
HAL Id: lirmm-00879531
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00879531

Submitted on 18 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MR-Part : Minimizing Data Transfers Between Mappers
and Reducers in MapReduce

Miguel Liroz-Gistau, Reza Akbarinia, Divyakant Agrawal, Esther Pacitti,
Patrick Valduriez

To cite this version:
Miguel Liroz-Gistau, Reza Akbarinia, Divyakant Agrawal, Esther Pacitti, Patrick Valduriez. MR-
Part : Minimizing Data Transfers Between Mappers and Reducers in MapReduce. BDA: Bases de
Données Avancées, Oct 2013, Nantes, France. �lirmm-00879531�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00879531
https://hal.archives-ouvertes.fr

MR-Part : Minimizing Data Transfers
Between Mappers and Reducers in

MapReduce

Miguel Liroz-Gistau1 Reza Akbarinia1

Divyakant Agrawal2 Esther Pacitti3

Patrick Valduriez1
1 INRIA & LIRMM, Montpellier, France

{Miguel.Liroz_Gistau, Reza.Akbarinia, Patrick.Valduriez}@inria.fr

2 University of California, Santa Barbara

agrawal@cs.ucsb.edu

3 University Montpellier 2, INRIA & LIRMM, Montpellier, France

Esther.Pacitti@lirmm.fr

Résumé

La réduction du transfert des données dans la phase “Shuffle” de MapReduce est très
importante, car elle augmente la localité des données, et diminue le coût total desexécu-
tions des jobs MapReduce. Dans la littérature, plusieurs optimisations ont été proposées
pour réduire le transfert de données entre les mappers et les reducers. Néanmoins, toutes
ces approches sont limitées par la façon dont les clé-valeurs intermédiaires sont répar-
ties sur les mappers. Dans cet article, nous proposons une technique qui repartitionne les
tuples dans le fichier d’entrée, avec l’objectif d’optimiser la distribution des clés-valeurs
sur les mappers. Notre approche détecte les relations entre les tuples d’entrée et les clé-
valeurs intermédiaires en surveillant l’exécution d’un ensemble de tâches MapReduce qui
est représentatif du workload. Puis, à partir des relations détectées, il affecte les tuples
d’entrée aux mappers, et augmente la localité des données lors des futuresexécutions.
Nous avons implémenté notre approche dans Hadoop, et l’avons évaluéepar expérimen-
tation dans Grid5000. Les résultats montrent une grande réduction dans le transfert de
données pendant la phase “Shuffle” par rapport à Hadoop.

Mots-clefs : MapReduce, partitionement basé sur workload ; localité des données

1

1 Introduction

MapReduce [4] has established itself as one of the most popular alternatives
for big data processing due to its programming model simplicity and automatic
management of parallel execution in clusters of machines. Initially proposed by
Google to be used for indexing the web, it has been applied to awide range of
problems having to process big quantities of data, favored by the popularity of
Hadoop [2], an open-source implementation. MapReduce divides the computation
in two main phases, namely map and reduce, which in turn are carried out by
several tasks that process the data in parallel. Between them, there is a phase,
called shuffle, where the data produced by the map phase is ordered, partitioned
and transferred to the appropriate machines executing the reduce phase.

MapReduce applies the principle of “moving computation towards data” and
thus tries to schedule map tasks in MapReduce executions closeto the input data
they process, in order to maximize data locality. Data locality is desirable because
it reduces the amount of data transferred through the network, and this reduces
energy consumption as well as network traffic in data centers.

Recently, several optimizations have been proposed to reduce data transfer be-
tween mappers and reducers. For example, [7] and [12] try to reduce the amount
of data transferred in the shuffle phase by scheduling reducetasks close to the
map tasks that produce their input. Ibrahim et al. [9] go evenfurther and dynami-
cally partition intermediate keys in order to balance load among reduce tasks and
decrease network transfers. Nevertheless, all these approaches are limited by how
intermediate key-value pairs are distributed over map outputs. If the data associ-
ated to a given intermediate key is present in all map outputs,even if we assign
it to a reducer executing in the same machine, the rest of the pairs still have to be
transferred.

In this paper, we propose a technique, called MR-Part, that aims at minimizing
the transferred data between mappers and reducers in the shuffle phase of MapRe-
duce. MR-Part captures the relationships between input tuples and intermediate
keys by monitoring the execution of a set of MapReduce jobs which are represen-
tative of the workload. Then, based on the captured relationships, it partitions the
input files, and assigns input tuples to the appropriate fragments in such a way that
subsequent MapReduce jobs following the modeled workload will take full advan-
tage of data locality in the reduce phase. In order to characterize the workload,
we inject a monitoring component in the MapReduce framework that produces
the required metadata. Then, another component, which is executed offline, com-
bines the information captured for all the MapReduce jobs of the workload and
partitions the input data accordingly. We have modeled the workload by means of
an hypergraph, to which we apply a min-cut k-way graph partitioning algorithm
to assign the tuples to the input fragments.

2

We implemented MR-Part in Hadoop, and evaluated it through experimenta-
tion on top of Grid5000 using standard benchmarks. The results show significant
reduction in data transfer during the shuffle phase comparedto Native Hadoop.
They also exhibit a significant reduction in execution time when network band-
width is limited.

The rest of the paper is organized as follows: In Section 2, webriefly describe
MapReduce, and then define formally the problem we address. InSection 3, we
propose MR-Part. In Section 4, we report the results of our experimental tests
evaluating its efficiency. Section 5 presents the related work and Section 6 con-
cludes.

2 Problem Definition

2.1 MapReduce Background

MapReduce is a programming model based on two primitives:

map : (K1, V1)→ list(K2, V2)
reduce : (K2, list(V1))→ list(K3, V3)

The map function processes key/value pairs and produces a set of intermedi-
ate/value pairs. Intermediate key/value pairs are merged and sorted based on the
intermediate keyk2 and provided as input to the reduce function.

MapReduce jobs are executed over a distributed system composed of a master
and a set of workers. The input is divided into several splitsand assigned to map
tasks. The master schedules map tasks in the workers by taking into account data
locality (nodes holding the assigned input are preferred).

The output of the map tasks is divided into as many partitionsas reducers
are scheduled in the system. Entries with the same intermediate keyk2 should
be assigned to the same partition to guarantee the correctness of the execution.
All the intermediate key/value pairs of a given partition are sorted and sent to the
worker where the corresponding reduce task is going to be executed. This phase is
called shuffle. Default scheduling of reduce task does not take into consideration
any data locality constraint. As a consequence, depending on how intermediate
keys appear in the input splits and how the partitioning is done, the amount of
data that has to be transferred through the network in the shuffle phase may be
significant.

2.2 Problem Statement

We are given a set of MapReduce jobs which are representative of the system
workload, and a set of input files. We assume that future MapReduce jobs follow

3

similar patterns as those of the representative workload, at least in the generation
of intermediate keys.

The goal of our system is to automatically partition the input files so that
the amount of data that is transferred through the network inthe shuffle phase is
minimized in future executions. We make no assumptions about the scheduling of
map and reduce tasks, and only consider intelligent partitioning of intermediate
keys to reducers, e.g., as it is done in [9].

Let us formally state the problem which we address. Let the input data for a
MapReduce job,jobα, be composed of a set of data itemsD = {d1, ..., dn} and
divided into a set of chunksC = {C1, ..., Cp}. Functionloc : D → C assigns
data items to chunks. Letjobα be composed ofMα = {m1, ...,mp} map tasks
andRα = {r1, ..., rq} reduce tasks. We assume that each map taskmi processes
chunkci. LetNα = {n1, .., ns} be the set of machines used in the job execution;
node(t) represents the machine where taskt is executed.

Let Iα = {i1, .., im} be the set of intermediate key-value pairs produced by
the map phase, such thatmap(dj) = {ij1 , ..., ijt}. k(ij) represents the key of
intermediate pairij and size(ij) represents its total size in bytes. We define
output(mi) ⊆ Iα as the set of intermediate pairs produced by map taskmi,
output(mi) =

⋃
dj∈Ci

map(dj). We also defineinput(ri) ⊆ Iα as the set of
intermediate pairs assigned to reduce taskri. Functionpart : k(Iα)→ R assigns
intermediate keys to reduce taks.

Let ij be an intermediate key-value pair, such thatij ∈ output(m) andij ∈
input(r). Let Pij ∈ {0, 1} be a variable that is equal to0 if intermediate pairij
is produced in the same machine where it is processed by the reduce task, and1
otherwise, i.e.,P (ij) = 0 iff node(m) = node(r).

Let W = {job1 , ..., jobw} be the set of jobs in the workload. Our goal is to
find loc andpart functions in a way in which

∑
jobα∈W

∑
ij∈Iα

size(ij)P (ij) is
minimized.

3 MR-Part

In this section, we propose MR-Part, a technique that by automatic partition-
ing of MapReduce input files allows Hadoop to take full advantage of locality-
aware scheduling for reduce tasks, and to reduce significantly the amount of data
transferred between map and reduce nodes during the shuffle phase. MR-Part pro-
ceeds in three main phases, as shown in Figure 1: 1) Workload characterization, in
which information about the workload is obtained from the execution of MapRe-
duce jobs, and then combined to create a model of the workloadrepresented as a
hypergraph; 2) Repartitioning, in which a graph partitioning algorithm is applied
over the hypergraph produced in the first phase, and based on the results the input

4

Workload
Monitoring

Injecting
monitoring code

Detecting key-tuple
relationships

Generating
metadata files

Partitioning Workload
modeling

Hypergraph
partitioning

Input file
repartitioning

Execution and
scheduling

Using repartitioned
file

Locality-aware
scheduling

Figure 1: MR-Part workflow scheme

files are repartitioned; 3) Scheduling, that takes advantage of the input partition-
ing in further executions of MapReduce jobs, and by an intelligent assignment of
reduce tasks to the workers reduces the amount of data transferred in the shuffle
phase. Phases 1 and 2 are executed offline over the model of theworkload, so
their cost is amortized over future job executions.

3.1 Workload Characterization

In order to minimize the amount of data transferred through the network be-
tween map and reduce tasks, MR-Part tries to perform the following actions: 1)
grouping all input tuples producing a given intermediate key in the same chunk
and 2) assigning the key to a reduce task executing in the samenode.

The first action needs to find the relationship between input tuples and inter-
mediate keys. With that information, tuples producing the same intermediate key
are co-located in the same chunk.

3.1.1 Monitoring

We inject a monitoring component in the MapReduce framework that monitors
the execution of map tasks and captures the relationship between input tuples and
intermediate keys. This component is completely transparent to the user program.

The development of the monitoring component was not straightforward be-
cause the map tasks receive entries of the form(K1, V1), but with this informa-
tion alone we are not able to uniquely identify the corresponding input tuples.
However, if we always use the sameRecordReader 1 to read the file, we can

1. TheRecordReader is the component of MapReduce that parses the input and produce
input key-value pairs. Normally each file format is parsed bya singleRecordReader; therefore,
using the sameRecordReader for the same file is a common practice

5

uniquely identify an input tuple by a combination of its input file name, its chunk
starting offset and the position ofRecordReader when producing the input
pairs for the map task.

For each map task, the monitoring component produces a metadata file as fol-
lows. When a new input chunk is loaded, the monitoring component creates a
new metadata file and writes the chunk information (file name and starting off-
set). Then, it initiates a record counter (rc). Whenever an input pair is read, the
counter is incremented by one. Moreover, if an intermediatekeyk is produced, it
generates a pair(k, rc). When the processing of the input chunk is finished, the
monitoring component groups all key-counter pairs by theirkey, and for each key
it stores an entry of the form〈k, {rc1, ..., rcn}〉 in the metadata file.

3.1.2 Combination

While executing a monitored job, all metadata is stored locally. Whenever
a repartitioning is launched by the user, the information from different metadata
files have to be combined in order to generate a hypergraph foreach input file.
The hypergraph is used for partitioning the tuples of an input file, and is generated
by using the matadata files created in the monitoring phase.

A hypergraphH = (HV , HE) is a generalization of a graph in which each
hyper edgee ∈ HE can connect more than two vertices. In fact, a hyper edge is
a subset of vertices,e ⊆ HV . In our model, vertices represent input tuples and
hyper edges characterize tuples producing the same intermediate key in a job.

The pseudo-code for generating the hypergraph is shown in Algorithm 1. Ini-
tially the hypergraph is empty, and new vertices and edges are added to it as the
metadata files are read. The metadata of each job is processedseparately. For
each job, our algorithm creates a data structureT , which stores for each generated
intermediate key, the set of input tuples that produce the key. For every entry in
the file, the algorithm generates the corresponding tuple ids and adds them to the
entry inT corresponding to the generated key. For easy id generation,we store in
each metadata file, the number of input tuples processed for the associated chunk,
ni. We use the functiongenerateTupleID(ci, rc) =

∑i−1

j=1
ni + rc to translate

record numbers into ids. After processing all metadata of a job, for each read
tuple, our algorithm adds a vertex in the hypergraph (if it isnot there). Then, for
each intermediate key, it adds a hyper edge containing the setof tuples that have
produced the key.

3.2 Repartitioning

Once we have modeled the workload of each input file through a hypergraph,
we apply a min-cutk-way graph partitioning algorithm. The algorithm takes as

6

Algorithm 1: Metadata combination
Data: F : Input file;W : Set of jobs composing the workload
Result: H = (HV , HE): Hypergraph modeling the workload
begin

HE ← ∅; HV ← ∅
foreach job ∈ |W | do

T ← ∅; K ← ∅
foreachmi ∈Mjob do

mdi← getMetadata(mi)
if F = getFile(mdi) then

foreach 〈k, {rc1, ..., rcn}〉 ∈ mdi do
{t1.id, ..., tn.id} ← generateTupleID(ci, {rc1, ..., rcn})
T [k]← T [k] ∪ {t1.id, ..., tn.id}
K ← K ∪ {k}

foreach intermediate keyk ∈ K do
HV ← HV ∪ T [k]
HE ← HE ∪ {T [k]}

input a valuek and a hypergraph, and producesk disjoint subsets of vertices min-
imizing the sum of the weights of the edges between vertices of different subsets.
Weights can be associated to vertices, for instance to represent different sizes. We
setk as the number of chunks in the input file. By using the min-cut algorithm, the
tuples that are used for generating the same intermediate key are usually assigned
to the same partition.

The output of the algorithm indicates the set of tuples that have to be assigned
to each of the input file chunks. Then, the input file should be repartitioned us-
ing the produced assignments. However, the file repartitioning cannot be done in
a straightforward manner, particularly because the chunksare created by HDFS
automatically as new data is appended to a file. We create a setof temporary files,
one for each partition. Then, we read the original file, and for each read tuple, the
graph algorithm output indicates to which of the temporary files the tuple should
be copied. Then, two strategies are possible: 1) create a setof files in one direc-
tory, one per partition, as it is done in the reduce phase of MapReduce executions
and 2) write the generated files sequentially in the same file.In both cases, at the
end of the process, we remove the old file and rename the new file/directory to its
name. The first strategy is straightforward and instead of writing data in tempo-
rary files, it can be written directly in HDFS. The second one has the advantage
of not having to deal with more files but has to deal with the following issues:

7

– Unfitted partitions: The size of partitions created by the partitioning algo-
rithm may be different than the predefined chunk size, even ifwe set strict
imbalance constraints in the algorithm. To approximate thechunk limits
to the end of the temporary files when written one after the other, we can
modify the order in which temporary files are written. We useda greedy ap-
proach in which we select at each time the temporary file whosesize, added
to the total size written, approximates the most to the next chunk limit.

– Inappropriate last chunk: The last chunk of a file is a special case, as its
size is less than the predefined chunk size. However, the graph partitioning
algorithm tries to make all partitions balanced and does notsupport such a
constraint. In order to force one of the partitions to be of the size of the
last chunk, we insert a virtual tuple,tvirtual , with the weight equivalent to
the empty space in the last chunk. After discarding this tuple, one of the
partitions would have a size proportional to the size of the last chunk.

The repartitioning algorithm’s pseudo-code is shown in Algorithm 2. In the
algorithm we representRR as theRecordReader used to parse the input data.
We need to specify the associatedRecordWriter, here represented asRW ,
that performs the inverse function asRR. The reordering of temporary files is
represented by the functionreorder().

The complexity of the algorithm is dominated by the min-cut algorithm exe-
cution. Min-cut graph partitioning is NP-Complete, however, several polynomial
approximation algorithms have been developed for it. In this paper we use Pa-
ToH2 to partition the hypergraph. In the rest of the algorithm, aninner loop is
executedn times, wheren is the number of tuples.generateTupleID() can be ex-
ecuted inO(1) if we keep a table withni, the number of input tuples, for all input
chunks.getPartition() can also be executed inO(1) if we keep an array storing
for each tuple the assigned partition. Thus, the rest of the algorithm is done in
O(n).

3.3 Reduce Tasks Locality-Aware Scheduling

In order to take advantage of the repartitioning, we need to maximize data lo-
cality when scheduling reduce tasks. We have adapted the algorithm proposed in
[9], in which each (key,node) pair is given a fairness-locality score representing
the ratio between the imbalance in reducers input and data locality when key is
assigned to a reducer. Each key is processed independently in a greedy algorithm.
For each key, candidate nodes are sorted by their key frequency in descending
order (nodes with higher key frequencies have better data locality). But instead
of selecting the node with the maximum frequency, further nodes are considered

2. http://bmi.osu.edu/~umit/software.html

8

Algorithm 2: Repartitioning
Data: F : Input file;H = (HV , HE): Hypergraph modeling the workload;

k: Number of partitions
Result: F ′: The repartitioned file
begin

HV ← HV ∪ tvirtual
{P1, ..., Pk} ← mincut(H, k)
for i ∈ (1, ..., k) do

createtempfi

foreach ci ∈ F do
initialize(RR, ci)
rc← 0
while t.data← RR.next() do

t.id← generateTupleID(ci, rc)
p← getPartition(t.id, {P1, ..., Pk})
RW.write(tempfp, t.data)
rc← rc+ 1

(j1, ..., jk)← reorder(tempf1, ..., tempfk)
for j ∈ (j1, ..., jk) do

write tempfi in F ′

9

if they have a better fairness-locality score. The aim of this strategy is to bal-
ance reduce inputs as much as possible. On the whole, we made the following
modifications in the MapReduce framework:

– The partitioning function is changed to assign a unique partition for each
intermediate key.

– Map tasks, when finished, send to the master a list with the generated in-
termediate keys and their frequencies. This information isincluded in the
Heartbeat message that is sent at task completion.

– The master assigns intermediate keys to the reduce tasks relying on this in-
formation in order to maximize data locality and to achieve load balancing.

3.4 Improving Scalability

Two strategies can be taken into account to improve the scalability of the pre-
sented algorithms: 1) the number of intermediate keys; 2) the size of the generated
graph.

In order to deal with a high number of intermediate keys we have created the
concept of virtual reducers,VR. Instead of using intermediate keys both in the
metadata and the modified partitioning function we usek mod VR. Actually,
this is similar to the way in which keys are assigned to reducetasks in the orig-
inal MapReduce, but in this case we setVR to a much greater number than the
actual number of reducers. This decreases the amount of metadata that should be
transferred to the master and the time to process the key frequencies and also the
amount of edges that are generated in the hypergraph.

To reduce the number of vertices that should be processed in the graph parti-
tioning algorithm, we perform a preparing step in which we coalesce tuples that
always appear together in the edges, as they should be co-located together. The
weights of the coalesced tuples would be the sum of the weights of the tuples
that have been merged. This step can be performed as part of the combination
algorithm that was described in Section 3.1.2.

4 Experimental Evaluation

In this section, we report the results of our experiments done for evaluating
the performance of MR-Part. We first describe the experimentalsetup, and then
present the results.

10

4.1 Set-Up

We have implemented MR-Part in Hadoop-1.0.4 and evaluated iton Grid5000 [1],
a large scale infrastructure composed of different sites with several clusters of
computers. In our experiments we have employed PowerEdge 1950 servers with
8 cores and 16 GB of memory.We installed Debian GNU/Linux 6.0(squeeze)
64-bit in all nodes, and used the default parameters for Hadoop configuration.

We tested the proposed algorithm with queries from TPC-H, a decision sup-
port benchmark. Queries have been written in Pig [11]3, a dataflow system on top
of Hadoop that translates queries into MapReduce jobs. Scalefactor (which ac-
counts for the total size of the dataset in GBs) and employed queries are specified
on each specific test. After data population and data repartitioning the cluster is
rebalanced in order to minimize the effects of remote transfers in the map phase.

As input data, we usedlineitem, which is the biggest table in TPC-H
dataset. In our tests, we used queries for which the shuffle phase has a significant
impact in the total execution time. Particularly, we used the following queries: Q5
and Q9 that are examples of hash joins on different columns, Q7 that executes a
replicated join and Q17 that executes a co-group. Note that,for any query data
locality will be at least that of native Hadoop.

We compared the performance of MR-Part with that of native Hadoop (NAT)
and reduce locality-aware scheduling (RLS) [9], which corresponds to changes
explained in Section 3.3 but over the non-repartitioned dataset. We measured the
percentage of transferred data in the shuffle phase for different queries and cluster
sizes. We also measured the response time and shuffle time of MapReduce jobs
under varying network bandwidth configurations.

4.2 Results

4.2.1 Transferred Data for Different Query Types

We repartitioned the dataset by using the metadata information collected from
monitoring query executions. Then, we measured the amount of transferred data
in the shuffled phase for our queries in the repartitioned dataset. Figure 2(a) de-
picts the percentage of data transferred for each of the queries on a 5 nodes clus-
ter and scale factor of 5. As we can see, transferred data is around 80% in non
repartitioned data sets (actually the data locality is always around 1 divided by the
number of nodes for the original datasets), while MR-Part obtains values for trans-
ferred data below 10% for all the queries. Notice that, even with reduce locality-

3. We have used the implementation provided inhttp://www.cs.duke.edu/
starfish/mr-apps.html

11

 0

 0.2

 0.4

 0.6

 0.8

 1

Q5 (HJ) Q7 (REPJ) Q9 (HJ) Q17 (COG)

T
ra

ns
fe

rr
ed

 d
at

a
(%

)

Query

NAT RLS MRP

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20 25

T
ra

ns
fe

rr
ed

 d
at

a
(%

)

Cluster size

NAT RLS MRP

(b)

Figure 2: Percentage of transferred data for a) different type of queries b)
varying cluster and data size

aware scheduling, no gain is obtained in data locality as keys are distributed in all
input chunks.

4.2.2 Transferred Data for Different Cluster Sizes

In the next scenario, we have chosen query Q5, and measured the transferred
data in the shuffle phase by varying the cluster size and inputdata size. Input
data size has been scaled depending on the cluster size, so that each node is as-
signed 2GB of data. Fig 2(b) shows the percentage of transferred data for the
three approaches, while increasing the number of cluster nodes. As shown, with
increasing the number of nodes, our approach maintains a steady data locality, but
it decreases for the other approaches. Since there is no skewin key frequencies,
both native Hadoop and RLS obtain data localities near 1 divided by the number
of nodes. Our experiments with different data sizes for the same cluster size show
no modification in the percentage of transferred data for MR-Part (the results are
not shown in the paper due to space restrictions).

4.2.3 Response Time

As shown in previous subsection, MR-Part can significantly reduce the amount
of transferred data in the shuffle phase. However, its impacton response time
strongly depends on the network bandwidth. In this section,we measure the effect
of MR-Part on MapReduce response time by varying network bandwidth. We
control point-to-point bandwidth by using Linuxtc command line utility. We

12

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 10 20 30 40 50 60 70 80 90 100

R
es

po
ns

e
tim

e
(s

)

Bandwith (mbps)

NAT
MRP

(a)

 0

 100

 200

 300

 400

 500

 600

 700

 10 20 30 40 50 60 70 80 90 100

S
hu

ffl
e

tim
e

(s
)

Bandwith (mbps)

NAT-ms
NAT-os
MRP

(b)

Figure 3: Results for varying network bandwidth: a) total response time b)
shuffle time

execute query Q5 on a cluster of 20 nodes with scale factor of 40 (40GB of dataset
total size).

The results are shown in Figure 3. As we can see in Figure 3 (a),the slower
is the network, the biggest is the impact of data locality on execution time. To
show where the improvement is produced, in Figure 3 (b) we report the time spent
in data shuffling. Measuring shuffle time is not straightforward since in native
Hadoop it starts once 5% of map tasks have finished and proceeds in parallel while
they are completed. Because of that, we represent two lines: NAT-ms that repre-
sents the time spent since the first shuffle byte is sent until this phase is completed,
and NAT-os that represents the period of time where the system is only dedicated
to shuffling (after last map finishes). For MR-Part only the second line has to be
represented as the system has to wait for all map tasks to complete in order to
schedule reduce tasks. We can observe that, while shuffle time is almost constant
for MR-Part, regardless of the network conditions, it increases significantly as the
network bandwidth decreases for the other alternatives. Asa consequence, the
response time for MR-Part is less sensitive to the network bandwidth than that of
native Hadoop. For instance, for 10mbps, MR-Part executes inaround 30% less
time than native Hadoop.

5 Related Work

Reducing data transfer in the shuffle phase is important because it may impose
a significant overhead in job execution. In [14] a simulationis carried out in order
to study the performance of MapReduce in different scenarios. The results show

13

that data shuffling may take an important part of the job execution, particularly
when network links are shared among different nodes belonging to a rack or a
network topology. In [13], a pre-shuffling scheme is proposedto reduce data
transfers in the shuffle phase. It looks over the input splitsbefore the map phase
begins and predicts the reducer the key-value pairs are partitioned into. Then, the
data is assigned to a map task near the expected future reducer. Similarly, in [7],
reduce tasks are assigned to the nodes that reduce the network transfers among
nodes and racks. However, in this case, the decision is takenat reduce scheduling
time. In [12] a set of data and VM placement techniques are proposed to improve
data locality in shared cloud environments. They classify MapReduce jobs into
three classes and use different placement techniques to reduce network transfers.
All the mentioned jobs are limited by how the MapReduce partitioning function
assigns intermediate keys to reduce tasks. In [9] this problem is addressed by
assigning intermediate keys to reducers at scheduling time. However, data locality
is limited by how intermediate keys are spread over all the mapoutputs. MR-part
employs this technique as part of the reduce scheduling, butimproves its efficiency
by partitioning intelligently input data.

In the literature, there have been many other improvements to the MapReduce
framework. Some of them are related to MR-part. Eltabakh et al. [6] present
CoHadoop, which aims to improve the performance of joins by partitioning input
datasets over the join column and co-locating the corresponding chunks in the
same nodes. Then, a map-side join strategy is used, avoidingto transfer data
in the shuffle phase. This approach is only applicable to a very specific type of
queries, as opposed to ours which aims at a greater type of jobs. An alternative
to repartitioning when executing a set of queries over the same dataset is to store
intermediate results as a form of caching, as is proposed in [5]. However, this
may pose a high overhead in storage requirements. Our approach, on the other
hand, improves queries performance while requiring the same storage size as the
original dataset.

Graph and hypergraph partitioning have been used to guide data partitioning
in databases and in general in parallel computing [8]. They allow to capture data
relationships when no other information, e.g., the schema,is given. The work
in [3, 10] uses this approach to generate a database partitioning. The approach
in Curino et al. [3] is similar to our approach in the sense thatit tries to co-locate
frequently accessed data items, although it is used to avoiddistributed transactions
in an OLTP system.

14

6 Conclusions and Future Work

In this paper we proposed MR-Part, a new technique for reducing the trans-
ferred data in the MapReduce shuffle phase. MR-Part monitors a set of MapRe-
duce jobs constituting a workload sample and creates a workload model by means
of a hypergraph. Then, using the workload model, MR-Part repartitions the input
files with the objective of maximizing the data locality in the reduce phase. We
have built the prototype of MR-Part in Hadoop, and tested it inGrid5000 exper-
imental platform. Results show a significant reduction in transferred data in the
shuffle phase and important improvements in response time when network band-
width is limited.

As a possible future work we envision to perform the repartitioning in parallel.
The approach used in this paper has worked flawlessly for the employed datasets,
but a parallel version would be able to scale to very big inputs. This version would
need to use parallel graph partitioning libraries, such as Zoltan.

Acknowledgments

Experiments presented in this paper were carried out using the Grid’5000 ex-
perimental testbed, being developed under the INRIA ALADDINdevelopment
action with support from CNRS, RENATER and several universities as well as
other funding bodies (see https://www.grid5000.fr).

References

[1] Grid 5000 project. https://www.grid5000.fr/mediawiki/
index.php.

[2] Hadoop.http://hadoop.apache.org.

[3] Carlo Curino, Evan Jones, Yang Zhang, and Sam Madden. Schism: a
workload-driven approach to database replication and partitioning. Proceed-
ings of the VLDB Endowment, 3(1):48–57, 2010.

[4] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data process-
ing on large clusters. InOSDI, pages 137–150. USENIX Association, 2004.

[5] Iman Elghandour and Ashraf Aboulnaga. Restore: reusing results of mapre-
duce jobs in pig. InSIGMOD Conference, pages 701–704. ACM, 2012.

[6] Mohamed Y. Eltabakh, Yuanyuan Tian, Fatma Özcan, Rainer Gemulla,
Aljoscha Krettek, and John McPherson. CoHadoop: Flexible data place-
ment and its exploitation in hadoop.PVLDB, 4(9):575–585, 2011.

15

[7] Mohammad Hammoud, M. Suhail Rehman, and Majd F. Sakr. Center-of-
gravity reduce task scheduling to lower mapreduce network traffic. In IEEE
CLOUD, pages 49–58. IEEE, 2012.

[8] Bruce Hendrickson and Tamara G. Kolda. Graph partitioning models for
parallel computing.Parallel Computing, 26(12):1519–1534, 2000.

[9] Shadi Ibrahim, Hai Jin, Lu Lu, Song Wu, Bingsheng He, and LiQi.
LEEN: Locality/fairness-aware key partitioning for mapreduce in the cloud.
In Cloud Computing, Second International Conference, CloudCom 2010,
November 30 - December 3, 2010, Indianapolis, Indiana, USA, Proceed-
ings, pages 17–24, 2010.

[10] Duen Ren Liu and Shashi Shekhar. Partitioning similarity graphs: a frame-
work for declustering problems.Information Systems, 21(6):475–496, 1996.

[11] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and
Andrew Tomkins. Pig latin: a not-so-foreign language for data processing.
In SIGMOD Conference, pages 1099–1110. ACM, 2008.

[12] Balaji Palanisamy, Aameek Singh, Ling Liu, and Bhushan Jain. Purlieus:
locality-aware resource allocation for mapreduce in a cloud. In Confer-
ence on High Performance Computing Networking, Storage and Analysis,
SC 2011, Seattle, WA, USA, November 12-18, 2011, page 58, 2011.

[13] Sangwon Seo, Ingook Jang, Kyungchang Woo, Inkyo Kim, Jin-Soo Kim,
and Seungryoul Maeng. HPMR: Prefetching and pre-shuffling inshared
mapreduce computation environment. InCLUSTER, pages 1–8. IEEE, 2009.

[14] Guanying Wang, Ali Raza Butt, Prashant Pandey, and Karan Gupta. A sim-
ulation approach to evaluating design decisions in mapreduce setups. In
MASCOTS, pages 1–11. IEEE, 2009.

16

