapReduce jobs which are representative of
the workload. Then, based on those relationships, it assigns input tuples
to the appropriate chunks. We evaluated our approach through experi-
mentation in a Hadoop deployment on top of Grid5000 using standard
benchmarks. The results show high reduction in data transfer during the
shuffle phase compared to Native Hadoop.

1 Introduction

MapReduce [4] has established itself as one of the most popular alternatives
for big data processing due to its programming model simplicity and automatic
management of parallel execution in clusters of machines. Initially proposed by
Google to be used for indexing the web, it has been applied to a wide range
of problems having to process big quantities of data, favored by the popularity
of Hadoop [2], an open-source implementation. MapReduce divides the compu-
tation in two main phases, namely map and reduce, which in turn are carried
out by several tasks that process the data in parallel. Between them, there is
a phase, called shuffle, where the data produced by the map phase is ordered,
partitioned and transferred to the appropriate machines executing the reduce
phase.

MapReduce applies the principle of “moving computation towards data” and
thus tries to schedule map tasks in MapReduce executions close to the input
data they process, in order to maximize data locality. Data locality is desirable
because it reduces the amount of data transferred through the network, and this
reduces energy consumption as well as network traffic in data centers.

Recently, several optimizations have been proposed to reduce data trans-
fer between mappers and reducers. For example, [5] and [10] try to reduce the
amount of data transferred in the shuffle phase by scheduling reduce tasks close
to the map tasks that produce their input. Ibrahim et al. [7] go even further and
dynamically partition intermediate keys in order to balance load among reduce
tasks and decrease network transfers. Nevertheless, all these approaches are lim-
ited by how intermediate key-value pairs are distributed over map outputs. If
the data associated to a given intermediate key is present in all map outputs,
even if we assign it to a reducer executing in the same machine, the rest of the
pairs still have to be transferred.

In this paper, we propose a technique, called MR-Part, that aims at mini-
mizing the transferred data between mappers and reducers in the shuffle phase
of MapReduce. MR-Part captures the relationships between input tuples and in-
termediate keys by monitoring the execution of a set of MapReduce jobs which
are representative of the workload. Then, based on the captured relationships, it
partitions the input files, and assigns input tuples to the appropriate fragments in
such a way that subsequent MapReduce jobs following the modeled workload will
take full advantage of data locality in the reduce phase. In order to characterize
the workload, we inject a monitoring component in the MapReduce framework
that produces the required metadata. Then, another component, which is exe-
cuted offline, combines the information captured for all the MapReduce jobs of
the workload and partitions the input data accordingly. We have modeled the
workload by means of an hypergraph, to which we apply a min-cut k-way graph
partitioning algorithm to assign the tuples to the input fragments.

We implemented MR-Part in Hadoop, and evaluated it through experimenta-
tion on top of Grid5000 using standard benchmarks. The results show significant
reduction in data transfer during the shuffle phase compared to Native Hadoop.
They also exhibit a significant reduction in execution time when network band-
width is limited.

This paper is organized as follows: In Section 2, we briefly describe MapRe-
duce, and then define formally the problem we address. In Section 3, we propose
MR-Part. In Section 4, we report the results of our experimental tests evaluating
its efficiency. Section 5 presents the related work and Section 6 concludes.

2 Problem Definition

2.1 MapReduce Background

MapReduce is a programming model based on two primitives, map : (K1, V1) →
list(K2, V2) and reduce : (K2, list(V1)) → list(K3, V3). The map function pro-

cesses key/value pairs and produces a set of intermediate/value pairs. Interme-
diate key/value pairs are merged and sorted based on the intermediate key k2
and provided as input to the reduce function.

MapReduce jobs are executed over a distributed system composed of a master
and a set of workers. The input is divided into several splits and assigned to map
tasks. The master schedules map tasks in the workers by taking into account data
locality (nodes holding the assigned input are preferred).

The output of the map tasks is divided into as many partitions as reducers
are scheduled in the system. Entries with the same intermediate key k2 should
be assigned to the same partition to guarantee the correctness of the execution.
All the intermediate key/value pairs of a given partition are sorted and sent
to the worker where the corresponding reduce task is going to be executed.
This phase is called shuffle. Default scheduling of reduce task does not take into
consideration any data locality constraint. As a consequence, depending on how
intermediate keys appear in the input splits and how the partitioning is done,
the amount of data that has to be transferred through the network in the shuffle
phase may be significant.

2.2 Problem Statement

We are given a set of MapReduce jobs which are representative of the system
workload, and a set of input files. We assume that future MapReduce jobs follow
similar patterns as those of the representative workload, at least in the generation
of intermediate keys.

The goal of our system is to automatically partition the input files so that the
amount of data that is transferred through the network in the shuffle phase is
minimized in future executions. We make no assumptions about the scheduling of
map and reduce tasks, and only consider intelligent partitioning of intermediate
keys to reducers, e.g., as it is done in [7].

Let us formally state the problem which we address. Let the input data for a
MapReduce job, jobα, be composed of a set of data items D = {d1, ..., dn} and
divided into a set of chunks C = {C1, ..., Cp}. Function loc : D → C assigns
data items to chunks. Let jobα be composed of Mα = {m1, ...,mp} map tasks
and Rα = {r1, ..., rq} reduce tasks. We assume that each map task mi processes
chunk ci. Let Nα = {n1, .., ns} be the set of machines used in the job execution;
node(t) represents the machine where task t is executed.

Let Iα = {i1, .., im} be the set of intermediate key-value pairs produced by
the map phase, such that map(dj) = {ij1 , ..., ijt}. k(ij) represents the key of
intermediate pair ij and size(ij) represents its total size in bytes. We define
output(mi) ⊆ Iα as the set of intermediate pairs produced by map task mi,
output(mi) =

⋃
dj∈Ci

map(dj). We also define input(ri) ⊆ Iα as the set of in-

termediate pairs assigned to reduce task ri. Function part : k(Iα) → R assigns
intermediate keys to reduce tasks.

Let ij be an intermediate key-value pair, such that ij ∈ output(m) and
ij ∈ input(r). Let Pij ∈ {0, 1} be a variable that is equal to 0 if intermediate

pair ij is produced in the same machine where it is processed by the reduce task,
and 1 otherwise, i.e., P (ij) = 0 iff node(m) = node(r).

Let W = {job1 , ..., jobw} be the set of jobs in the workload. Our goal is to
find loc and part functions in a way in which

∑
jobα∈W

∑
ij∈Iα

size(ij)P (ij) is
minimized.

3 MR-Part

In this section, we propose MR-Part, a technique that by automatic partitioning
of MapReduce input files allows Hadoop to take full advantage of locality-aware
scheduling for reduce tasks, and to reduce significantly the amount of data trans-
ferred between map and reduce nodes during the shuffle phase. MR-Part proceeds
in three main phases, as shown in Fig. 1: 1) Workload characterization, in which
information about the workload is obtained from the execution of MapReduce
jobs, and then combined to create a model of the workload represented as a hy-
pergraph; 2) Repartitioning, in which a graph partitioning algorithm is applied
over the hypergraph produced in the first phase, and based on the results the
input files are repartitioned; 3) Scheduling, that takes advantage of the input
partitioning in further executions of MapReduce jobs, and by an intelligent as-
signment of reduce tasks to the workers reduces the amount of data transferred
in the shuffle phase. Phases 1 and 2 are executed offline over the model of the
workload, so their cost is amortized over future job executions.

Workload
Monitoring

Injecting

monitoring code

Detecting key-tuple

relationships
Generating

metadata files

Partitioning
Workload
modeling

Hypergraph

partitioning

Input file

repartitioning

Execution and
scheduling

Using repartitioned

file

Locality-aware

scheduling

Fig. 1. MR-Part workflow scheme

3.1 Workload Characterization

In order to minimize the amount of data transferred through the network be-
tween map and reduce tasks, MR-Part tries to perform the following actions: 1)
grouping all input tuples producing a given intermediate key in the same chunk
and 2) assigning the key to a reduce task executing in the same node.

The first action needs to find the relationship between input tuples and in-
termediate keys. With that information, tuples producing the same intermediate
key are co-located in the same chunk.

Monitoring We inject a monitoring component in the MapReduce framework
that monitors the execution of map tasks and captures the relationship between
input tuples and intermediate keys. This component is completely transparent
to the user program.

The development of the monitoring component was not straightforward be-
cause the map tasks receive entries of the form (K1, V1), but with this informa-
tion alone we are not able to uniquely identify the corresponding input tuples.
However, if we always use the same RecordReader

4 to read the file, we can
uniquely identify an input tuple by a combination of its input file name, its
chunk starting offset and the position of RecordReader when producing the
input pairs for the map task.

For each map task, the monitoring component produces a metadata file as
follows. When a new input chunk is loaded, the monitoring component creates a
new metadata file and writes the chunk information (file name and starting off-
set). Then, it initiates a record counter (rc). Whenever an input pair is read, the
counter is incremented by one. Moreover, if an intermediate key k is produced, it
generates a pair (k, rc). When the processing of the input chunk is finished, the
monitoring component groups all key-counter pairs by their key, and for each
key it stores an entry of the form 〈k, {rc1, ..., rcn}〉 in the metadata file.

Combination While executing a monitored job, all metadata is stored locally.
Whenever a repartitioning is launched by the user, the information from different
metadata files have to be combined in order to generate a hypergraph for each
input file. The hypergraph is used for partitioning the tuples of an input file,
and is generated by using the matadata files created in the monitoring phase.

A hypergraph H = (HV , HE) is a generalization of a graph in which each
hyper edge e ∈ HE can connect more than two vertices. In fact, a hyper edge is
a subset of vertices, e ⊆ HV . In our model, vertices represent input tuples and
hyper edges characterize tuples producing the same intermediate key in a job.

The pseudo-code for generating the hypergraph is shown in Algorithm 1.
Initially the hypergraph is empty, and new vertices and edges are added to it as
the metadata files are read. The metadata of each job is processed separately.
For each job, our algorithm creates a data structure T , which stores for each
generated intermediate key, the set of input tuples that produce the key. For
every entry in the file, the algorithm generates the corresponding tuple ids and
adds them to the entry in T corresponding to the generated key. For easy id
generation, we store in each metadata file, the number of input tuples processed
for the associated chunk, ni. We use the function generateTupleID(ci, rc) =
∑i−1

j=1 ni+rc to translate record numbers into ids. After processing all metadata
of a job, for each read tuple, our algorithm adds a vertex in the hypergraph (if

4 The RecordReader is the component of MapReduce that parses the input and
produce input key-value pairs. Normally each file format is parsed by a single
RecordReader; therefore, using the same RecordReader for the same file is a common
practice

it is not there). Then, for each intermediate key, it adds a hyper edge containing
the set of tuples that have produced the key.

Algorithm 1: Metadata combination
Data: F : Input file; W : Set of jobs composing the workload
Result: H = (HV , HE): Hypergraph modeling the workload
begin

HE ← ∅; HV ← ∅
foreach job ∈ |W | do

T ← ∅; K ← ∅
foreach mi ∈Mjob do

mdi ← getMetadata(mi)
if F = getFile(mdi) then

foreach 〈k, {rc1, ..., rcn}〉 ∈ mdi do

{t1.id, ..., tn.id} ← generateTupleID(ci, {rc1, ..., rcn})
T [k]← T [k] ∪ {t1.id, ..., tn.id}; K ← K ∪ {k}

foreach intermediate key k ∈ K do

HV ← HV ∪ T [k]; HE ← HE ∪ {T [k]}

3.2 Repartitioning

Once we have modeled the workload of each input file through a hypergraph,
we apply a min-cut k-way graph partitioning algorithm. The algorithm takes as
input a value k and a hypergraph, and produces k disjoint subsets of vertices
minimizing the sum of the weights of the edges between vertices of different
subsets. Weights can be associated to vertices, for instance to represent different
sizes. We set k as the number of chunks in the input file. By using the min-cut
algorithm, the tuples that are used for generating the same intermediate key are
usually assigned to the same partition.

The output of the algorithm indicates the set of tuples that have to be as-
signed to each of the input file chunks. Then, the input file should be reparti-
tioned using the produced assignments. However, the file repartitioning cannot
be done in a straightforward manner, particularly because the chunks are cre-
ated by HDFS automatically as new data is appended to a file. We create a set
of temporary files, one for each partition. Then, we read the original file, and for
each read tuple, the graph algorithm output indicates to which of the temporary
files the tuple should be copied. Then, two strategies are possible: 1) create a set
of files in one directory, one per partition, as it is done in the reduce phase of
MapReduce executions and 2) write the generated files sequentially in the same
file. In both cases, at the end of the process, we remove the old file and rename
the new file/directory to its name. The first strategy is straightforward and in-
stead of writing data in temporary files, it can be written directly in HDFS. The
second one has the advantage of not having to deal with more files but has to
deal with the following issues:

– Unfitted partitions : The size of partitions created by the partitioning algo-
rithm may be different than the predefined chunk size, even if we set strict

imbalance constraints in the algorithm. To approximate the chunk limits
to the end of the temporary files when written one after the other, we can
modify the order in which temporary files are written. We used a greedy ap-
proach in which we select at each time the temporary file whose size, added
to the total size written, approximates the most to the next chunk limit.

– Inappropriate last chunk : The last chunk of a file is a special case, as its
size is less than the predefined chunk size. However, the graph partitioning
algorithm tries to make all partitions balanced and does not support such
a constraint. In order to force one of the partitions to be of the size of the
last chunk, we insert a virtual tuple, tvirtual , with the weight equivalent to
the empty space in the last chunk. After discarding this tuple, one of the
partitions would have a size proportional to the size of the last chunk.

The repartitioning algorithm’s pseudo-code is shown in Algorithm 2. In the
algorithm we represent RR as the RecordReader used to parse the input data.
We need to specify the associated RecordWriter, here represented as RW , that
performs the inverse function as RR. The reordering of temporary files is repre-
sented by the function reorder().

Algorithm 2: Repartitioning
Data: F : Input file; H = (HV , HE): Hypergraph modeling the workload; k: Number of

partitions
Result: F ′: The repartitioned file
begin

HV ← HV ∪ tvirtual
{P1, ..., Pk} ← mincut(H, k)
for i ∈ (1, ..., k) do

create tempfi

foreach ci ∈ F do

initialize(RR, ci); rc← 0
while t.data← RR.next() do

t.id← generateTupleID(ci, rc)
p← getPartition(t.id, {P1, ..., Pk})
RW.write(tempfp, t.data)
rc← rc + 1

(j1, ..., jk)← reorder(tempf1, ..., tempfk)
for j ∈ (j1, ..., jk) do

write tempfi in F ′

The complexity of the algorithm is dominated by the min-cut algorithm exe-
cution. Min-cut graph partitioning is NP-Complete, however, several polynomial
approximation algorithms have been developed for it. In this paper we use Pa-
ToH5 to partition the hypergraph. In the rest of the algorithm, an inner loop
is executed n times, where n is the number of tuples. generateTupleID() can be
executed in O(1) if we keep a table with ni, the number of input tuples, for all
input chunks. getPartition() can also be executed in O(1) if we keep an array
storing for each tuple the assigned partition. Thus, the rest of the algorithm is
done in O(n).

5 http://bmi.osu.edu/~umit/software.html

3.3 Reduce Tasks Locality-Aware Scheduling

In order to take advantage of the repartitioning, we need to maximize data lo-
cality when scheduling reduce tasks. We have adapted the algorithm proposed
in [7], in which each (key,node) pair is given a fairness-locality score represent-
ing the ratio between the imbalance in reducers input and data locality when
key is assigned to a reducer. Each key is processed independently in a greedy
algorithm. For each key, candidate nodes are sorted by their key frequency in
descending order (nodes with higher key frequencies have better data locality).
But instead of selecting the node with the maximum frequency, further nodes
are considered if they have a better fairness-locality score. The aim of this strat-
egy is to balance reduce inputs as much as possible. On the whole, we made the
following modifications in the MapReduce framework:

– The partitioning function is changed to assign a unique partition for each
intermediate key.

– Map tasks, when finished, send to the master a list with the generated in-
termediate keys and their frequencies. This information is included in the
Heartbeat message that is sent at task completion.

– The master assigns intermediate keys to the reduce tasks relying on this
information in order to maximize data locality and to achieve load balancing.

3.4 Improving Scalability

Two strategies can be taken into account to improve the scalability of the pre-
sented algorithms: 1) the number of intermediate keys; 2) the size of the gener-
ated graph.

In order to deal with a high number of intermediate keys we have created the
concept of virtual reducers, VR. Instead of using intermediate keys both in the
metadata and the modified partitioning function we use k mod VR. Actually,
this is similar to the way in which keys are assigned to reduce tasks in the
original MapReduce, but in this case we set VR to a much greater number than
the actual number of reducers. This decreases the amount of metadata that
should be transferred to the master and the time to process the key frequencies
and also the amount of edges that are generated in the hypergraph.

To reduce the number of vertices that should be processed in the graph
partitioning algorithm, we perform a preparing step in which we coalesce tuples
that always appear together in the edges, as they should be co-located together.
The weights of the coalesced tuples would be the sum of the weights of the tuples
that have been merged. This step can be performed as part of the combination
algorithm that was described in Section 3.1.

4 Experimental Evaluation

In this section, we report the results of our experiments done for evaluating the
performance of MR-Part. We first describe the experimental setup, and then
present the results.

4.1 Set-Up

We have implemented MR-Part in Hadoop-1.0.4 and evaluated it on Grid5000 [1],
a large scale infrastructure composed of different sites with several clusters of
computers. In our experiments we have employed PowerEdge 1950 servers with
8 cores and 16 GB of memory.We installed Debian GNU/Linux 6.0 (squeeze)
64-bit in all nodes, and used the default parameters for Hadoop configuration.

We tested the proposed algorithm with queries from TPC-H, an ad-hoc de-
cision support benchmark. Queries have been written in Pig [9]6, a dataflow
system on top of Hadoop that translates queries into MapReduce jobs. Scale
factor (which accounts for the total size of the dataset in GBs) and employed
queries are specified on each specific test. After data population and data repar-
titioning the cluster is rebalanced in order to minimize the effects of remote
transfers in the map phase.

As input data, we used lineitem, which is the biggest table in TPC-H
dataset. In our tests, we used queries for which the shuffle phase has a sig-
nificant impact in the total execution time. Particularly, we used the following
queries: Q5 and Q9 that are examples of hash joins on different columns, Q7
that executes a replicated join and Q17 that executes a co-group. Note that, for
any query data locality will be at least that of native Hadoop.

We compared the performance of MR-Part with that of native Hadoop (NAT)
and reduce locality-aware scheduling (RLS) [7], which corresponds to changes
explained in Section 3.3 but over the non-repartitioned dataset. We measured
the percentage of transferred data in the shuffle phase for different queries and
cluster sizes. We also measured the response time and shuffle time of MapReduce
jobs under varying network bandwidth configurations.

4.2 Results

Transferred Data for Different Query Types. We repartitioned the dataset
by using the metadata information collected from monitoring query executions.
Then, we measured the amount of transferred data in the shuffled phase for
our queries in the repartitioned dataset. Fig 2(a) depicts the percentage of data
transferred for each of the queries on a 5 nodes cluster and scale factor of 5.
As we can see, transferred data is around 80% in non repartitioned data sets
(actually the data locality is always around 1 divided by the number of nodes for
the original datasets), while MR-Part obtains values for transferred data below
10% for all the queries. Notice that, even with reduce locality-aware scheduling,
no gain is obtained in data locality as keys are distributed in all input chunks.

Transferred Data for Different Cluster Sizes. In the next scenario, we
have chosen query Q5, and measured the transferred data in the shuffle phase
by varying the cluster size and input data size. Input data size has been scaled

6 We have used the implementation provided in http://www.cs.duke.edu/starfish/

mr-apps.html

 0

 0.2

 0.4

 0.6

 0.8

 1

Q5 (HJ) Q7 (REPJ) Q9 (HJ) Q17 (COG)

T
ra

ns
fe

rr
ed

 d
at

a
(%

)

Query

NAT
RLS
MRP

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20 25

T
ra

ns
fe

rr
ed

 d
at

a
(%

)

Cluster size

NAT
RLS
MRP

(b)

Fig. 2. Percentage of transferred data for a) different type of queries b) varying cluster
and data size

depending on the cluster size, so that each node is assigned 2GB of data. Fig 2(b)
shows the percentage of transferred data for the three approaches, while increas-
ing the number of cluster nodes. As shown, with increasing the number of nodes,
our approach maintains a steady data locality, but it decreases for the other ap-
proaches. Since there is no skew in key frequencies, both native Hadoop and RLS
obtain data localities near 1 divided by the number of nodes. Our experiments
with different data sizes for the same cluster size show no modification in the
percentage of transferred data for MR-Part (the results are not shown in the
paper due to space restrictions).

Response Time As shown in previous subsection, MR-Part can significantly
reduce the amount of transferred data in the shuffle phase. However, its impact
on response time strongly depends on the network bandwidth. In this section, we
measure the effect of MR-Part on MapReduce response time by varying network
bandwidth. We control point-to-point bandwidth by using Linux tc command
line utility. We execute query Q5 on a cluster of 20 nodes with scale factor of 40
(40GB of dataset total size).

The results are shown in Fig 3. As we can see in Fig 3 (a), the slower is the
network, the biggest is the impact of data locality on execution time. To show
where the improvement is produced, in Fig 3 (b) we report the time spent in data
shuffling. Measuring shuffle time is not straightforward since in native Hadoop it
starts once 5% of map tasks have finished and proceeds in parallel while they are
completed. Because of that, we represent two lines: NAT-ms that represents the
time spent since the first shuffle byte is sent until this phase is completed, and
NAT-os that represents the period of time where the system is only dedicated
to shuffling (after last map finishes). For MR-Part only the second line has to be
represented as the system has to wait for all map tasks to complete in order to
schedule reduce tasks. We can observe that, while shuffle time is almost constant
for MR-Part, regardless of the network conditions, it increases significantly as
the network bandwidth decreases for the other alternatives. As a consequence,
the response time for MR-Part is less sensitive to the network bandwidth than
that of native Hadoop. For instance, for 10mbps, MR-Part executes in around
30% less time than native Hadoop.

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 10 20 30 40 50 60 70 80 90 100

R
es

po
ns

e
tim

e
(s

)

Bandwith (mbps)

NAT
MRP

(a)

 0

 100

 200

 300

 400

 500

 600

 700

 10 20 30 40 50 60 70 80 90 100

S
hu

ffl
e

tim
e

(s
)

Bandwith (mbps)

NAT-ms
NAT-os
MRP

(b)

Fig. 3. Results for varying network bandwidth: a) total response time b) shuffle time

5 Related Work

Reducing data transfer in the shuffle phase is important because it may impose a
significant overhead in job execution. In [12] a simulation is carried out in order
to study the performance of MapReduce in different scenarios. The results show
that data shuffling may take an important part of the job execution, particu-
larly when network links are shared among different nodes belonging to a rack
or a network topology. In [11], a pre-shuffling scheme is proposed to reduce data
transfers in the shuffle phase. It looks over the input splits before the map phase
begins and predicts the reducer the key-value pairs are partitioned into. Then,
the data is assigned to a map task near the expected future reducer. Similarly,
in [5], reduce tasks are assigned to the nodes that reduce the network transfers
among nodes and racks. However, in this case, the decision is taken at reduce
scheduling time. In [10] a set of data and VM placement techniques are proposed
to improve data locality in shared cloud environments. They classify MapReduce
jobs into three classes and use different placement techniques to reduce network
transfers. All the mentioned jobs are limited by how the MapReduce partition-
ing function assigns intermediate keys to reduce tasks. In [7] this problem is
addressed by assigning intermediate keys to reducers at scheduling time. How-
ever, data locality is limited by how intermediate keys are spread over all the
map outputs. MR-part employs this technique as part of the reduce scheduling,
but improves its efficiency by partitioning intelligently input data.

Graph and hypergraph partitioning have been used to guide data partitioning
in databases and in general in parallel computing [6]. They allow to capture data
relationships when no other information, e.g., the schema, is given. The work in
[3, 8] uses this approach to generate a database partitioning. [3] is similar to our
approach in the sense that it tries to co-locate frequently accessed data items,
although it is used to avoid distributed transactions in an OLTP system.

6 Conclusions and Future Work

In this paper we proposed MR-Part, a new technique for reducing the transferred
data in the MapReduce shuffle phase. MR-Part monitors a set of MapReduce

jobs constituting a workload sample and creates a workload model by means of
a hypergraph. Then, using the workload model, MR-Part repartitions the input
files with the objective of maximizing the data locality in the reduce phase.
We have built the prototype of MR-Part in Hadoop, and tested it in Grid5000
experimental platform. Results show a significant reduction in transferred data
in the shuffle phase and important improvements in response time when network
bandwidth is limited.

As a possible future work we envision to perform the repartitioning in parallel.
The approach used in this paper has worked flawlessly for the employed datasets,
but a parallel version would be able to scale to very big inputs. This version would
need to use parallel graph partitioning libraries, such as Zoltan.

Acknowledgments. Experiments presented in this paper were carried out us-
ing the Grid’5000 experimental testbed, being developed under the INRIA AL-
ADDIN development action with support from CNRS, RENATER and several
universities as well as other funding bodies (see https://www.grid5000.fr).

References

1. Grid 5000 project. https://www.grid5000.fr/mediawiki/index.php
2. Hadoop. http://hadoop.apache.org
3. Curino, C., Jones, E., Zhang, Y., Madden, S.: Schism: a workload-driven approach

to database replication and partitioning. Proceedings of the VLDB Endowment
3(1), 48–57 (2010)

4. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters.
In: OSDI. pp. 137–150. USENIX Association (2004)

5. Hammoud, M., Rehman, M.S., Sakr, M.F.: Center-of-gravity reduce task schedul-
ing to lower mapreduce network traffic. In: IEEE CLOUD. pp. 49–58. IEEE (2012)

6. Hendrickson, B., Kolda, T.G.: Graph partitioning models for parallel computing.
Parallel Computing 26(12), 1519–1534 (2000)

7. Ibrahim, S., Jin, H., Lu, L., Wu, S., He, B., Qi, L.: LEEN: Locality/fairness-aware
key partitioning for mapreduce in the cloud. In: Cloud Computing, Second Interna-
tional Conference, CloudCom 2010, November 30 - December 3, 2010, Indianapolis,
Indiana, USA, Proceedings. pp. 17–24 (2010)

8. Liu, D.R., Shekhar, S.: Partitioning similarity graphs: a framework for declustering
problems. Information Systems 21(6), 475–496 (1996)

9. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig latin: a not-
so-foreign language for data processing. In: SIGMOD Conference. pp. 1099–1110.
ACM (2008)

10. Palanisamy, B., Singh, A., Liu, L., Jain, B.: Purlieus: locality-aware resource allo-
cation for mapreduce in a cloud. In: Conference on High Performance Computing
Networking, Storage and Analysis, SC 2011, Seattle, WA, USA, November 12-18,
2011. p. 58 (2011)

11. Seo, S., Jang, I., Woo, K., Kim, I., Kim, J.S., Maeng, S.: HPMR: Prefetching and
pre-shuffling in shared mapreduce computation environment. In: CLUSTER. pp.
1–8. IEEE (2009)

12. Wang, G., Butt, A.R., Pandey, P., Gupta, K.: A simulation approach to evaluating
design decisions in mapreduce setups. In: MASCOTS. pp. 1–11. IEEE (2009)

