N

N
N

HAL

open science

MR-Part: Minimizing Data Transfers Between Mappers
and Reducers in MapReduce

Miguel Liroz-Gistau, Reza Akbarinia, Divyakant Agrawal, Esther Pacitti,
Patrick Valduriez

» To cite this version:

Miguel Liroz-Gistau, Reza Akbarinia, Divyakant Agrawal, Esther Pacitti, Patrick Valduriez. MR-
Part: Minimizing Data Transfers Between Mappers and Reducers in MapReduce. BDA: Bases de

Données Avancées, Oct 2013, Nantes, France.

lirmm-00879531

HAL Id: lirmm-00879531
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00879531
Submitted on 18 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00879531
https://hal.archives-ouvertes.fr

MR-Part : Minimizing Data Transfers
Between Mappers and Reducers in
MapReduce

Miguel Liroz-Gistau' Reza Akbarinid
Divyakant AgrawaP Esther Pacitt?

Patrick ValdurieZ

LINRIA & LIRMM, Montpellier, France

{Mguel .Liroz_G stau, Reza.Akbarinia, Patrick.Valduriez}@nria.fr

2 University of California, Santa Barbara

agrawal @s. ucshb. edu
3 University Montpellier 2, INRIA & LIRMM, Montpellier, France
Esther.Pacitti @irmmfr

Résumé

La réduction du transfert des données dans la phase “Shuffle” dR&dage est trés
importante, car elle augmente la localité des données, et diminue le colt totaiédes
tions des jobs MapReduce. Dans la littérature, plusieurs optimisations ont ptsées
pour réduire le transfert de données entre les mappers et les reddiéanmoins, toutes
ces approches sont limitées par la fagon dont les clé-valeurs intermédiairerépar-
ties sur les mappers. Dans cet article, nous proposons une technigapdtitionne les
tuples dans le fichier d’entrée, avec I'objectif d'optimiser la distribution des\deurs
sur les mappers. Notre approche détecte les relations entre les tupledal&ns clé-
valeurs intermédiaires en surveillant I'exécution d’'un ensemble de tachdlddape qui
est représentatif du workload. Puis, a partir des relations détectéegcilealés tuples
d’entrée aux mappers, et augmente la localité des données lors des &xtéicesions.
Nous avons implémenté notre approche dans Hadoop, et I'avons épaluégpérimen-
tation dans Grid5000. Les résultats montrent une grande réduction dansslertraie
données pendant la phase “Shuffle” par rapport a Hadoop.

Mots-clefs : MapReduce, partitionement basé sur workload ; localité des données

1 Introduction

MapReduce [4] has established itself as one of the most poaltanatives
for big data processing due to its programming model sintgliahd automatic
management of parallel execution in clusters of machineitially proposed by
Google to be used for indexing the web, it has been appliedwaea range of
problems having to process big quantities of data, favosethb popularity of
Hadoop [2], an open-source implementation. MapReduceeahite computation
in two main phases, namely map and reduce, which in turn areedaout by
several tasks that process the data in parallel. Between, theme is a phase,
called shuffle, where the data produced by the map phaseeaseardpartitioned
and transferred to the appropriate machines executingthee phase.

MapReduce applies the principle of “moving computation tasatata” and
thus tries to schedule map tasks in MapReduce executionstoltise input data
they process, in order to maximize data locality. Data ibc& desirable because
it reduces the amount of data transferred through the nkjveod this reduces
energy consumption as well as network traffic in data centers

Recently, several optimizations have been proposed to eathta transfer be-
tween mappers and reducers. For example, [7] and [12] trgdoae the amount
of data transferred in the shuffle phase by scheduling rethstes close to the
map tasks that produce their input. Ibrahim et al. [9] go duetlher and dynami-
cally partition intermediate keys in order to balance loawag reduce tasks and
decrease network transfers. Nevertheless, all these agps are limited by how
intermediate key-value pairs are distributed over mapustpf the data associ-
ated to a given intermediate key is present in all map outgwes) if we assign
it to a reducer executing in the same machine, the rest ofahe gtill have to be
transferred.

In this paper, we propose a technique, called MR-Part, tha at minimizing
the transferred data between mappers and reducers in tffie giiiase of MapRe-
duce. MR-Part captures the relationships between inpuésugrhd intermediate
keys by monitoring the execution of a set of MapReduce jobshvare represen-
tative of the workload. Then, based on the captured relsttips, it partitions the
input files, and assigns input tuples to the appropriateeags in such a way that
subsequent MapReduce jobs following the modeled workloddake full advan-
tage of data locality in the reduce phase. In order to chariaetthe workload,
we inject a monitoring component in the MapReduce framewbak produces
the required metadata. Then, another component, whiclesugxd offline, com-
bines the information captured for all the MapReduce jobsefworkload and
partitions the input data accordingly. We have modeled thekhwad by means of
an hypergraph, to which we apply a min-cut k-way graph panihg algorithm
to assign the tuples to the input fragments.

2

We implemented MR-Part in Hadoop, and evaluated it througtementa-
tion on top of Grid5000 using standard benchmarks. The teeshbw significant
reduction in data transfer during the shuffle phase comparéthtive Hadoop.
They also exhibit a significant reduction in execution timieew network band-
width is limited.

The rest of the paper is organized as follows: In Section Zynedly describe
MapReduce, and then define formally the problem we addresSedtion 3, we
propose MR-Part. In Section 4, we report the results of oueexgental tests
evaluating its efficiency. Section 5 presents the relatexk\@ad Section 6 con-
cludes.

2 Problem Definition

2.1 MapReduce Background

MapReduce is a programming model based on two primitives:

map : (K, V1) — list(Ky, V5)
reduce : (Ko, list(V;)) — list(K3, V3)

The map function processes key/value pairs and produces af seermedi-
ate/value pairs. Intermediate key/value pairs are mergddsarted based on the
intermediate key:, and provided as input to the reduce function.

MapReduce jobs are executed over a distributed system cechpda master
and a set of workers. The input is divided into several splitd assigned to map
tasks. The master schedules map tasks in the workers bytamit;maccount data
locality (nodes holding the assigned input are preferred).

The output of the map tasks is divided into as many partit@amseducers
are scheduled in the system. Entries with the same inteateelleyk, should
be assigned to the same patrtition to guarantee the corssctrighe execution.
All the intermediate key/value pairs of a given partitioe aorted and sent to the
worker where the corresponding reduce task is going to beues@. This phase is
called shuffle. Default scheduling of reduce task does rkat itato consideration
any data locality constraint. As a consequence, dependirfgpw intermediate
keys appear in the input splits and how the partitioning isejdhe amount of
data that has to be transferred through the network in th&lshphase may be
significant.

2.2 Problem Statement

We are given a set of MapReduce jobs which are representdtilie system
workload, and a set of input files. We assume that future Map&epbbs follow

3

similar patterns as those of the representative workldadaat in the generation
of intermediate keys.

The goal of our system is to automatically partition the inples so that
the amount of data that is transferred through the netwotkershuffle phase is
minimized in future executions. We make no assumptionstahetscheduling of
map and reduce tasks, and only consider intelligent pamtiig of intermediate
keys to reducers, e.g., as itis done in [9].

Let us formally state the problem which we address. Let tpetidlata for a
MapReduce jobjob,, be composed of a set of data iteilds= {d,, ...,d,} and
divided into a set of chunk§' = {C1,...,C,}. Functionloc : D — C assigns
data items to chunks. Lebb, be composed of, = {my,...,m,} map tasks
andR, = {ry,...,r,} reduce tasks. We assume that each mapstggrocesses
chunke;. Let N, = {n4,..,n,} be the set of machines used in the job execution;
node(t) represents the machine where taskexecuted.

Let I, = {i1,..,in} be the set of intermediate key-value pairs produced by
the map phase, such thatap(d;) = {i;,,....4; }. k(i;) represents the key of
intermediate pair; and size(i;) represents its total size in bytes. We define
output(m;) C I, as the set of intermediate pairs produced by map tagk
output(m;) = Udjeci map(d;). We also definenput(r;) C I, as the set of
intermediate pairs assigned to reduce taskunctionpart : k(1,) — R assigns
intermediate keys to reduce taks.

Let i, be an intermediate key-value pair, such that output(m) andi; €
input(r). Let P;; € {0,1} be a variable that is equal tif intermediate pairi;
is produced in the same machine where it is processed by theeddsk, and
otherwise, i.e.P(i;) = 0iff node(m) = node(r).

Let W = {job,, ..., job, } be the set of jobs in the workload. Our goal is to
find loc and part functions in a way in whichd_,, oy >°, o size(i;)P(i;) is
minimized.

3 MR-Part

In this section, we propose MR-Part, a technique that by aaticrpartition-
ing of MapReduce input files allows Hadoop to take full advgataf locality-
aware scheduling for reduce tasks, and to reduce signilfjciiret amount of data
transferred between map and reduce nodes during the shdiée pMR-Part pro-
ceeds in three main phases, as shown in Figure 1: 1) Workluadcterization, in
which information about the workload is obtained from the@axion of MapRe-
duce jobs, and then combined to create a model of the workkyaésented as a
hypergraph; 2) Repartitioning, in which a graph partiti@paigorithm is applied
over the hypergraph produced in the first phase, and basdutaadults the input

4

Workload Injecting Detecting key-tupl Generating
Monitoring monitoring cod relationships metadata fileg
L L Workload Hypergrap Input file
Partitioning repartitioning
Execution and L Using repatrtitione Locality-aware
scheduling file scheduling

Figure 1. MR-Part workflow scheme

files are repartitioned; 3) Scheduling, that takes advantdghe input partition-
ing in further executions of MapReduce jobs, and by an igfefit assignment of
reduce tasks to the workers reduces the amount of datadraesfin the shuffle
phase. Phases 1 and 2 are executed offline over the model wothkéad, so

their cost is amortized over future job executions.

3.1 Workload Characterization

In order to minimize the amount of data transferred througghrtetwork be-
tween map and reduce tasks, MR-Part tries to perform thewwlpactions: 1)
grouping all input tuples producing a given intermediatg kethe same chunk
and 2) assigning the key to a reduce task executing in the sade

The first action needs to find the relationship between ingpies and inter-
mediate keys. With that information, tuples producing tame intermediate key
are co-located in the same chunk.

3.1.1 Monitoring

We inject a monitoring component in the MapReduce framewuakmonitors
the execution of map tasks and captures the relationshigeleetinput tuples and
intermediate keys. This component is completely transpaogthe user program.

The development of the monitoring component was not sttiighard be-
cause the map tasks receive entries of the fokm V;), but with this informa-
tion alone we are not able to uniquely identify the corresjpog input tuples.
However, if we always use the sarRecor dReader ! to read the file, we can

1. TheRecor dReader is the component of MapReduce that parses the input and geodu
input key-value pairs. Normally each file format is parse@lsyngleRecor dReader ; therefore,
using the sam®ecor dReader for the same file is a common practice

uniquely identify an input tuple by a combination of its infile name, its chunk
starting offset and the position ¢tecor dReader when producing the input
pairs for the map task.

For each map task, the monitoring component produces a atathile as fol-
lows. When a new input chunk is loaded, the monitoring compboeeates a
new metadata file and writes the chunk information (file nant starting off-
set). Then, it initiates a record counter). Whenever an input pair is read, the
counter is incremented by one. Moreover, if an intermediatet is produced, it
generates a paitk, rc¢). When the processing of the input chunk is finished, the
monitoring component groups all key-counter pairs by tkey, and for each key
it stores an entry of the forrtk, {rc,, ..., rc, }) in the metadata file.

3.1.2 Combination

While executing a monitored job, all metadata is stored lgcalVhenever
a repartitioning is launched by the user, the informati@mfdifferent metadata
files have to be combined in order to generate a hypergrapéaich input file.
The hypergraph is used for partitioning the tuples of anifife) and is generated
by using the matadata files created in the monitoring phase.

A hypergraphH = (Hy, Hg) is a generalization of a graph in which each
hyper edge: € Hg can connect more than two vertices. In fact, a hyper edge is
a subset of vertices, C Hy . In our model, vertices represent input tuples and
hyper edges characterize tuples producing the same ind@tadey in a job.

The pseudo-code for generating the hypergraph is showngaréhm 1. Ini-
tially the hypergraph is empty, and new vertices and edgesdded to it as the
metadata files are read. The metadata of each job is procsespatately. For
each job, our algorithm creates a data strucitrevhich stores for each generated
intermediate key, the set of input tuples that produce tlye ker every entry in
the file, the algorithm generates the corresponding tuglait adds them to the
entry inT" corresponding to the generated key. For easy id generat@atore in
each metadata file, the number of input tuples processetidéassociated chunk,
n;. We use the functiomenerate TuplelD(c;,rc) = Z;;ll n; + rc to translate
record numbers into ids. After processing all metadata afba for each read
tuple, our algorithm adds a vertex in the hypergraph (if inag there). Then, for
each intermediate key, it adds a hyper edge containing thef seples that have
produced the key.

3.2 Repartitioning

Once we have modeled the workload of each input file througypargraph,
we apply a min-cuk-way graph partitioning algorithm. The algorithm takes as

6

Algorithm 1: Metadata combination
Data: F: Input file; W Set of jobs composing the workload
Result H = (Hy, Hg): Hypergraph modeling the workload
begin
Hg < 0; Hy <0
foreach job € |W| do
T+ 0; K+ 0
foreachm, € M;,, do
md; < getMetadata(m;)
if F' = getFile(md;) then
foreach (k,{rcy,...,rc,}) € md; do
{ty.id, ..., t,,.id} « generate TuplelD(c;,{rc1,...,rcn})
T[k] < T[k] U{t,.id, ..., t,.id}
K+ KU{k}

oreachintermediate key: € K do
HV — HV U T[k]

—h

input a valuek and a hypergraph, and produdedisjoint subsets of vertices min-
imizing the sum of the weights of the edges between vertitdgferent subsets.
Weights can be associated to vertices, for instance toseptélifferent sizes. We
setk as the number of chunks in the input file. By using the min-agbiathm, the
tuples that are used for generating the same intermedigterkausually assigned
to the same partition.

The output of the algorithm indicates the set of tuples tlatho be assigned
to each of the input file chunks. Then, the input file shoulddymartitioned us-
ing the produced assignments. However, the file repartitgpoannot be done in
a straightforward manner, particularly because the chan&sreated by HDFS
automatically as new data is appended to a file. We createch teghporary files,
one for each partition. Then, we read the original file, andetich read tuple, the
graph algorithm output indicates to which of the tempordssfthe tuple should
be copied. Then, two strategies are possible: 1) created ks in one direc-
tory, one per partition, as it is done in the reduce phase gRéauce executions
and 2) write the generated files sequentially in the samelfilboth cases, at the
end of the process, we remove the old file and rename the negirietory to its
name. The first strategy is straightforward and instead d@fngrdata in tempo-
rary files, it can be written directly in HDFS. The second oas the advantage
of not having to deal with more files but has to deal with théofwing issues:

7

— Unfitted partitions The size of partitions created by the partitioning algo-
rithm may be different than the predefined chunk size, evereitet strict
imbalance constraints in the algorithm. To approximatedmenk limits
to the end of the temporary files when written one after themtive can
modify the order in which temporary files are written. We uaepeedy ap-
proach in which we select at each time the temporary file wehizge added
to the total size written, approximates the most to the nexhkHhimit.

— Inappropriate last chunkThe last chunk of a file is a special case, as its
size is less than the predefined chunk size. However, thé graitioning
algorithm tries to make all partitions balanced and doesuapport such a
constraint. In order to force one of the partitions to be @ $ize of the
last chunk, we insert a virtual tuple,;..;, with the weight equivalent to
the empty space in the last chunk. After discarding thiseuphe of the
partitions would have a size proportional to the size of #s thunk.

The repartitioning algorithm’s pseudo-code is shown inokithm 2. In the
algorithm we represemt R as theRecor dReader used to parse the input data.
We need to specify the associatedcor dWi t er, here represented dsil/,
that performs the inverse function &%. The reordering of temporary files is
represented by the functiomorder().

The complexity of the algorithm is dominated by the min-cigioaithm exe-
cution. Min-cut graph partitioning is NP-Complete, howesaveral polynomial
approximation algorithms have been developed for it. Is pgaper we use Pa-
ToH? to partition the hypergraph. In the rest of the algorithm jramer loop is
executedh times, where: is the number of tuplessenerate TupleID() can be ex-
ecuted inO(1) if we keep a table with;, the number of input tuples, for all input
chunks. getPartition() can also be executed (1) if we keep an array storing
for each tuple the assigned partition. Thus, the rest of kperighm is done in
O(n).

3.3 Reduce Tasks Locality-Aware Scheduling

In order to take advantage of the repartitioning, we needarimize data lo-
cality when scheduling reduce tasks. We have adapted tbetalgp proposed in
[9], in which each (key,node) pair is given a fairness-lagadcore representing
the ratio between the imbalance in reducers input and datdityp when key is
assigned to a reducer. Each key is processed independeattyreedy algorithm.
For each key, candidate nodes are sorted by their key freguandescending
order (nodes with higher key frequencies have better datlitp). But instead
of selecting the node with the maximum frequency, furthetasoare considered

2. http://bm.osu. edu/~unmt/software. ht m

Algorithm 2: Repartitioning

Data: F: Inputfile; H = (Hy, Hg): Hypergraph modeling the workload;
k: Number of partitions
Result F’: The repartitioned file
begin
HV A HV U Zfvirtual
{Py, ..., P} < mincut(H, k)
fori e (1,...,k)do
| createtemp f;

foreachc; € F do

initialize(RR, ¢;)

rc <0

while t.data <~ RR.next() do
t.id < generate TupleID(c;, rc)
p < getPartition(t.id, { Py, ..., Py })
RW.write(temp f,, t.data)
rc<rc+1

(J1, -, Jr) < reorder(temp f1, ..., temp fy)
for .7 € (j17 a]k) do
L write temp f; in F’

if they have a better fairness-locality score. The aim of #trategy is to bal-
ance reduce inputs as much as possible. On the whole, we madellbwing
modifications in the MapReduce framework:

— The partitioning function is changed to assign a uniquditpar for each
intermediate key.

— Map tasks, when finished, send to the master a list with thergéed in-
termediate keys and their frequencies. This informationgtuded in the
Heartbeat message that is sent at task completion.

— The master assigns intermediate keys to the reduce tdgkgyren this in-
formation in order to maximize data locality and to achiesad balancing.

3.4 Improving Scalability

Two strategies can be taken into account to improve thelsifiglaof the pre-
sented algorithms: 1) the number of intermediate keys;&3itre of the generated
graph.

In order to deal with a high number of intermediate keys weehaeated the
concept of virtual reducers/R. Instead of using intermediate keys both in the
metadata and the modified partitioning function we kisenod VR. Actually,
this is similar to the way in which keys are assigned to redasks in the orig-
inal MapReduce, but in this case we 3ék to a much greater number than the
actual number of reducers. This decreases the amount oflatatdnat should be
transferred to the master and the time to process the keydrmips and also the
amount of edges that are generated in the hypergraph.

To reduce the number of vertices that should be processé& igraph parti-
tioning algorithm, we perform a preparing step in which walesce tuples that
always appear together in the edges, as they should be atetbtogether. The
weights of the coalesced tuples would be the sum of the weighthe tuples
that have been merged. This step can be performed as pamt obthbination
algorithm that was described in Section 3.1.2.

4 Experimental Evaluation

In this section, we report the results of our experimentsedon evaluating
the performance of MR-Part. We first describe the experimesatialp, and then
present the results.

10

4.1 Set-Up

We have implemented MR-Part in Hadoop-1.0.4 and evaluatedGrid5000 [1],
a large scale infrastructure composed of different sitah weveral clusters of
computers. In our experiments we have employed PowerEdg@ d€rvers with
8 cores and 16 GB of memory.We installed Debian GNU/Linux @dueeze)
64-bit in all nodes, and used the default parameters for Bfadonfiguration.

We tested the proposed algorithm with queries from TPC-H,cista sup-
port benchmark. Queries have been written in Pig $14]dataflow system on top
of Hadoop that translates queries into MapReduce jobs. Faetier (which ac-
counts for the total size of the dataset in GBs) and employedegiare specified
on each specific test. After data population and data rejpaitig the cluster is
rebalanced in order to minimize the effects of remote trenssh the map phase.

As input data, we usedti nei t em which is the biggest table in TPC-H
dataset. In our tests, we used queries for which the shufiegphas a significant
impact in the total execution time. Particularly, we usealftiilowing queries: Q5
and Q9 that are examples of hash joins on different columiigh@ executes a
replicated join and Q17 that executes a co-group. Note tbagny query data
locality will be at least that of native Hadoop.

We compared the performance of MR-Part with that of nativedéad NAT)
and reduce locality-aware scheduling (RLS) [9], which cgpends to changes
explained in Section 3.3 but over the non-repartitionedsktt We measured the
percentage of transferred data in the shuffle phase for eliffejueries and cluster
sizes. We also measured the response time and shuffle timagRé&tluce jobs
under varying network bandwidth configurations.

4.2 Results
4.2.1 Transferred Data for Different Query Types

We repartitioned the dataset by using the metadata infeameollected from
monitoring query executions. Then, we measured the amdurdresferred data
in the shuffled phase for our queries in the repartitionedsidt Figure 2(a) de-
picts the percentage of data transferred for each of theeguen a 5 nodes clus-
ter and scale factor of 5. As we can see, transferred dat@ismdr80% in non
repartitioned data sets (actually the data locality is gsnaround 1 divided by the
number of nodes for the original datasets), while MR-Parioistvalues for trans-
ferred data below 10% for all the queries. Notice that, evih reduce locality-

3. We have used the implementation provided It p://ww. cs. duke. edu/
starfish/nr-apps. htm

11

0.8

0.8

0.6

0.6 -

0.4

0.4

Transferred data (%)
Transferred data (%)

0.2

0.2

|| - | | 3
Q5(HJ) Q7 (REPJ) Q9 (HJ) Q17 (COG) 5 10 15 20 25
Query Cluster size

(@) (b)

Figure 2: Percentage of transferred data for a) different type ofigad)
varying cluster and data size

aware scheduling, no gain is obtained in data locality as keg distributed in all
input chunks.

4.2.2 Transferred Data for Different Cluster Sizes

In the next scenario, we have chosen query Q5, and measwéaiisferred
data in the shuffle phase by varying the cluster size and idata size. Input
data size has been scaled depending on the cluster sizegtseatth node is as-
signed 2GB of data. Fig 2(b) shows the percentage of tranesfatata for the
three approaches, while increasing the number of clus@esoAs shown, with
increasing the number of nodes, our approach maintaingdystiata locality, but
it decreases for the other approaches. Since there is noiskesy frequencies,
both native Hadoop and RLS obtain data localities near 1 édiay the number
of nodes. Our experiments with different data sizes for #mescluster size show
no modification in the percentage of transferred data for MiR-@he results are
not shown in the paper due to space restrictions).

4.2.3 Response Time

As shown in previous subsection, MR-Part can significantiyice the amount
of transferred data in the shuffle phase. However, its impactesponse time
strongly depends on the network bandwidth. In this secti@measure the effect
of MR-Part on MapReduce response time by varying network baftdw We
control point-to-point bandwidth by using Linuxc command line utility. We

12

1200
1100 -
1000
900
800
700
600
500 ,,
400 A 200
300 g O [W W—

200 T B sl S S—

MRP|

500

400

300

Response time (s)
Shuffle time (s)

100 0
100 90 80 70 60 50 40 30 20 10 100 90 8 70 60 50 40 30 20 10
Bandwith (mbps) Bandwith (mbps)

(@) (b)

Figure 3: Results for varying network bandwidth: a) total response tirp
shuffle time

execute query Q5 on a cluster of 20 nodes with scale factdd (#@dGB of dataset
total size).

The results are shown in Figure 3. As we can see in Figure 3h@)lower
is the network, the biggest is the impact of data locality mecetion time. To
show where the improvement is produced, in Figure 3 (b) werte¢pe time spent
in data shuffling. Measuring shuffle time is not straightfard/ since in native
Hadoop it starts once 5% of map tasks have finished and preaepdrallel while
they are completed. Because of that, we represent two lin&&:ni that repre-
sents the time spent since the first shuffle byte is sent tidiphase is completed,
and NAT-os that represents the period of time where the syst®nly dedicated
to shuffling (after last map finishes). For MR-Part only theosekline has to be
represented as the system has to wait for all map tasks toletevip order to
schedule reduce tasks. We can observe that, while shufgeisimmost constant
for MR-Part, regardless of the network conditions, it insesasignificantly as the
network bandwidth decreases for the other alternativesa snsequence, the
response time for MR-Part is less sensitive to the networklwatth than that of
native Hadoop. For instance, for 10mbps, MR-Part executasound 30% less
time than native Hadoop.

5 Related Work

Reducing data transfer in the shuffle phase is important lsedgamay impose
a significant overhead in job execution. In [14] a simulai®oarried out in order
to study the performance of MapReduce in different scenafibe results show

13

that data shuffling may take an important part of the job ettecuparticularly
when network links are shared among different nodes behgntg a rack or a
network topology. In [13], a pre-shuffling scheme is proposededuce data
transfers in the shuffle phase. It looks over the input spkfere the map phase
begins and predicts the reducer the key-value pairs argipaed into. Then, the
data is assigned to a map task near the expected future re@ucalarly, in [7],
reduce tasks are assigned to the nodes that reduce the keétammsfers among
nodes and racks. However, in this case, the decision is &kealuce scheduling
time. In [12] a set of data and VM placement techniques arpgsed to improve
data locality in shared cloud environments. They classipMeduce jobs into
three classes and use different placement techniquesuoeeetwork transfers.
All the mentioned jobs are limited by how the MapReduce partihg function
assigns intermediate keys to reduce tasks. In [9] this prokik addressed by
assigning intermediate keys to reducers at scheduling titoeever, data locality
is limited by how intermediate keys are spread over all the maputs. MR-part
employs this technique as part of the reduce schedulingnpuoves its efficiency
by partitioning intelligently input data.

In the literature, there have been many other improvemeriteetMapReduce
framework. Some of them are related to MR-part. Eltabakh .ef6alpresent
CoHadoop, which aims to improve the performance of joins btitmaning input
datasets over the join column and co-locating the correfipgnchunks in the
same nodes. Then, a map-side join strategy is used, avdiditrgnsfer data
in the shuffle phase. This approach is only applicable to g specific type of
queries, as opposed to ours which aims at a greater type ®f b alternative
to repartitioning when executing a set of queries over timesdataset is to store
intermediate results as a form of caching, as is proposefl]inHowever, this
may pose a high overhead in storage requirements. Our agproa the other
hand, improves queries performance while requiring theessilorage size as the
original dataset.

Graph and hypergraph partitioning have been used to guidepdatitioning
in databases and in general in parallel computing [8]. Thieyvao capture data
relationships when no other information, e.g., the schamgjven. The work
in [3, 10] uses this approach to generate a database pairigio The approach
in Curino et al. [3] is similar to our approach in the sense ifaies to co-locate
frequently accessed data items, although it is used to astidbuted transactions
in an OLTP system.

14

6 Conclusions and Future Work

In this paper we proposed MR-Part, a new technique for redutie trans-
ferred data in the MapReduce shuffle phase. MR-Part monitoes ef $1apRe-
duce jobs constituting a workload sample and creates a wanikihodel by means
of a hypergraph. Then, using the workload model, MR-Partrtgjuens the input
files with the objective of maximizing the data locality iretheduce phase. We
have built the prototype of MR-Part in Hadoop, and tested &rid5000 exper-
imental platform. Results show a significant reduction imsfarred data in the
shuffle phase and important improvements in response tines whtwork band-
width is limited.

As a possible future work we envision to perform the repartihg in parallel.
The approach used in this paper has worked flawlessly for tidogned datasets,
but a parallel version would be able to scale to very big iaptihis version would
need to use parallel graph partitioning libraries, such d&#do

Acknowledgments

Experiments presented in this paper were carried out usm&tid’5000 ex-
perimental testbed, being developed under the INRIA ALADDRI&elopment
action with support from CNRS, RENATER and several universits well as
other funding bodies (see https://www.grid5000.fr).

References

[1] Grid 5000 project. https://ww. gri d5000. fr/ medi aw ki /
i ndex. php.
[2] Hadoop.htt p: // hadoop. apache. or g.

[3] Carlo Curino, Evan Jones, Yang Zhang, and Sam Madden. r8ché
workload-driven approach to database replication andtioauing. Proceed-
ings of the VLDB Endowmer(1):48-57, 2010.

[4] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplifaa process-
ing on large clusters. I1®SDI, pages 137-150. USENIX Association, 2004.

[5] Iman Elghandour and Ashraf Aboulnaga. Restore: reussglts of mapre-
duce jobs in pig. I'BIGMOD Conferencgpages 701-704. ACM, 2012.

[6] Mohamed Y. Eltabakh, Yuanyuan Tian, Fatma Ozcan, Rainem@la,
Aljoscha Krettek, and John McPherson. CoHadoop: Flexibla géice-
ment and its exploitation in hadoopVLDB, 4(9):575-585, 2011.

15

[7] Mohammad Hammoud, M. Suhail Rehman, and Majd F. Sakr. Cefite
gravity reduce task scheduling to lower mapreduce netwafkd. In IEEE
CLOUD, pages 49-58. IEEE, 2012.

[8] Bruce Hendrickson and Tamara G. Kolda. Graph partitigmmodels for
parallel computingParallel Computing26(12):1519-1534, 2000.

[9] Shadi Ibrahim, Hai Jin, Lu Lu, Song Wu, Bingsheng He, andQii
LEEN: Locality/fairness-aware key partitioning for magoee in the cloud.
In Cloud Computing, Second International Conference, CloudCon®,201
November 30 - December 3, 2010, Indianapolis, Indiana, USé¢dd-
ings pages 17-24, 2010.

[10] Duen Ren Liu and Shashi Shekhar. Partitioning simyagitaphs: a frame-
work for declustering problem#nformation System21(6):475-496, 1996.

[11] Christopher Olston, Benjamin Reed, Utkarsh Srivastavaj Ramar, and
Andrew Tomkins. Pig latin: a not-so-foreign language foradatocessing.
In SIGMOD Conferengepages 1099-1110. ACM, 2008.

[12] Balaji Palanisamy, Aameek Singh, Ling Liu, and Bhushan.J&urlieus:
locality-aware resource allocation for mapreduce in a aloun Confer-
ence on High Performance Computing Networking, Storage andysisa
SC 2011, Seattle, WA, USA, November 12-18, 20dde 58, 2011.

[13] Sangwon Seo, Ingook Jang, Kyungchang Woo, Inkyo Kim;Soo Kim,
and Seungryoul Maeng. HPMR: Prefetching and pre-shufflinghiared
mapreduce computation environmentdhUSTERpages 1-8. IEEE, 2009.

[14] Guanying Wang, Ali Raza Butt, Prashant Pandey, and KargtaGW sim-
ulation approach to evaluating design decisions in mampedetups. In
MASCOTSpages 1-11. IEEE, 2009.

16

