Maximilien Servajean

Esther Pacitti

Sihem Amer-Yahia

Pascal Neveu

Profile Diversity for Phenotyping Data Search and Recommendation *

Keywords: Recommendation, diversity, top-k

Dans ce travail, nous étudions la diversité de profils. Il s'agit d'une approche nouvelle dans la recherche de documents scientifiques. De nombreux travaux ont combinés la pertinence des mots clés avec la popularité des documents au sein d'une fonction de score "sociale". Diversifier le contenu des documents retournés a également été traité de manière approfondie et la recherche, la publicité, les requêtes en base de données et la recommandation. Nous pensons que notre travail est le premier à traiter de la diversité de profils afin de traiter le problème des listes de résultats hautement populaires mais trop ciblées. Nous montrerons comment nous adaptons l'algorithme de Fagin sur les algorithmes à seuil pour retourner les documents les plus pertinents, les plus populaires mais aussi les plus divers que ce soit en terme de contenus ou de profils. Nous avons également un ensemble de simulations sur deux benchmarks afin de valider notre fonction de score.

Introduction

Cross-discipline scientific domains have been growing thanks to the various calls for funding of different government agencies and to the adoption of collaborative tools. Several large projects now involve sizable laboratories of biologists, computer scientists, chemists and statisticians. In cross-discipline domains, users belonging to different communities produce various scientific material that they own, share, or endorse. In that context, we are interested in querying and recommending scientific material in the form of documents. Such documents cover various topics such as models for plant phenotyping, statistics on specific kinds of plants, or biological experiments. In this paper, we investigate diversity when searching scientific documents.

The ability to search scientific documents helps scientists gather and share knowledge on the same topic that is endorsed by other scientists. Each user belongs to a well-known discipline (e.g. computer science, biology, mathema-tics, etc.). Within a discipline a user belongs to one or more communities which reflect specializations of a discipline. For instance in the biology discipline, examples of communities are geneticists, ecophysiologists and plant breeders. The profile of a user is therefore a combination of her discipline and communities. In such a context, searching documents requires the careful design of an appropriate relevance function. We consider the example of plant phenotyping research where various disciplines and communities are involved. When an ecophysiologist u submits a query q ="plant model" (similar to q="model" as everyone works in the plant area), u might want documents containing details on experiments by other ecophysiologists or those describing models of plant behavior shared by computer scientists. Table 1 shows two possible result lists. The list at the top is based on finding documents relevant to q that have diverse content. As we can see, that list only contains documents owned or shared by ecophysiologists. Since u is also interested in computer models, the list of results in the bottom part of the table would be more appropriate since it returns documents endorsed by users having different profiles.

Traditionally, diversity is achieved along one axis that is content. Content diversity alleviates the risk of returning highly-relevant but too-similar documents. In this work, we advocate profile diversity to address the problem of returning highly popular but too-focused documents. We design a scoring function that combines query relevance, content diversity to alleviate document similarity in query results, document popularity to account for profile endorsements, and finally, profile diversity to expose users to documents owned and shared by different communities. Combining keyword relevance with popularity in a scoring function has been the subject of different forms of social relevance [START_REF] Amer | Efficient network aware search in collaborative tagging sites[END_REF][START_REF] Bai | Collaborative personalized top-k processing[END_REF][START_REF] Chen | Addressing diverse user preferences in sqlquery-result navigation[END_REF]. Content diversity has been thoroughly studied in search and advertising [START_REF] Anagnostopoulos | Sampling Search-Engine Results[END_REF][START_REF] Feuerstein | New Stochastic Algorithms for Scheduling Ads in Sponsored Search[END_REF], database queries [START_REF] Vee | Efficient Computation of Diverse Query Results[END_REF][START_REF] Angel | Efficient diversity-aware search[END_REF][START_REF] Chen | Addressing diverse user preferences in sqlquery-result navigation[END_REF], and recommendations [START_REF] Yu | It takes variety to make a world : diversification in recommender systems[END_REF][START_REF] El-Arini | Turning down the noise in the blogosphere[END_REF][START_REF] Ziegler | Improving recommendation lists through topic diversification[END_REF]. We believe our work is the first to investigate profile diversity in searching scientific documents.

In summary, we make the following contributions.

1. We introduce profile diversity for scientific document search as a complement to traditional content diversity. Profile diversity combines the discipline and communities to which a user belongs.

2. We propose an adaptation of Fagin's threshold-based algorithms to return the most relevant and most popular documents that satisfy content and profile diversities.

3. To validate our scoring function, we ran experiments that use two benchmarks : a realistic benchmark with scientists and TREC'09.

This paper is organized in the following way. Section 2 provides some background on document search and recommendation in the context of online scientific communities and presents the problem definition. Section 2 describes our general scoring function, DivRSci, based on probabilistic diversification. Next, Section 4 presents all algorithms necessary for DivRSci, and shows in details our contributions for profile diversification. In Section 5, we present the performance evaluation behavior of DivRSci compared to other approaches, using in two benchmarks. Section6 is concerned with the related work, and finally Section 7 concludes and provides directions for future work.

Background

We focus on online scientific communities where users aim to query and have recommendations of inter-community and inter-disciplinary documents shared by other scientists. Our approach is generic, however to facilitate the understanding of our concepts and model we take into account plant phenotyping research that clearly requires inter-community and inter-disciplinary research.

For scientific document recommendation, it is essential to understand the sense of inter-community and interdisciplinary research. In general, a user belongs to a well known discipline (e.g. computer science, biology, mathematics, etc.). Within a discipline a user belongs to one or more communities which reflects specializations of a discipline. For instance in the biology discipline, examples of communities are geneticists, ecophysiologists and plant breeders. Inter-community research refers to the fact that users research interests involves different communities of one discipline. For instance a geneticist may be interested in specific research results of the ecophysiologists community to understand the genetic behavior of some plants. Inter-disciplinary research refers to the fact that users research interests involves different disciplines. For instance, a biologist can query for mathematical tools that can model a plant behavior. In both inter-community and inter-disciplinary research, users would benefit from discovering new and diversified research trends coming from different communities or disciplines.

In our context, we choose a content based join to a collaborative filtering recommendation approach where users profiles -or alternatively user research interests -are defined based on the documents DS i the user u i stores. Thus, we assume a set of users U = {u 1 , ..., u n }. Each user u i shares some of his documents D i = {d 1 , ..., d m } (or contents) with his friends, such that D i is a subset of his DS i . A document d can be shared by 1 to n users. Each time a document is chosen to be shared and copied, a new replica (or copy) of d is produced. In our context, a replica refers to the fact that different users have the same instance of a document in their work-space. Thus, each document d is associated with a degree of replication that expresses the number of replicas of d among U . Notice that the degree of replication can be related to the document popularity.

Documents are represented based on the vector space model [START_REF] Manning | Introduction to information retrieval[END_REF]. By using tf -idf a document is represented by a list of keywords k 1 , ..., k z , and the vector represents the weight of each distinct keyword given the document and the whole corpus. A user profile prof ile i expresses his interests based on DS i . Queries are expressed by a list of keywords k 1 , ..., k z . Users' profiles and queries are also represented based on the vector model.

Problem Statement : Given U , DS, D and a keyword query q submitted by some user u the problem we address is to propose a new scoring function to recommend the top -k most relevant documents among D to favor the inter-community, inter-disciplinary research and diversity requirements presented above. We assume that the k documents are in a sorted order list L in descending relevance order.

The intuition of our approach is that guarantees of inter-community and inter-disciplinary recommendation can be achieved by diversifying the documents and related users profiles in L. Therefore to produce L we identify four recommendation requirements with respect to the relevancy of a document d i :

1. The similarities of d i and q.

2. Content Diversification with respect to the documents already chosen in L.

3. The popularity of d i .

4. Profile diversification with respect to the profiles of the users that owns the documents already chosen in L. Those profiles should be either similar to u (for inter-community recommendation) or similar to q (for inter-disciplinary recommendation).

Scoring Model

Several methods have been proposed for diversification [START_REF] Zhu | Improving Diversity in Ranking using Absorbing Random Walks[END_REF][START_REF] Yu | It takes variety to make a world : diversification in recommender systems[END_REF][START_REF] Angel | Efficient diversity-aware search[END_REF][START_REF] Chen | Less is more : probabilistic models for retrieving fewer relevant documents[END_REF][START_REF] Rakesh Agrawal | Diversifying search results[END_REF]. However, they only address requirements 2 discussed in the previous section. Our goal is to introduce profile diversification (i.e. requirement 4), taking into account a probabilistic diversification model because it provides more guarantees for inter-disciplinary and inter-community recommendation, as we show in our experiments in section 5.

Probabilistic Diversification

In the domain of information retrieval, given D and a query q, the computation of the top-k diversified documents is known to be NP-hard problem [START_REF] Chen | Less is more : probabilistic models for retrieving fewer relevant documents[END_REF][START_REF] Angel | Efficient diversity-aware search[END_REF]. Following [START_REF] Chen | Less is more : probabilistic models for retrieving fewer relevant documents[END_REF][START_REF] Angel | Efficient diversity-aware search[END_REF], div(d i |{d 1 , ..., d i-1 }) is defined as the diversification probability of d i (i.e. brings novelty to the user u) with respect to the previously chosen documents in L (i.e. {d 1 , ..., d i-1 }). In this model, the diversity can be expressed using the notion of redundancy. The redundancy red c (d i , d j) is computed by comparing the similarity between d i and d j . Angel and Koudas [START_REF] Angel | Efficient diversity-aware search[END_REF] strictly defines the diversity probability as 1 -red(d i |d 1 , ..., d i-1). Based on the hypothesis that the redundancy between documents d i and d j is independent of its redundancy with the other documents [START_REF] Gollapudi | An axiomatic approach for result diversification[END_REF][START_REF] Angel | Efficient diversity-aware search[END_REF][START_REF] Chen | Less is more : probabilistic models for retrieving fewer relevant documents[END_REF], the probabilistic diversification score is defined as :

1 -red(d i |d 1 , ..., d i-1) = d j ∈{d 1 ,...,d i-1 } 1 -red(d i , d j) (1)

DivRSci Scoring Function

To address the four requirements presented in section 2, we propose the DivRSci score that evaluates the relevancy of a document given a query q :

score DivRSci (d, u, q) = rel(d, q). div c (d|{d 1 , ..., d i-1 }).div p (u d |{u d 1 , ..., u d i-1 }) (2)
rel(d, q) defines the probability that d will answer the query q. It can be defined as the similarity measure between d and q (e.g. cosine, jaccard, etc.) [START_REF] Salton | A Vector Space Model for Automatic Indexing[END_REF]. This addresses requirements 1.

div c (d|{d 1 , ..., d i-1 }) is a straightforward application of equation 1 and ad- dresses requirement 2. div p (u d |{u d 1 , ..., u d i-1 })
is the profile diversification score of document d and takes into account the document's popularity (requirement 3) and the diversification among trusted users (requirement 4). More precisely, we evaluate for each user in U holding a replica of d, a trust and a diversification score (requirement 4) with respect to L.

The trust trust(v n , u, q) is a value which indicates the confidence the user u can have in the user v. Such information can be computed in many ways (e.g. social friendship, localization, previous recommendation, etc.). In the following we consider that the trust takes into account the relevance of the user v, given u and q. The relevance indicates if v is either similar to u (i.e. inter-community recommendation) or to q. (i.e. inter-disciplinary recommendation). We define the user's relevance in equation 3.

rel trust (v, u, q) = α.sim(u, v) + (1 -α).sim(v, q) (3)
Where α is a predefined coefficient. More formally, we propose the user profile diversification score defined in Equation 4. Recall that the profile diversification score also takes into account the popularity of the document d i (requirement 3), that is why we need 1 N . Notice that 1 N is also used for normalization. N can have several values such as the total number of users or the maximum number of users sharing a single document.

div p (u d |{u d 1 , ..., u d i-1 }) = 1 N . vn∈u d i [rel trust (v, u, q). vm∈{u d 1 ,...,u d i-1 } (1 -red p (v m |v n)   (4)

Algorithms

In this section we present in details the algorithms involved in DivRSci. For sake of clarity, in section 4.1, we present the extended version of the algorithm related to the probabilistic model we adopt [START_REF] Angel | Efficient diversity-aware search[END_REF] adapted for DivRSci. In section 4.2, we show the performance degradation brought by the profile diversification aspect of DivRSci and we propose a new threshold condition that is best suited to profile diversification. Finally in section 4.3 we propose a new algorithm to compute profile diversification.

Preliminaries

In [START_REF] Angel | Efficient diversity-aware search[END_REF], the authors propose an algorithm (called DAS) used to implement the following scoring function :

rel(d, q).(1 -red(d i |d 1 , ..., d i-1)) (5)
DAS is a threshold based algorithm. Given a query q and a set of documents D, a threshold algorithm operates over a set of inverted indexes :

w i ⇒< d a , sc a >, < d b , sc b >,, < d n , sc n > ... w m ⇒< d e , sc e >,, < d n , sc n > (6)
where w i is a word, d a a document and sc a the score of the document with respect to the word w 1 (i.e. sc a = sim(w 1 , d a)). The documents are sorted in decreasing order of sc. Notice that the set of indexes used by the threshold algorithm depends on the query q. For instance, if q = {w i , w m } then the inverted indexes will be the ones of w i and w m . Finally the algorithm stops when the threshold condition δ is satisfied. δ is computed based on the inverted indexes :

δ = f (s 1 , s 2 , ..., s n) (7)
where f defines a specific measure (e.g. cosine, etc.) and s i is the last sorted access on the w i index. For instance, given a set of inverted indexes {w i , w j }, if we want to retrieve the top-1 document. The stop condition will be satisfied if the score of a document d is superior or equal to δ = f (s i , s j).

The goal of DivRSci is to find an optimal list L of k documents such that we can't find a better list L given u and q and our scoring function. That is, given L and a document d i ∈ L, where i ∈ {1, ..., k}, we can't find any document d j / ∈ {d 1 , ..., d i-1 , d i } that would have a better score than d i at the i th place in L.

We propose DAS DivRSci as an implementation solution (see Algorithm 1) that uses a new threshold condition suited for profile diversification. Notice that div p (line 4), δ ′ (line 5) and line 9 are specific features related to DivRSci.

The algorithm runs until L reaches k documents (line 2). From line 3 to 5, the algorithm performs a sorted access to get the next document, then it computes its score (i.e. score DivRSci , formula 2) and inserts it into a candidates' list. The candidates list contains each document that has already been analyzed but that can't be inserted in L yet because the algorithm can still find documents with better diversity score. Notice that a document's score is not fixed until it has been added to L. At line 6, DivRSci analyses if the best candidates has a score higher than the threshold δ ′ . In other words, it analyses if there isn't any better document in the indexes. In that case, DivRSci inserts the best document in L and update the score of the other candidates (line 7 & 8). Line 9 will be explained in more details in the next subsection motivated by the new threshold score proposal.

DivRSci Threshold

As presented in formula 7, the threshold δ is evaluated using the document's score in the {w 1 , ..., w n }. In DivRSci, div c and div p are always smaller than 1. Notice that while the number of documents in L grows, the content diversification score and the profile diversification score decrease for any given document d i ∈ L. For instance, to retrieve 3 diversified documents (using our benchmark, U = 50 users, D = 300 documents), DivRSci needs about 175 sorted accesses in average. In the worst case, the whole index is used to find these 3 documents. Thus, δ is no longer appropriate.

We propose to use a new threshold δ ′ with respect to our scoring function to optimize the number of sorted accesses :

δ ′ = f (s 1 , s 2 , ..., s n).f divc (d i , {s 1 , s 2 , ..., s n }). f divp (d i , {s 1 , s 2 , ..., s n }) (8)
where each part of the threshold corresponds to a part of our scoring function (i.e. DivRSci). Notice that to compute f divc and f divp we need additional information because the indexes {s 1 , ..., s n } are not sufficient. Thus, we define 4 primitives :

1. max div c : returns the maximum content diversity score between d i and the documents that follow d i in {s 1 , s 2 , ..., s n }.

2. max div p : returns the maximum profile diversity score between d i and the documents that follow d i in {s 1 , s 2 , ..., s n }. 3. max trust : returns the maximum trust score of the users that share the document in {s 1 , s 2 , ..., s n }. Notice that the part of the trust score that depends on the user u that submitted the query is evaluated as equal to 1. 4. max rep : returns the maximum number of replicas of any documents in {s 1 , s 2 , ..., s n }. We now define f divc and f divp : The demonstration is straightforward. Notice that d j ∈{d i ,...,d i -1} max div c (d j) and d j ∈{d i ,...,d i -1} max div p (d j) can be updated at each iteration without recomputing the overall formulas 9 and 10. In Algorithm 1, (line 9) DivRSci updates their values with respect to the last document inserted in L.

f divc (d i , {s 1 , s 2 , ..., s n }) = d j ∈{d i ,...,d i -1} max div c (d j) (9)
f divp (d i ,
We now present an example to compare δ with our new threshold. Due to lack of space and for simplicity, we simplify the DivRSci scoring function by removing the trust and the popularity related to div p :

div p = vn∈u d i   vm∈{u d 1 ,...,u d i-1 } (1 -red p (v m |v n)   (11)
Not surprisingly, removing 1 N and rel trust from the DivRSci scoring function, enables the definition of a simpler threshold, δ ′′ , that is quite simpler to compute compared to δ ′ , but that keeps the same general behavior : In more details, table 2 shows a running case in which DivRSci is built L using δ ′′ . We show that the number of sorted accesses would have been largely superior if we've used δ. The input is a built index of documents based on a query. The first column step corresponds to a whole iteration in algorithm 1 (line 3 to 9). The second column sorted accessed indicates the sorted access done at the given step (line 3 of algorithm 1) on the index of the input. The columns max div c and max div p indicate that the document's we've just done the sorted access on (e.g. document A for step 1) can't be more diverse than the value indicated, with respect to all other indexed documents still not accessed. L is the list of results and C the list of candidates. The columns δ and δ ′′ indicates the value of the thresholds at the given step.

δ ′′ = lastSA. d∈L max div c (d). d∈L max div p (d) (12)
On step 1, DivRSci performs a sorted access on A. As it's the first document, the diversification score is 1 and the final score of the document is rel(d, q) = 0.9. On step 2, DivRSci performs a sorted access on B. The final score of B is 0.238 due to its diversification score with respect to A. Notice that δ ′′ (which is inferior to δ) has a value of 0.34 which is superior to B's score. It means that we may find a better document. Then, on step 3, DivRSci performs a sorted access on document C. The final score of this document (with respect to A) is 0.34 which is superior or equal to δ ′′ . We can assume that there will not be any better document in the index. Therefore C is inserted in L. Notice that δ is equal to 0.87, and DivRSci couldn't have inserted C in L at this step by using δ. Furthermore, we can see that at step n, δ is equal to 0.55 which is still superior to C's score and is not satisfying the stop condition. This confirm the fact that the proposal of div p for DivRSci introduces important complexity and our new threshold approach provides important performance improvement.

DivRSci Profile Diversification

In this section, we present how we compute div p (Algorithm 1, line 4). Algorithm 2 presents a possible way to compute div p . From line 1 to 7, it computes for each user holding a replica of the document d a trust and a diversification score. On line 3, it evaluates the trust score of v n with respect to u and to q. Then, from line 4 to 6 it evaluates the diversification score of v n with respect to the users that hold a document already inserted in L.

Finally, on line 7 it combines the trust and the diversification score and adds the computed value to the global profile diversification score. Line 8 normalizes the value of div p and takes into account the popularity of d i .

Thus, the number of iterations is strictly equal to :

|U d i |.|U [d 1 ,...,d i-1] |
and the complexity of the function, in the worst case is O(n 2), where n is equal to the total number of users. Recall that the profile redundancy score between two documents also takes into account the trust score which depends on the u submitting the query. Therefore the profile diversification can't be precomputed because a specific index would be necessary for each user. /* the documents are indexed based on sim(d,q). */ 1 prof Div ⇐ 0;

2 for v n in U d i do 3 t ⇐ trust(u, v n , q); 4 div ⇐ 1; 5 for v m in U [d 1 ,...,d i-1] do 6 div ⇐ div.red(v n , v m); 7 prof Div ⇐ prof Div + t.div; 8 prof Div ⇐ prof Div N ;

Performance Evaluation

In this section, we provide an experimental evaluation of DivRSci to assess the quality of recommendations, content diversification, profile diversification and of the algorithm efficiency. We have conducted a set of experiments using a self-built benchmark and using TREC'09. In section 5.1 we first describe the experimental setup. Then, in section 5.2, we discuss the results.

Experimental Setup

Our self-built benchmark is composed of a set of 50 users. They are scientists in the domain of plant phenotyping from different localities (e.g. Australia, England, France, etc.). They belong to 4 main disciplines (i.e. ecophysiologists, geneticist, mathematician, computer scientists). Each discipline contains about 4 communities. The users share documents related to their research with respect to different disciplines and communities. Our benchmark is composed of 300 documents, 92% of these documents have a degree of replication of 1, 3% of them have a degree of 2, 2% have a degree of 3 and 2% have a degree of replication of 4. All users submit queries that are 1/3 inter-disciplinary and 2/3 inter-community. They can be classified in two categories :

1. unspecific queries (i.e. queries with very few keywords such as "plant"

or "plant model").

2. specific queries (i.e. queries with lot of keywords such as "FSPM structure function plant model").

Each category of query represents 50% of the total number of queries which is 300.

In addition to our self-built benchmark we also show that using a well known large-scale benchmark (i.e. TREC'09 in our case) produces comparable results. From TREC'09, and more precisely, from the Ohsumed data set, we take 15000 documents and 1500 specific queries. 50% of these queries are inter-disciplinary and 50% are inter-community. We consider 1000 users. We built the users profile by clustering the documents using k-means. Each cluster corresponds to a community. We obtained 30 communities. Each user shares random documents from a community/cluster. In our scenario, the documents are replicated ranging from 1 to 200 copies.

In the following, we present the four scores we compared in our experiments :

1. Simple top-k : we only retrieve the documents that optimize rel(d, q). 2. DAS : we retrieve the documents that optimize rel(d i , q).(1 -red(d i |d 1 , ..., d i-1)).

3.

Trusted DAS : we retrieve the documents that optimize DAS score and that are shared by the most trusted users -with respect to the trust we defined in section 2.

4. DivRSci : we retrieve the documents that optimize our scoring function.

To understand the behavior of the scores, we analyze the following metrics :

1. The content diversity :

d i ∈L d j ∈L 1 -red(d i , d j)
2. The profile diversity :

u i ∈U L u j ∈U L 1 -red(u i , u j)
3. The average relevance of the documents in L :

avg d i ∈L (sim(d i , q))
4. The average relevance of the users involved in L :

avg u i ∈U L (α.sim(u, u i) + (1 -α).sim(u i , q))
5. The cost to retrieve documents in number of sorted accesses by comparing several scores :

In our experiments, the similarity and redundancy function are computed using cosine. Figure 1 compares the behavior of our scores to understand the degree of diversification of the chosen users profiles in L. In Figure 1a we executed unspecific queries. In Figure 1b we executed specific queries.

Experiments

We discuss and analyze the expected profile diversification behavior with respect to our inter-disciplinary and inter-community requirements. Notice that given an unspecific query q 1 ="plant model", most users in U should be able to answer it because in some way they are all involved in plant research. Notice that unspecific queries enable inter-disciplinary recommendation, and by diversifying users profiles, more disciplines will be involved in the recommendation results (i.e. L) and the profile diversification measure should be high. In the case of specific queries such as q 2 ="FSPM structure function plant model", less users will be able to answer it because less users are involved in these researches as it is a subset of plant model researches. Notice that specific queries enable inter-communities recommendation, and by diversifying users profiles more communities of the same discipline will be involved in the recommendation results (i.e. L) and the profile diversification measure should be low.

Not surprisingly Figures 1a and1b show that the simple top-k and DAS have exactly the opposite behavior compared to the expected one. Their profile diversification measure double from 9.5 to 18 and 7 to 14 respectively (Figure 1a and Figure 1b) instead of decreasing. Moreover, we can see that by adding the trust score to DAS (i.e. trusted DAS), we resolved this issue by only inserting in L trusted users. Notice that, the trust score reduces considerably the profile diversification degree of trusted DAS. In DivRSci, we introduced a profile diversification score and a trust score. Therefore, DivRSci is able to compute a diversified list of users in L that has a coherent behavior with respect to the expected one. In Figure 2, we analyze if the behavior of the four scores is similar in the TREC'09 based benchmark. We only present profile diversification results due to a lack of space. All users submit only specific queries and we measure the profile diversification. As we can see, the different scores follow the same trend as the one of Figure 1b. However, the profile diversification is much higher due to the fact that with TREC'09, the number of replicas is much higher than in our self-built benchmark. This result shows that as the degree of replication globally increases the degree of diversification also increases. The goal of Figure 3 is to check if the "profiles" Finally, we constructed a feedback method using [START_REF] Järvelin | Cumulated gain-based evaluation of IR techniques[END_REF] to evaluate the list L quality taking in account simple top-k, DAS, Trusted DAS and DivRSci. The feedback was generally positive with more than 70% of satisfaction. The principal favored argument was the possibility to retrieve relevant intercommunity and inter-disciplinary documents.

Threshold Efficiency

In this experiment, we show the effect of a complex scoring function and of the threshold on the number of sorted accesses. Table 3 resumes the experiment of running DAS and DivRSci with the threshold δ and δ ′ on our self-built benchmark. We first executed DAS with the threshold δ. DAS only diversifies the document's content. Obviously, it has the best results in term of sorted accesses. In second, we executed DivRSci with the threshold δ. Not surprisingly, the number of sorted accesses is very high because δ is not suitable as discussed in section 4.2. Finally we executed DivRSci with the threshold δ ′ . The results are 6 times better than DivRSci with δ.

Related Work

Content diversity has been studied in Web search, database queries, and recommendations. Diversifying Web search results and recommendations aims to achieve a compromise between relevance and result heterogeneity. In [START_REF] Gollapudi | An axiomatic approach for result diversification[END_REF], the authors adopt an axiomatic approach to diversity that aims to address user intent. They show that no diversification function can satisfy all axioms together and illustrate that with concrete examples. In [START_REF] Anagnostopoulos | Sampling Search-Engine Results[END_REF], taxonomies are used to sample search results in order to reduce homogeneity. In the database context [START_REF] Vee | Efficient Computation of Diverse Query Results[END_REF][START_REF] Chen | Addressing diverse user preferences in sqlquery-result navigation[END_REF], solutions have proposed to post-process structured query results, organizing them in a decision tree [START_REF] Chen | Addressing diverse user preferences in sqlquery-result navigation[END_REF] for easier navigation or merging ranked lists [START_REF] Vee | Efficient Computation of Diverse Query Results[END_REF] for faster processing. In [START_REF] Amer | Efficient Online Computation of Diverse Query Results[END_REF], a hierarchical notion of diversity in databases is introduced, and efficient top-k processing algorithms are developed. In recommendations [START_REF] Ziegler | Improving recommendation lists through topic diversification[END_REF][START_REF] El-Arini | Turning down the noise in the blogosphere[END_REF][START_REF] Yu | It takes variety to make a world : diversification in recommender systems[END_REF], results are typically post-processed using pair-wise item similarity in order to generate a list that achieves a balance between accuracy and diversity. For example, in the recommender systems world, the approach in [START_REF] Ziegler | Improving recommendation lists through topic diversification[END_REF] defines an intra-list similarity which relies on mapping items to taxonomies to determine topics or using item features such as author and genre. The method is based on an exhaustive post-processing algorithm which operates on a top-N list to compute the top-K results (N > K). In contrast, in [START_REF] El-Arini | Turning down the noise in the blogosphere[END_REF], diversity is formulated as a set-coverage problem. Finally, [START_REF] Feuerstein | New Stochastic Algorithms for Scheduling Ads in Sponsored Search[END_REF] introduces diversity in the framework of sponsored search ads, proposing algorithms for the selection of ads that intend to increase heterogeneity while not significantly reducing revenue and maintaining an incentive for advertisers to keep their bids as high as possible. Heterogeneity is aimed at as a notion that spans various occurrences of the same query, and not just a single one.

Notice that none of the above contributions tackles the problem of profile diversity as we do.

Conclusion

In this paper, we introduced profile diversity to ease inter-community and inter-disciplinary search and recommendation. We proposed a scoring function (called DivRSci) that accounts for query relevance, content diversity to alleviate document similarity in query results, document popularity to account for community endorsements, and finally, discipline and community diversity to expose users to documents owned and shared by different disciplines and communities.

We argued that profile diversity provides good guarantees for inter-community and inter-disciplinary search and recommendation. Profile diversification is done by recommending documents that are shared by trusted and diversified users among all users. Our scoring function is based on a probabilistic model since it provides good guarantees of diversification. We presented in details all involved algorithms and we proposed a new threshold for DivRSci suited for profile diversification.

Through experimental evaluation using two benchmarks and comparing DivRSci with other scoring functions, we showed that DivRSci presents the best compromise between all requirements we have identified. Besides Di-vRSci also shows to be the best generating list of inter-disciplinary and intercommunity documents. Finally, we presented the very good gains (factor of 6) of the new proposed threshold, suited for profile diversification.

In future work, we plan to propose a distributed approach for DivRSci.

Algorithm 2 :

 2 Profile Diversification Score Computing Input: List[d 1 , ..., d i-1],User u,Query q,Document d i Output: The profile diversity score of d i wrt. q, u and [d 1 , ..., d i-1]

 the users submit specific queries.

Figure 1 -

 1 Figure 1 -profile diversification depending on the top-k algorithm.

Figure 2 -

 2 Figure 2 -profile diversification with specific queries in TREC depending on the top-k algorithm.

 the users submit precise and specific queries.

Figure 3 -

 3 Figure 3 -Average relevance of the users in L depending on the top-k algorithm.Table 3 -Number of sorted accesses depending on the scoring function and on the threshold to compute the top-3 documents. Score threshold number of sorted accesses DAS δ 10 DivRSci δ 175 DivRSci δ ′ 30

Table 1 -

 1 Example of the need of cross-disciplinary researches

 rel(d, q).div c (d|{d 1 , ...,d i-1 }). div p (u d |{u d 1 , ..., u d i-1 });Update d j ∈{d i ,...,d i -1} max div c (d j) and prod d j ∈{d i ,...,d i -1} max div p (d j) using the best candidate;

		Algorithm 1: DAS DivRSci
		Input: index,query,user,k
		Output: the top-k most relevant documents wrt. to our scoring
		function.
	1 L ⇐;
	2 while size(L) < min(k, size(corpus)) do
	3	d ⇐ index.nextSortedAccess();

4 d.score = 5 add d to candidates; 6 if the best candidate's score is higher than δ ′ then 7 add best candidate to L; 8 Update the score of the other candidates; 9

Table 2 -

 2 Example of the effect of the threshold on the number of sorted accesses.

	Step Sorted	rel(d, q) max	max	Final	δ	δ ′	L	C
		Access		div c	div p	Score			
	1	A	0.90	0.85	0.45	0.9	0.9	0.345 A	-
	2	B	0.88	0.84	0.46	0.238 0.88 0.34 A	B
	3	C	0.87	0.95	0.65	0.34	0.87 0.33 A,C B
	...								
	n	Z	0.55			0.0023 0.55		

Acknowledgments

The authors would like to thank Romain Chapuis for his effort to build our benchmark and organizing feedback seances.

* Work conducted within the Institut de Biologie Computationnelle and partially funded by the labex NUMEV and the CNRS project Mastodons.